Skip to main content

Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12908))

Abstract

Time-lapse fluorescent microscopy (TLFM) combined with predictive mathematical modelling is a powerful tool to study the inherently dynamic processes of life on the single-cell level. Such experiments are costly, complex and labour intensive. A complimentary approach and a step towards in silico experimentation, is to synthesise the imagery itself. Here, we propose Multi-StyleGAN as a descriptive approach to simulate time-lapse fluorescence microscopy imagery of living cells, based on a past experiment. This novel generative adversarial network synthesises a multi-domain sequence of consecutive timesteps. We showcase Multi-StyleGAN on imagery of multiple live yeast cells in microstructured environments and train on a dataset recorded in our laboratory. The simulation captures underlying biophysical factors and time dependencies, such as cell morphology, growth, physical interactions, as well as the intensity of a fluorescent reporter protein. An immediate application is to generate additional training and validation data for feature extraction algorithms or to aid and expedite development of advanced experimental techniques such as online monitoring or control of cells.

Code and dataset is available at https://git.rwth-aachen.de/bcs/projects/tp/multi-stylegan.

C. Reich and T. Prangemeier—Both authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/pytorch/vision.

  2. 2.

    https://github.com/piergiaj/pytorch-i3d.

  3. 3.

    https://pytorch.org/.

  4. 4.

    https://kornia.github.io/.

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN++: how to edit the embedded images? In: CVPR, pp. 8296–8305 (2020)

    Google Scholar 

  2. Bailo, O., Ham, D., Shin, Y.M.: Red blood cell image generation for data augmentation using conditional generative adversarial networks. In: CVPRW (2019)

    Google Scholar 

  3. Bandiera, L., Hou, Z., Kothamachu, V.B., Balsa-Canto, E., Swain, P.S., Menolascina, F.: On-line optimal input design increases the efficiency and accuracy of the modelling of an inducible synthetic promoter. Processes 6(9) (2018)

    Google Scholar 

  4. Barratt, S., Sharma, R.: A note on the inception score. In: ICML Workshop (2018)

    Google Scholar 

  5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  6. Chessel, A., Carazo Salas, R.E.: From observing to predicting single-cell structure and function with high-throughput/high-content microscopy. Essays Biochem. 63(2), 197–208 (2019)

    Article  Google Scholar 

  7. Comes, M.C., et al.: Multi-scale generative adversarial network for improved evaluation of cell-cell interactions observed in organ-on-chip experiments. Neural. Comput. Appl. 33, 3671–3689 (2020)

    Article  Google Scholar 

  8. Goldsborough, P., Pawlowski, N., Caicedo, J.C., Singh, S., Carpenter, A.E.: CytoGAN: generative modeling of cell images. BioRxiv, p. 227645 (2017)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  10. Hall, M.S., Decker, J.T., Shea, L.D.: Towards systems tissue engineering: elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. Biomaterials 255, 120189 (2020)

    Article  Google Scholar 

  11. Han, L., Murphy, R.F., Ramanan, D.: Learning generative models of tissue organization with supervised GANs. In: WACV, pp. 682–690 (2018)

    Google Scholar 

  12. Han, L., Yin, Z.: Transferring microscopy image modalities with conditional generative adversarial networks. In: CVPRW, pp. 851–859 (2017)

    Google Scholar 

  13. Henningsen, J., Schwarz-Schilling, M., Leibl, A., Gutiérrez, J., Sagredo, S., Simmel, F.C.: Single cell characterization of a synthetic bacterial clock with a hybrid feedback loop containing dCas9-sgRNA. ACS Synth. Biol. 9(12), 3377–3387 (2020)

    Article  Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS, vol. 30, pp. 6626–6637 (2017)

    Google Scholar 

  15. Hofmann, A., et al.: A tightly regulated and adjustable CRISPR-dCas9 based AND gate in yeast. Nucleic Acids Res. 47(1), 509–520 (2019)

    Article  Google Scholar 

  16. Johnson, G.R., Donovan-Maiye, R.M., Maleckar, M.M.: Generative modeling with conditional autoencoders: building an integrated cell. arXiv:1705.00092 (2017)

  17. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS, vol. 33, pp. 12104–12114 (2020)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410 (2019)

    Google Scholar 

  19. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR, pp. 8110–8119 (2020)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Lee, G., Oh, J.W., Her, N.G., Jeong, W.K.: DeepHCS++: bright-field to fluorescence microscopy image conversion using multi-task learning with adversarial losses for label-free high-content screening. Med. Image Anal. 70, 101995 (2021)

    Google Scholar 

  22. Lee, G., Oh, J.-W., Kang, M.-S., Her, N.-G., Kim, M.-H., Jeong, W.-K.: DeepHCS: bright-field to fluorescence microscopy image conversion using deep learning for label-free high-content screening. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 335–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_38

    Chapter  Google Scholar 

  23. Leygeber, M., et al.: Analyzing microbial population heterogeneity - expanding the toolbox of microfluidic single-cell cultivations. J. Mol. Biol. 431, 4569–4588 (2019)

    Article  Google Scholar 

  24. Lugagne, J., Lin, H., Dunlop, M.: DeLTA: automated cell segmentation, tracking, and lineage reconstruction using deep learning. PLOS Comput. Biol. 16(4) (2020)

    Google Scholar 

  25. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: ICML, pp. 3481–3490 (2018)

    Google Scholar 

  26. Osokin, A., Chessel, A., Carazo Salas, R.E., Vaggi, F.: GANs for biological image synthesis. In: ICCV (2017)

    Google Scholar 

  27. Pepperkok, R., Ellenberg, J.: High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7(9), 690–696 (2006)

    Article  Google Scholar 

  28. Prangemeier, T., Wildner, C., Françani, A.O., Reich, C., Koeppl, H.: Multiclass yeast segmentation in microstructured environments with deep learning. In: IEEE CIBCB, pp. 1–8 (2020)

    Google Scholar 

  29. Prangemeier, T., Lehr, F.X., Schoeman, R.M., Koeppl, H.: Microfluidic platforms for the dynamic characterisation of synthetic circuitry. Curr. Opin. Biotechnol. 63, 167–176 (2020)

    Article  Google Scholar 

  30. Prangemeier, T., Reich, C., Koeppl, H.: Attention-based transformers for instance segmentation of cells in microstructures. In: IEEE BIBM, pp. 700–707 (2020)

    Google Scholar 

  31. Prangemeier, T., Wildner, C., Hanst, M., Koeppl, H.: Maximizing information gain for the characterization of biomolecular circuits. In: Proceedings of the 5th ACM/IEEE NanoCom, pp. 1–6 (2018)

    Google Scholar 

  32. Salimans, T., et al.: Improved techniques for training GANs. In: NeurIPS, vol. 29, pp. 2234–2242 (2016)

    Google Scholar 

  33. Schonfeld, E., Schiele, B., Khoreva, A.: A U-Net based discriminator for generative adversarial networks. In: CVPR, pp. 8207–8216 (2020)

    Google Scholar 

  34. Sinha, S., Zhao, Z., Goyal, A., Raffel, C.A., Odena, A.: Top-k training of GANs: improving GAN performance by throwing away bad samples. In: NeurIPS, vol. 33, pp. 14638–14649 (2020)

    Google Scholar 

  35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)

    Google Scholar 

  36. Ulman, V., Svoboda, D., Nykter, M., Kozubek, M., Ruusuvuori, P.: Virtual cell imaging: a review on simulation methods employed in image cytometry. Cytometry A 89(12), 1057–1072 (2016)

    Article  Google Scholar 

  37. Unterthiner, T., van Steenkiste, S., Kurach, K., Marinier, R., Michalski, M., Gelly, S.: FVD: a new metric for video generation. In: ICLR Workshop (2019)

    Google Scholar 

  38. Wang, N.B., Beitz, A.M., Galloway, K.: Engineering cell fate: applying synthetic biology to cellular reprogramming. Curr. Opin. Syst. Biol. 24, 18–31 (2020)

    Article  Google Scholar 

  39. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  40. Wieslander, H., Gupta, A., Bergman, E., Hallström, E., Harrison, P.J.: Learning to see colours: generating biologically relevant fluorescent labels from bright-field images. bioRxiv (2021)

    Google Scholar 

  41. Zhang, H., et al.: High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network. Biomed. Opt. Express 10(3), 1044–1063 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Markus Baier for aid with the computational setup, Klaus-Dieter Voss for aid with the microfluidics fabrication, and Tim Kircher, Tizian Dege, and Florian Schwald for aid with the data preparation.

This work was supported by the Landesoffensive für wissenschaftliche Exzellenz as part of the LOEWE Schwerpunkt CompuGene. H.K. acknowledges support from the European Research Council (ERC) with the consolidator grant CONSYN (nr. 773196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Koeppl .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 3260 KB)

Supplementary material 1 (pdf 5642 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reich, C., Prangemeier, T., Wildner, C., Koeppl, H. (2021). Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics