Skip to main content

Two-Stage Recognition Algorithm for Untrimmed Converter Steelmaking Flame Video

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13019))

Included in the following conference series:

  • 2390 Accesses

Abstract

In the process of converter steelmaking, identification of converter status is the basis of subsequent steelmaking control, directly affecting the cost and quality of steelmaking. Usually, the status of converter can be identified according to the flame of furnace port. In this paper, we propose a two-stage recognition algorithm to identify converter status using furnace flame video. In the first stage, we design a 2D feature extractor based on the shift module, aiming to capture temporal information in real time. In the second stage, an attention-based network is designed to get a more discriminative temporal attention, in which we model the distribution of temporal attention using conditional Variational Auto-Encoder (VAE) and a generative attention loss. We collect the video data and construct the corresponding data set from real steelmaking scene. Experimental results show that our algorithm can meet the accuracy and speed requirements.

Y. Chen—The first author is a student.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)

    Article  Google Scholar 

  3. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  4. Lin, J., Gan, C., Han, S.: TSM: temporal shift module for efficient video understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  5. Nguyen, P., Liu, T., Prasad, G., Han, B.: Weakly supervised action localization by sparse temporal pooling network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6752–6761 (2018)

    Google Scholar 

  6. Nguyen, P.X., Ramanan, D., Fowlkes, C.C.: Weakly-supervised action localization with background modeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5502–5511 (2019)

    Google Scholar 

  7. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

  8. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  9. Seetharaman, S., Mclean, A., Guthrie, R., Sridhar, S.: Treatise on process metallurgy (2013)

    Google Scholar 

  10. Shi, B., Dai, Q., Mu, Y., Wang, J.: Weakly-supervised action localization by generative attention modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1009–1019 (2020)

    Google Scholar 

  11. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1049–1058 (2016)

    Google Scholar 

  12. Terpak, J., Laciak, M., Kacur, J., Durdan, M., Trefa, G.: Endpoint prediction of basic oxygen furnace steelmaking based on gradient of relative decarburization rate. In: 2020 21th International Carpathian Control Conference (ICCC) (2020)

    Google Scholar 

  13. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  14. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314 (2015)

    Google Scholar 

  15. Wang, L., Xiong, Y., Lin, D., Van Gool, L.: UntrimmedNets for weakly supervised action recognition and detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4325–4334 (2017)

    Google Scholar 

  16. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  17. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  18. Xu, H., Das, A., Saenko, K.: R-C3D: region convolutional 3D network for temporal activity detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5783–5792 (2017)

    Google Scholar 

  19. Zeng, R., Huang, W., Gan, C., Tan, M., Huang, J.: Graph convolutional networks for temporal action localization. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  20. Zeng, R., et al.: Graph convolutional networks for temporal action localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7094–7103 (2019)

    Google Scholar 

  21. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2914–2923 (2017)

    Google Scholar 

  22. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 803–818 (2018)

    Google Scholar 

  23. Zhou, M., Zhao, Q., Chen, Y., Shao, Y.: Carbon content measurement of BOF by radiation spectrum based on support vector machine regression. Spectrosc. Spectr. Anal. 038(006), 1804–1808 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Liu, J., Xiong, H. (2021). Two-Stage Recognition Algorithm for Untrimmed Converter Steelmaking Flame Video. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13019. Springer, Cham. https://doi.org/10.1007/978-3-030-88004-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88004-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88003-3

  • Online ISBN: 978-3-030-88004-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics