Skip to main content

Emerging Technologies to Increase the Bioavailability of Poorly Water-Soluble Drugs

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Abstract

The poor aqueous solubility and dissolution of new chemical entities (NCEs) can be the driving factor for eliminating pharmacologically superior leads. Reconsidering the chemistry of these compounds can be economically burdensome and may result in the loss of activity. Moreover, a considerable percent of drug substances in the market also face solubility issues. Solving solubility issues can improve the efficiency of the dosage forms, the efficacy of the molecules, and open possibilities for repurposing these molecules for other ailments. Novel processes and formulation-based approaches that have overcome traditional techniques’ limitations can prove to be effective and economically feasible for these high-potential leads and drug substances. The purpose of this chapter is to describe emerging technologies for solubility enhancement, allowing the reader to gain an understanding of their utility. The current authors would like to thank and acknowledge the previous authors’ significant contribution from the first and second edition. This current third edition chapter is a revision and update of the original authors’ work from the first and second editions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aho J, Bøtker JP, Genina N, Edinger M, Arnfast L, Rantanen J. Roadmap to 3D-printed oral pharmaceutical dosage forms: feedstock filament properties and characterization for fused deposition modeling. J Pharm Sci. 2019;108(1):26–35.

    Google Scholar 

  • Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65(1):26–38.

    Google Scholar 

  • Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm. 2016;108:111–25.

    Google Scholar 

  • Alhijjaj M, Nasereddin J, Belton P, Qi S. Impact of processing parameters on the quality of pharmaceutical solid dosage forms produced by fused deposition modeling (FDM). Pharmaceutics. 2019;11(12):633.

    Article  CAS  PubMed Central  Google Scholar 

  • Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen–cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  • Amritha Rammohan B, Tayal L, Kumar A, Sivakumar S, Sharma A. Fabrication of polymer-modified monodisperse mesoporous carbon particles by template-based approach for drug delivery. RSC Adv. 2013;3(6):2008–16. https://doi.org/10.1039/C2RA22261B.

    Article  Google Scholar 

  • Andersson J, Rosenholm J, Areva S, Lindén M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro-and mesoporous silica matrices. Chem Mater. 2004;16(21):4160–7.

    Article  CAS  Google Scholar 

  • Arafat B, Qinna N, Cieszynska M, Forbes RT, Alhnan MA. Tailored on demand anti-coagulant dosing: an in vitro and in vivo evaluation of 3D printed purpose-designed oral dosage forms. Eur J Pharm Biopharm. 2018;128:282–9.

    Article  CAS  PubMed  Google Scholar 

  • Aytac Z, Ipek S, Erol I, Durgun E, Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids Surf B: Biointerfaces. 2019;178:129–36.

    Article  CAS  PubMed  Google Scholar 

  • Azad MA, Olawuni D, Kimbell G, Badruddoza AZM, Hossain M, Sultana T. Polymers for extrusion-based 3D printing of pharmaceuticals: a holistic materials–process perspective. Pharmaceutics. 2020;12(2):124.

    Article  CAS  PubMed Central  Google Scholar 

  • Baldoni JM, Ignatious F, Inventors. Electrospun pharmaceutical compositions patent WO2001054667; 2001.

    Google Scholar 

  • Balogh A, Drávavölgyi G, Faragó K, Farkas A, Vigh T, Sóti PL, et al. Plasticized drug-loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics. J Pharm Sci. 2014;103(4):1278–87. https://doi.org/10.1002/jps.23904.

    Article  CAS  PubMed  Google Scholar 

  • Balogh A, Farkas B, Faragó K, Farkas A, Wagner I, Van Assche I, et al. Melt-blown and electrospun drug-loaded polymer fiber mats for dissolution enhancement: a comparative study. J Pharm Sci. 2015a;104(5):1767–76. https://doi.org/10.1002/jps.24399.

    Article  CAS  PubMed  Google Scholar 

  • Balogh A, Horváthová T, Fülöp Z, Loftsson T, Harasztos AH, Marosi G, et al. Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection. J Drug Deliv Sci Technol. 2015b;26:28–34.

    Article  CAS  Google Scholar 

  • Bastin RJ, Bowker MJ, Slater BJ. Salt selection and optimisation procedures for pharmaceutical new chemical entities. Org Process Res Dev. 2000;4(5):427–35. https://doi.org/10.1021/op000018u.

    Article  CAS  Google Scholar 

  • Bennett RC, Brough C, Miller DA, O’Donnell KP, Keen JM, Hughey JR, et al. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol dispersing: approaches to enhance solubility of a poorly water-soluble gum extract. Drug Dev Ind Pharm. 2013;41(3):382–97.

    Article  PubMed  CAS  Google Scholar 

  • Bernardos A, Aznar E, Coll C, Martínez-Mañez R, Barat JM, Marcos MD, et al. Controlled release of vitamin B 2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J Control Release. 2008;131(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47. https://doi.org/10.1016/j.biotechadv.2010.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75(9):1782–8. https://doi.org/10.1158/0008-5472.can-14-3745.

    Article  CAS  PubMed  Google Scholar 

  • Bimbo LM, Mäkilä E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, et al. Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials. 2011;32(10):2625–33.

    Article  CAS  PubMed  Google Scholar 

  • Bradbury MS, Pauliah M, Wiesner U. Ultrasmall fluorescent silica nanoparticles as intraoperative imaging tools for cancer diagnosis and treatment. In: Fong Y, Giulianotti PC, Lewis J, Groot Koerkamp B, Reiner T, editors. Imaging and visualization in the modern operating room. New York: Springer; 2015. p. 167–79.

    Chapter  Google Scholar 

  • Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  • Brough C, Miller D, Keen J, Kucera S, Lubda D, Williams R III. Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech. 2015;2015:1–13. https://doi.org/10.1208/s12249-015-0458-y.

    Article  CAS  Google Scholar 

  • Capone C, Di Landro L, Inzoli F, Penco M, Sartore L. Thermal and mechanical degradation during polymer extrusion processing. Polym Eng Sci. 2007;47(11):1813–9.

    Article  CAS  Google Scholar 

  • Chieng N, Aaltonen J, Saville D, Rades T. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur J Pharm Biopharm. 2009;71(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.

    Article  CAS  PubMed  Google Scholar 

  • Coppens K, Hall M, Larsen P, Mitchell S, Nguyen P, Read M et al., editors. Thermal and rheological evaluation of pharmaceutical excipients for hot melt extrusion. AAPS annual meeting and exposition, Baltimore; 2004.

    Google Scholar 

  • Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;23(21):4241–8. https://doi.org/10.1016/S0142-9612(02)00187-4.

    Article  CAS  PubMed  Google Scholar 

  • Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.

    Article  CAS  PubMed  Google Scholar 

  • Daghrery A, Aytac Z, Dubey N, Mei L, Schwendeman A, Bottino MC. Electrospinning of dexamethasone/cyclodextrin inclusion complex polymer fibers for dental pulp therapy. Colloids Surf B: Biointerfaces. 2020;191:111011.

    Article  CAS  PubMed  Google Scholar 

  • Davis DA Jr, Thakkar R, Su Y, Williams RO III, Maniruzzaman M. Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate. J Pharm Sci. 2020;110(4):1432–43.

    Article  PubMed  CAS  Google Scholar 

  • Davis DA, Miller DA, Su Y, Williams RO. Thermally conductive excipient expands kinetiSol® processing capabilities. AAPS PharmSciTech. 2020;21(8):1–15.

    Article  CAS  Google Scholar 

  • De Jaeghere W, De Beer T, Van Bocxlaer J, Remon JP, Vervaet C. Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int J Pharm. 2015;492(1–2):1–9. https://doi.org/10.1016/j.ijpharm.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  • Deitzel J, Kleinmeyer J, Harris D, Tan NB. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42(1):261–72.

    Article  CAS  Google Scholar 

  • Dengale SJ, Ranjan OP, Hussen SS, Krishna BSM, Musmade PB, Gautham Shenoy G, et al. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci. 2014;62:57–64. https://doi.org/10.1016/j.ejps.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams III RO. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Molecular pharmaceutics. 2008 Dec 1;5(6):968–980.

    Google Scholar 

  • DiNunzio JC, Brough C, Brown A, Williams RO, McGinity JW. Fusion processing of itraconazole and griseofulvin solid dipsersions by a novel high energy manufacturing technology – KinetiSol® Dispersing. American Association of Pharmaceutical Scientists Annual Meeting; Atlanta, Georgia; 2008.

    Google Scholar 

  • DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams Iii RO, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm. 2010a;74(2):340–51. https://doi.org/10.1016/j.ejpb.2009.09.007.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Brough C, Miller DA, Williams Iii RO, McGinity JW. Applications of KinetiSol® dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci. 2010b;40(3):179–87. https://doi.org/10.1016/j.ejps.2010.03.002.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Brough C, Miller DA, Williams RO, McGinity JW. Fusion processing of itraconazole solid dispersions by kinetisol® dispersing: a comparative study to hot melt extrusion. J Pharm Sci. 2010c;99(3):1239–53. https://doi.org/10.1002/jps.21893.

    Article  CAS  PubMed  Google Scholar 

  • DiNunzio JC, Hughey JR, Brough C, Miller DA, Williams RO III, McGinity JW. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using KinetiSol® dispersing. Drug Dev Ind Pharm. 2010d;36(9):1064–78.

    Article  CAS  PubMed  Google Scholar 

  • Domokos A, Balogh A, Dénes D, Nyerges G, Ződi L, Farkas B, et al. Continuous manufacturing of orally dissolving webs containing a poorly soluble drug via electrospinning. Eur J Pharm Sci. 2019;130:91–9.

    Article  CAS  PubMed  Google Scholar 

  • Doreth M, Löbmann K, Priemel P, Grohganz H, Taylor R, Holm R, et al. Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacin. Eur J Pharm Biopharm. 2018;122:62–9.

    Article  CAS  PubMed  Google Scholar 

  • Doshi J, Reneker DH, editors. Electrospinning process and applications of electrospun fibers. Industry Applications Society Annual Meeting. Conference Record of the 1993 IEEE; 1993.

    Google Scholar 

  • Dutta P, Dey J. Drug solubilization by amino acid based polymeric nanoparticles: characterization and biocompatibility studies. Int J Pharm. 2011;421(2):353–63. https://doi.org/10.1016/j.ijpharm.2011.10.011.

    Article  CAS  PubMed  Google Scholar 

  • Edinger M, Knopp MM, Kerdoncuff H, Rantanen J, Rades T, Löbmann K. Quantification of microwave-induced amorphization of celecoxib in PVP tablets using transmission Raman spectroscopy. Eur J Pharm Sci. 2018;117:62–7.

    Article  CAS  PubMed  Google Scholar 

  • El’Darov E, Mamedov F, Gol’Dberg V, Zaikov G. A kinetic model of polymer degradation during extrusion. Polym Degrad Stab. 1996;51(3):271–9.

    Article  Google Scholar 

  • Ellenberger DJ, Miller DA, Kucera SU, Williams RO. Generation of a weakly acidic amorphous solid dispersion of the weak base ritonavir with equivalent in vitro and in vivo performance to Norvir tablet. AAPS PharmSciTech. 2018;19(5):1985–97.

    Article  CAS  PubMed  Google Scholar 

  • Ewing AV, Biggart GD, Hale CR, Clarke GS, Kazarian SG. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions. Int J Pharm. 2015;495(1):112–21. https://doi.org/10.1016/j.ijpharm.2015.08.068.

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62(3):362–74. https://doi.org/10.1016/j.addr.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Follonier N, Doelker E, Cole ET. Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs. Drug Dev Ind Pharm. 1994;20(8):1323–39.

    Article  CAS  Google Scholar 

  • Fousteris E, Tarantili PA, Karavas E, Bikiaris D. Poly (vinyl pyrrolidone)–poloxamer-188 solid dispersions prepared by hot melt extrusion. J Therm Anal Calorim. 2013;113(3):1037–47.

    Article  CAS  Google Scholar 

  • Fukuoka E, Makita M, Yamamura S. Glassy state of pharmaceuticals. III: thermal properties and stability of glassy pharmaceuticals and their binary glass systems. Chem Pharm Bull. 1989;37(4):1047–50. https://doi.org/10.1248/cpb.37.1047.

    Article  CAS  Google Scholar 

  • Gala U, Miller D, Williams RO. Improved dissolution and pharmacokinetics of abiraterone through kinetisol® enabled amorphous solid dispersions. Pharmaceutics. 2020;12(4):357.

    Article  CAS  PubMed Central  Google Scholar 

  • Garcia-Bennett AE, Che S, Miyasaka K, Sakamoto Y, Ohsuna T, Liu Z, et al. Studies of anionic surfactant templated mesoporous structures by electron microscopy. In: Abdelhamid S, Mietek J, editors. Studies in surface science and catalysis. Elsevier; 2005. p. 11–8.

    Google Scholar 

  • Gencoglu MF, Spurri A, Franko M, Chen J, Hensley DK, Heldt CL, et al. Biocompatibility of soft-templated mesoporous carbons. ACS Appl Mater Interfaces. 2014;6(17):15068–77. https://doi.org/10.1021/am503076u.

    Article  CAS  PubMed  Google Scholar 

  • Ghebremeskel A, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: stability testing of selected solid dispersions. Pharm Res. 2006;23(8):1928–36. https://doi.org/10.1007/s11095-006-9034-1.

    Article  CAS  PubMed  Google Scholar 

  • Gioumouxouzis CI, Karavasili C, Fatouros DG. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov Today. 2019;24(2):636–43.

    Article  CAS  PubMed  Google Scholar 

  • Gomes ME, Ribeiro AS, Malafaya PB, Reis RL, Cunha AM. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials. 2001;22(9):883–9. https://doi.org/10.1016/S0142-9612(00)00211-8.

    Article  CAS  PubMed  Google Scholar 

  • Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater Sci Eng C. 2002;20(1–2):19–26. https://doi.org/10.1016/S0928-4931(02)00008-5.

    Article  Google Scholar 

  • Gopakumar T, Pagé D. Compounding of nanocomposites by thermokinetic mixing. J Appl Polym Sci. 2005;96(5):1557–63.

    Article  CAS  Google Scholar 

  • Govender R, Abrahmsén-Alami S, Folestad S, Larsson A. High content solid dispersions for dose window extension: a basis for design flexibility in fused deposition modelling. Pharm Res. 2020;37(1):1–10.

    Article  CAS  Google Scholar 

  • Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol Pharm. 2015;12(11):4077–84. https://doi.org/10.1021/acs.molpharmaceut.5b00510.

    Article  CAS  PubMed  Google Scholar 

  • Grohganz H, Löbmann K, Priemel P, Tarp Jensen K, Graeser K, Strachan C, et al. Amorphous drugs and dosage forms. J Drug Deliv Sci Technol. 2013;23(4):403–8. https://doi.org/10.1016/S1773-2247(13)50057-8.

    Article  CAS  Google Scholar 

  • Gynther M, Laine K, Ropponen J, Leppänen J, Mannila A, Nevalainen T, et al. Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem. 2008;51(4):932–6. https://doi.org/10.1021/jm701175d.

    Article  CAS  PubMed  Google Scholar 

  • Hanada M, Jermain SV, Thompson SA, Furuta H, Fukuda M, Williams RO III. Ternary amorphous solid dispersions containing a high-viscosity polymer and mesoporous silica enhance dissolution performance. Mol Pharm. 2020;18(1):198–213.

    Article  PubMed  CAS  Google Scholar 

  • Hancock BC. Disordered drug delivery: destiny, dynamics and the Deborah number. J Pharm Pharmacol. 2002;54(6):737–46.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12. https://doi.org/10.1021/js9601896.

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.

    Article  CAS  PubMed  Google Scholar 

  • Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics. 2019;11(12):645.

    Article  CAS  PubMed Central  Google Scholar 

  • Heikkilä T, Santos HA, Kumar N, Murzin DY, Salonen J, Laaksonen T, et al. Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. Eur J Pharm Biopharm. 2010;74(3):483–94. https://doi.org/10.1016/j.ejpb.2009.12.006.

    Article  CAS  PubMed  Google Scholar 

  • Hirano A, Kameda T, Arakawa T, Shiraki K. Arginine-assisted Solubilization system for drug substances: solubility experiment and simulation. J Phys Chem B. 2010;114(42):13455–62. https://doi.org/10.1021/jp101909a.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Wang J, Zhi Z, Jiang T, Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci. 2011;363(1):410–7. https://doi.org/10.1016/j.jcis.2011.07.022.

    Article  CAS  PubMed  Google Scholar 

  • Hughey J, DiNunzio J, Bennett R, Brough C, Miller D, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74. https://doi.org/10.1208/s12249-010-9431-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughey JR, Keen JM, Brough C, Saeger S, McGinity JW. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm. 2011;419(1–2):222–30. https://doi.org/10.1016/j.ijpharm.2011.08.007.

    Article  CAS  PubMed  Google Scholar 

  • Hughey JR, Keen JM, Miller DA, Brough C, McGinity JW. Preparation and characterization of fusion processed solid dispersions containing a viscous thermally labile polymeric carrier. Int J Pharm. 2012;438(1–2):11–9. https://doi.org/10.1016/j.ijpharm.2012.08.032.

    Article  CAS  PubMed  Google Scholar 

  • Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 2013;48(4–5):758–66. https://doi.org/10.1016/j.ejps.2013.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Hughey JR, Keen JM, Bennett RC, Obara S, McGinity JW. The incorporation of low-substituted hydroxypropyl cellulose into solid dispersion systems. Drug Dev Ind Pharm. 2014;2014:1–8.

    Google Scholar 

  • Igantious F, Sun L, Inventors. Electrospun amorphous pharmaceutical compositions patent WO2004014304; 2004.

    Google Scholar 

  • Ignatious F, Sun L, Lee C-P, Baldoni J. Electrospun nanofibers in oral drug delivery. Pharm Res. 2010;27(4):576–88.

    Article  CAS  PubMed  Google Scholar 

  • Ilyés K, Kovács NK, Balogh A, Borbás E, Farkas B, Casian T, et al. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation. Eur J Pharm Sci. 2019;129:110–23.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc Chem Commun. 1993;8:680–2. https://doi.org/10.1039/C39930000680.

    Article  Google Scholar 

  • Jacob J, Coyle N, West TG, Monkhouse DC, Surprenant HL, Jain NB. Rapid disperse dosage form containing levetiracetam. Google Patents; 2016.

    Google Scholar 

  • Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86. https://doi.org/10.1211/jpp.61.12.0001.

    Article  CAS  PubMed  Google Scholar 

  • Jensen KT, Blaabjerg LI, Lenz E, Bohr A, Grohganz H, Kleinebudde P, et al. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J Pharm Pharmacol. 2015a; https://doi.org/10.1111/jphp.12458.

  • Jensen KT, Larsen FH, Cornett C, Löbmann K, Grohganz H, Rades T. Formation mechanism of coamorphous drug–amino acid mixtures. Mol Pharm. 2015b;12(7):2484–92. https://doi.org/10.1021/acs.molpharmaceut.5b00295.

    Article  CAS  PubMed  Google Scholar 

  • Jermain SV, Miller D, Spangenberg A, Lu X, Moon C, Su Y, et al. Homogeneity of amorphous solid dispersions–an example with KinetiSol®. Drug Dev Ind Pharm. 2019;45(5):724–35.

    Article  CAS  PubMed  Google Scholar 

  • Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO III. In vitro and in vivo behaviors of KinetiSol and spray-dried amorphous solid dispersions of a weakly basic drug and ionic polymer. Mol Pharm. 2020;17(8):2789–808.

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Wang T, Wang L, Sun C, Jiang T, Cheng G, et al. Development of an amorphous mesoporous TiO2 nanosphere as a novel carrier for poorly water-soluble drugs: effect of different crystal forms of TiO2 carriers on drug loading and release behaviors. Microporous Mesoporous Mater. 2012;153:124–30. https://doi.org/10.1016/j.micromeso.2011.12.013.

    Article  CAS  Google Scholar 

  • Keen JM, Hughey JR, Bennett RC, Jannin V, Rosiaux Y, Marchaud D, et al. Effect of tablet structure on controlled release from supersaturating solid dispersions containing glyceryl behenate. Mol Pharm. 2015;12(1):120–6. https://doi.org/10.1021/mp500480y.

    Article  CAS  PubMed  Google Scholar 

  • Kenawy E-R, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, et al. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Release. 2002;81(1):57–64.

    Article  CAS  Google Scholar 

  • Kim M-S. Soluplus-coated colloidal silica nanomatrix system for enhanced supersaturation and oral absorption of poorly water-soluble drugs. Artif Cells Nanomed Biotechnol. 2013;41(6):363–7.

    Article  CAS  PubMed  Google Scholar 

  • Kim T-W, Chung P-W, Slowing II, Tsunoda M, Yeung ES, Lin VSY. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 2008;8(11):3724–7. https://doi.org/10.1021/nl801976m.

    Article  CAS  PubMed  Google Scholar 

  • Kinnari P, Mäkilä E, Heikkilä T, Salonen J, Hirvonen J, Santos HA. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int J Pharm. 2011;414(1–2):148–56. https://doi.org/10.1016/j.ijpharm.2011.05.021.

    Article  CAS  PubMed  Google Scholar 

  • Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M. Molecular dynamics and physical stability of coamorphous ezetimib and indapamide mixtures. Mol Pharm. 2015;12(10):3610–9. https://doi.org/10.1021/acs.molpharmaceut.5b00334.

    Article  CAS  PubMed  Google Scholar 

  • Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710–2.

    Article  CAS  Google Scholar 

  • Kruk M, Jaroniec M, Ko CH, Ryoo R. Characterization of the porous structure of SBA-15. Chem Mater. 2000;12(7):1961–8.

    Article  CAS  Google Scholar 

  • Kulig K, David B-O, Cantrill SV, Rosen P, Rumack BH. Management of acutely poisoned patients without gastric emptying. Ann Emerg Med. 1985;14(6):562–7. https://doi.org/10.1016/S0196-0644(85)80780-0.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ganjyal GM, Jones DD, Hanna MA. Modeling residence time distribution in a twin-screw extruder as a series of ideal steady-state flow reactors. J Food Eng. 2008;84(3):441–8.

    Article  Google Scholar 

  • LaFountaine J, Prasad L, Brough C, Miller D, McGinity J, Williams R III. Thermal processing of PVP- and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2015a;2015:1–13. https://doi.org/10.1208/s12249-015-0417-7.

    Article  CAS  Google Scholar 

  • LaFountaine JS, McGinity JW, Williams RO III. Challenges and strategies in thermal processing of amorphous solid dispersions: a review. AAPS PharmSciTech. 2015b;2015:1–13.

    Google Scholar 

  • Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65–79. https://doi.org/10.1016/j.ijpharm.2012.04.066.

    Article  CAS  PubMed  Google Scholar 

  • Laitinen R, Löbmann K, Grohganz H, Strachan C, Rades T. Amino acids as co-amorphous excipients for simvastatin and glibenclamide: physical properties and stability. Mol Pharm. 2014;11(7):2381–9. https://doi.org/10.1021/mp500107s.

    Article  CAS  PubMed  Google Scholar 

  • Lakshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5(6):994–1002. https://doi.org/10.1021/mp8001073.

    Article  CAS  PubMed  Google Scholar 

  • Lenz E, Jensen KT, Blaabjerg LI, Knop K, Grohganz H, Löbmann K, et al. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin–arginine. Eur J Pharm Biopharm. 2015;96:44–52. https://doi.org/10.1016/j.ejpb.2015.07.011.

    Article  CAS  PubMed  Google Scholar 

  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60. https://doi.org/10.1016/S0939-6411(00)00076-X.

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Li Z, Dai S. Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed. 2008;47(20):3696–717. https://doi.org/10.1002/anie.200702046.

    Article  CAS  Google Scholar 

  • Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. https://doi.org/10.1016/S0169-409X(00)00129-0.

    Article  CAS  PubMed  Google Scholar 

  • Liu K-S, Liu H, Qi J-H, Liu Q-Y, Liu Z, Xia M, et al. SNX-2112, an Hsp90 inhibitor, induces apoptosis and autophagy via degradation of Hsp90 client proteins in human melanoma A-375 cells. Cancer Lett. 2012;318(2):180–8.

    Article  CAS  PubMed  Google Scholar 

  • Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8(5):1919–28. https://doi.org/10.1021/mp2002973.

    Article  CAS  PubMed  Google Scholar 

  • Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81(1):159–69. https://doi.org/10.1016/j.ejpb.2012.02.004.

    Article  CAS  PubMed  Google Scholar 

  • Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs – part 1: preparation, stability and dissolution enhancement. Eur J Pharm Biopharm. 2013a;85(3, Part B):873–81. https://doi.org/10.1016/j.ejpb.2013.03.014.

    Article  CAS  PubMed  Google Scholar 

  • Löbmann K, Laitinen R, Grohganz H, Strachan C, Rades T, Gordon KC. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int J Pharm. 2013b;453(1):80–7. https://doi.org/10.1016/j.ijpharm.2012.05.016.

    Article  CAS  PubMed  Google Scholar 

  • Löbmann K, Laitinen R, Strachan C, Rades T, Grohganz H. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs – part 2: molecular interactions. Eur J Pharm Biopharm. 2013c;85(3, Part B):882–8. https://doi.org/10.1016/j.ejpb.2013.03.026.

    Article  CAS  PubMed  Google Scholar 

  • Löbmann K, Jensen KT, Laitinen R, Rades T, Strachan CJ, Grohganz H. Stabilized amorphous solid dispersions with small molecule excipients. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous solid dispersions. Advances in delivery science and technology. New York: Springer; 2014. p. 613–36.

    Chapter  Google Scholar 

  • Lu Q, Zografi G. Phase behavior of binary and ternary amorphous mixtures containing indomethacin, citric acid, and PVP. Pharm Res. 1998;15(8):1202–6. https://doi.org/10.1023/A:1011983606606.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel A, et al. Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. NanoBiotechnology. 2007;3(2):89–95. https://doi.org/10.1007/s12030-008-9003-3.

    Article  CAS  PubMed  Google Scholar 

  • Ma T-Y, Liu L, Yuan Z-Y. Direct synthesis of ordered mesoporous carbons. Chem Soc Rev. 2013;42(9):3977–4003. https://doi.org/10.1039/C2CS35301F.

    Article  CAS  PubMed  Google Scholar 

  • Maeng H-J, Kim E-S, Chough C, Joung M, Lim JW, Shim C-K, et al. Addition of amino acid moieties to lapatinib increases the anti-cancer effect via amino acid transporters. Biopharm Drug Dispos. 2014;35(1):60–9. https://doi.org/10.1002/bdd.1872.

    Article  CAS  PubMed  Google Scholar 

  • Mamaeva V, Sahlgren C, Lindén M. Mesoporous silica nanoparticles in medicine – recent advances. Adv Drug Deliv Rev. 2013;65(5):689–702.

    Article  CAS  PubMed  Google Scholar 

  • Maniruzzaman M, Nair A, Scoutaris N, Bradley MS, Snowden MJ, Douroumis D. One-step continuous extrusion process for the manufacturing of solid dispersions. International journal of pharmaceutics. 2015 Dec 30;496(1):42–51.

    Google Scholar 

  • Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Cocrystallization and amorphization induced by drug–excipient interaction improves the physical properties of acyclovir. Int J Pharm. 2012;422(1):160–9.

    Article  CAS  PubMed  Google Scholar 

  • Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev. 2015; https://doi.org/10.1016/j.addr.2015.09.009.

  • Mellaerts R, Jammaer JAG, Van Speybroeck M, Chen H, Humbeeck JV, Augustijns P, et al. Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen. Langmuir. 2008a;24(16):8651–9. https://doi.org/10.1021/la801161g.

    Article  CAS  PubMed  Google Scholar 

  • Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008b;69(1):223–30. https://doi.org/10.1016/j.ejpb.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  • Mellaerts R, Houthoofd K, Elen K, Chen H, Van Speybroeck M, Van Humbeeck J, et al. Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier material. Microporous Mesoporous Mater. 2010;130(1–3):154–61. https://doi.org/10.1016/j.micromeso.2009.10.026.

    Article  CAS  Google Scholar 

  • Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1–2):255–63.

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4(8):4539–50. https://doi.org/10.1021/nn100690m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller DA. PhD dissertation: improved oral absorption of poorly water-soluble drugs by advanced solid dispersion systems. Austin: The University of Texas at Austin; 2007.

    Google Scholar 

  • Mizushima Y, Ikoma T, Tanaka J, Hoshi K, Ishihara T, Ogawa Y, et al. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J Control Release. 2006;110(2):260–5. https://doi.org/10.1016/j.jconrel.2005.09.051.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz B, Rámila A, Pérez-Pariente J, Díaz I, Vallet-Regí M. MCM-41 organic modification as drug delivery rate regulator. Chem Mater. 2003;15(2):500–3. https://doi.org/10.1021/cm021217q.

    Article  CAS  Google Scholar 

  • Mura P, Maestrelli F, Cirri M. Ternary systems of naproxen with hydroxypropyl-β-cyclodextrin and aminoacids. Int J Pharm. 2003;260(2):293–302. https://doi.org/10.1016/S0378-5173(03)00265-5.

    Article  CAS  PubMed  Google Scholar 

  • Mura P, Bettinetti GP, Cirri M, Maestrelli F, Sorrenti M, Catenacci L. Solid-state characterization and dissolution properties of Naproxen–Arginine–Hydroxypropyl-β-cyclodextrin ternary system. Eur J Pharm Biopharm. 2005;59(1):99–106. https://doi.org/10.1016/j.ejpb.2004.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Murphy DK, Rabel S. Thermal analysis and calorimetric methods for the characterization of new crystal forms. Drugs Pharm Sci. 2008;178:279.

    CAS  Google Scholar 

  • Nagy ZK, Balogh A, Vajna B, Farkas A, Patyi G, Kramarics Á, et al. Comparison of electrospun and extruded soluplus®-based solid dosage forms of improved dissolution. J Pharm Sci. 2012;101(1):322–32. https://doi.org/10.1002/jps.22731.

    Article  CAS  PubMed  Google Scholar 

  • Nagy ZK, Balogh A, Drávavölgyi G, Ferguson J, Pataki H, Vajna B, et al. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems. J Pharm Sci. 2013;102(2):508–17. https://doi.org/10.1002/jps.23374.

    Article  CAS  PubMed  Google Scholar 

  • Nakamatsu J, Torres FG, Troncoso OP, Min-Lin Y, Boccaccini AR. Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules. 2006;7(12):3345–55. https://doi.org/10.1021/bm0605311.

    Article  CAS  PubMed  Google Scholar 

  • Neuvonen P, Olkkola K. Oral activated charcoal in the treatment of intoxications. Dis-Manage-Health-Outcomes. 1988;3(1):33–58. https://doi.org/10.1007/BF03259930.

    Article  CAS  Google Scholar 

  • Oh WK, Yoon H, Jang J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials. 2010;31(6):1342–8. https://doi.org/10.1016/j.biomaterials.2009.10.018.

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Dong R, Wang S, Zhang Z, Luo M, Bai C, et al. A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: fabrication, characterization and properties for controlled release of salidroside. Int J Pharm. 2013;446(1–2):153–9. https://doi.org/10.1016/j.ijpharm.2013.01.071.

    Article  CAS  PubMed  Google Scholar 

  • Qu F, Zhu G, Huang S, Li S, Qiu S. Effective controlled release of captopril by silylation of mesoporous MCM-41. ChemPhysChem. 2006;7(2):400–6.

    Article  CAS  PubMed  Google Scholar 

  • Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7(3):216.

    Article  CAS  Google Scholar 

  • Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm. 1999;25(5):625–33.

    Article  CAS  PubMed  Google Scholar 

  • Repka MA, Prodduturi S, Stodghill SP. Production and characterization of hot-melt extruded films containing clotrimazole. Drug Dev Ind Pharm. 2003;29(7):757–65.

    Article  CAS  PubMed  Google Scholar 

  • Roberts AD, Zhang H. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers. Int J Pharm. 2013;447(1–2):241–50. https://doi.org/10.1016/j.ijpharm.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  • Rosenholm JM, Sahlgren C, Linden M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges. Nanoscale. 2010;2(10):1870–83. https://doi.org/10.1039/C0NR00156B.

    Article  CAS  PubMed  Google Scholar 

  • Rowe RC, Sheskey PJ, Cook WG, Fenton ME, American Pharmacists A. Handbook of pharmaceutical excipients. vol Book, Whole. London/Washington, DC/Philadelphia: Pharmaceutical Press; 2012.

    Google Scholar 

  • Saha D, Warren KE, Naskar AK. Controlled release of antipyrine from mesoporous carbons. Microporous Mesoporous Mater. 2014a;196:327–34. https://doi.org/10.1016/j.micromeso.2014.05.024.

    Article  CAS  Google Scholar 

  • Saha D, Warren KE, Naskar AK. Soft-templated mesoporous carbons as potential materials for oral drug delivery. Carbon. 2014b;71:47–57. https://doi.org/10.1016/j.carbon.2014.01.005.

    Article  CAS  Google Scholar 

  • Saha D, Moken T, Chen J, Hensley DK, Delaney K, Hunt MA, et al. Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin. RSC Adv. 2015;5(30):23699–707. https://doi.org/10.1039/C5RA00251F.

    Article  CAS  Google Scholar 

  • Sekiguchi KON. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961;9(11):866–72.

    Article  CAS  Google Scholar 

  • Serajuddin A. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  CAS  PubMed  Google Scholar 

  • Shen SC, Ng WK, Chia L, Dong YC, Tan RB. Stabilized amorphous state of ibuprofen by co-spray drying with mesoporous SBA-15 to enhance dissolution properties. J Pharm Sci. 2010;99(4):1997–2007.

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Yuan S, Chua CK, Zhou K. Development of process efficiency maps for selective laser sintering of polymeric composite powders: modeling and experimental testing. J Mater Process Technol. 2018;254:52–9.

    Article  CAS  Google Scholar 

  • Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7. https://doi.org/10.1016/j.ejps.2014.11.009.

    Article  CAS  PubMed  Google Scholar 

  • Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc. 2006;128(46):14792–3. https://doi.org/10.1021/ja0645943.

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Kapoor Y, Klinzing GR, Procopio AT. Pharmaceutical 3D printing: design and qualification of a single step print and fill capsule. Int J Pharm. 2018;544(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  • Song S-W, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir. 2005;21(21):9568–75.

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Xu Y, Wu D, Sun Y. A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem. 2006;179(5):1513–20.

    Article  CAS  Google Scholar 

  • Tang Q, Chen Y, Chen J, Li J, Xu Y, Wu D, et al. Drug delivery from hydrophobic-modified mesoporous silicas: control via modification level and site-selective modification. J Solid State Chem. 2010;183(1):76–83.

    Article  CAS  Google Scholar 

  • Teja A, Musmade PB, Khade AB, Dengale SJ. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: solid state characterization, in-vivo in-situ evaluation. Eur J Pharm Sci. 2015;78:234–44. https://doi.org/10.1016/j.ejps.2015.08.002.

    Article  CAS  PubMed  Google Scholar 

  • Thakkar R, Pillai AR, Zhang J, Zhang Y, Kulkarni V, Maniruzzaman M. Novel on-demand 3-dimensional (3-D) printed tablets using fill density as an effective release-controlling tool. Polymers. 2020;12(9):1872.

    Article  CAS  PubMed Central  Google Scholar 

  • Thakkar R, Zhang Y, Zhang J, Maniruzzaman M. Synergistic application of continuous granulation and selective laser sintering 3D printing for the development of pharmaceutical dosage forms with enhanced dissolution rates and physical properties. bioRxiv; 2021.

    Google Scholar 

  • Thomas MJK, Slipper I, Walunj A, Jain A, Favretto ME, Kallinteri P, et al. Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int J Pharm. 2010;387(1–2):272–7. https://doi.org/10.1016/j.ijpharm.2009.12.023.

    Article  CAS  PubMed  Google Scholar 

  • Trivedi M, Jee J, Silva S, Blomgren C, Pontinha VM, Dixon DL, et al. Additive manufacturing of pharmaceuticals for precision medicine applications: a review of the promises and perils in implementation. Addit Manuf. 2018;23:319–28.

    CAS  Google Scholar 

  • Tsume Y, Hilfinger J, Amidon G. Potential of amino acid/dipeptide monoester prodrugs of floxuridine in facilitating enhanced delivery of active drug to interior sites of tumors: a two-tier monolayer in vitro study. Pharm Res. 2011;28(10):2575–88. https://doi.org/10.1007/s11095-011-0485-7.

    Article  CAS  PubMed  Google Scholar 

  • Ukmar T, Planinšek O. Ordered mesoporous silicates as matrices for controlled release of drugs. Acta Pharma. 2010;60(4):373–85.

    Article  CAS  Google Scholar 

  • Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–11. https://doi.org/10.1021/cm0011559.

    Article  CAS  Google Scholar 

  • Van Speybroeck M, Mols R, Mellaerts R, Thi TD, Martens JA, Humbeeck JV, et al. Combined use of ordered mesoporous silica and precipitation inhibitors for improved oral absorption of the poorly soluble weak base itraconazole. Eur J Pharm Biopharm. 2010;75(3):354–65. https://doi.org/10.1016/j.ejpb.2010.04.009.

    Article  CAS  PubMed  Google Scholar 

  • Verreck G. The influence of plasticizers in hot-melt extrusion. In: Hot-melt extrusion: pharmaceutical applications. London: Wiley; 2012. p. 93–112.

    Chapter  Google Scholar 

  • Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res. 2003;20(5):810–7.

    Article  CAS  PubMed  Google Scholar 

  • Verreck G, Decorte A, Heymans K, Adriaensen J, Liu D, Tomasko D, et al. Hot stage extrusion of p-amino salicylic acid with EC using CO 2 as a temporary plasticizer. Int J Pharm. 2006;327(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Vialpando M, Aerts A, Persoons J, Martens J, Van Den Mooter G. Evaluation of ordered mesoporous silica as a carrier for poorly soluble drugs: influence of pressure on the structure and drug release. J Pharm Sci. 2011;100(8):3411–20. https://doi.org/10.1002/jps.22535.

    Article  CAS  PubMed  Google Scholar 

  • Vialpando M, Backhuijs F, Martens JA, Van den Mooter G. Risk assessment of premature drug release during wet granulation of ordered mesoporous silica loaded with poorly soluble compounds itraconazole, fenofibrate, naproxen, and ibuprofen. Eur J Pharm Biopharm. 2012;81(1):190–8. https://doi.org/10.1016/j.ejpb.2012.01.012.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Otuonye AN, Blair EA, Denton K, Tao Z, Asefa T. Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. J Solid State Chem. 2009;182(7):1649–60.

    Article  CAS  Google Scholar 

  • Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA. Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm. 2010;7(1):227–36. https://doi.org/10.1021/mp900221e.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu P, Tian Y. Ordered mesoporous carbons for ibuprofen drug loading and release behavior. Microporous Mesoporous Mater. 2011a;142(1):334–40. https://doi.org/10.1016/j.micromeso.2010.12.018.

    Article  CAS  Google Scholar 

  • Wang X, Liu P, Tian Y, Zang L. Novel synthesis of Fe-containing mesoporous carbons and their release of ibuprofen. Microporous Mesoporous Mater. 2011b;145(1–3):98–103. https://doi.org/10.1016/j.micromeso.2011.04.033.

    Article  CAS  Google Scholar 

  • Wang Y, Zhao Q, Hu Y, Sun L, Bai L, Jiang T, et al. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica. Int J Nanomedicine. 2013;8:4015–31. https://doi.org/10.2147/IJN.S52605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Zhao P, Zhao Q, Wang B, Wang S. The mechanism for increasing the oral bioavailability of poorly water-soluble drugs using uniform mesoporous carbon spheres as a carrier. Drug Deliv. 2014;2014:1–9.

    Google Scholar 

  • Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11(2):313–27. https://doi.org/10.1016/j.nano.2014.09.014.

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Wang Z, Zhi Z, Jiang T, Zhang J, Wang S. Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs. Int J Pharm. 2011;403(1–2):162–9. https://doi.org/10.1016/j.ijpharm.2010.09.040.

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W, et al. Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem. 2008;181(10):2837–44.

    Article  CAS  Google Scholar 

  • Xu W, Riikonen J, Lehto V-P. Mesoporous systems for poorly soluble drugs. Int J Pharm. 2013;453(1):181–97. https://doi.org/10.1016/j.ijpharm.2012.09.008.

    Article  CAS  PubMed  Google Scholar 

  • Yachamaneni S, Yushin G, Yeon S-H, Gogotsi Y, Howell C, Sandeman S, et al. Mesoporous carbide-derived carbon for cytokine removal from blood plasma. Biomaterials. 2010;31(18):4789–94.

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Momose Y, Takahashi K, Nagatani S. Solid-state interaction between cimetidine and naproxen. Drug Stability. 1996;1:173–8.

    CAS  Google Scholar 

  • Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Physicochemical properties of amorphous precipitates of cimetidine–indomethacin binary system. Eur J Pharm Biopharm. 2000;49(3):259–65. https://doi.org/10.1016/S0939-6411(00)00060-6.

    Article  CAS  PubMed  Google Scholar 

  • Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Physicochemical properties of amorphous salt of cimetidine and diflunisal system. Int J Pharm. 2002;241(2):213–21. https://doi.org/10.1016/S0378-5173(02)00195-3.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang S, Fan P, Wang L, Di Y, Lin K, et al. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater. 2005;17(24):5999–6003.

    Article  CAS  Google Scholar 

  • Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41(9):3679–98. https://doi.org/10.1039/C2CS15308D.

    Article  CAS  PubMed  Google Scholar 

  • Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 2010;6(6):2212–8.

    Article  CAS  PubMed  Google Scholar 

  • Yildiz ZI, Celebioglu A, Uyar T. Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: fast-dissolving and enhanced water-solubility of sulfisoxazole. Int J Pharm. 2017;531(2):550–8.

    Article  CAS  PubMed  Google Scholar 

  • Yildiz ZI, Celebioglu A, Kilic ME, Durgun E, Uyar T. Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J Mater Sci. 2018;53(23):15837–49.

    Article  CAS  Google Scholar 

  • Yu D-G, Zhu L-M, Branford-White CJ, Yang J-H, Wang X, Li Y, et al. Solid dispersions in the form of electrospun core-sheath nanofibers. Int J Nanomedicine. 2011;6:3271–80. https://doi.org/10.2147/IJN.S27468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li C, Huang S, Hou Z, Cheng Z, Yang P, et al. Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials. 2010a;31(12):3374–83.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release. 2010b;145(3):257–63. https://doi.org/10.1016/j.jconrel.2010.04.029.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang J, Jiang T, Wang S. Inclusion of the poorly water-soluble drug simvastatin in mesocellular foam nanoparticles: drug loading and release properties. Int J Pharm. 2011;410(1–2):118–24. https://doi.org/10.1016/j.ijpharm.2010.07.040.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous silica nanoparticles for increasing the oral bioavailability and permeation of poorly water soluble drugs. Mol Pharm. 2012;9(3):505–13. https://doi.org/10.1021/mp200287c.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhi Z, Li X, Gao J, Song Y. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol. Int J Pharm. 2013;454(1):403–11. https://doi.org/10.1016/j.ijpharm.2013.07.009.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li Y, Jin Z, Chan KM, Yu JC. Mesoporous carbon/CuS nanocomposites for pH-dependent drug delivery and near-infrared chemo-photothermal therapy. RSC Adv. 2015a;5(113):93226–33. https://doi.org/10.1039/C5RA19458J.

    Article  CAS  Google Scholar 

  • Zhang X, Zhang T, Ye Y, Chen H, Sun H, Zhou X, et al. Phospholipid-stabilized mesoporous carbon nanospheres as versatile carriers for systemic delivery of amphiphobic SNX-2112 (a Hsp90 inhibitor) with enhanced antitumor effect. Eur J Pharm Biopharm. 2015b;94:30–41. https://doi.org/10.1016/j.ejpb.2015.04.023.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao Q, Zhu W, Zhang L, Han J, Lin Q, et al. Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine. Pharm Res. 2015c;32(7):2372–83. https://doi.org/10.1007/s11095-015-1630-5.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Vo AQ, Feng X, Bandari S, Repka MA. Pharmaceutical additive manufacturing: a novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech. 2018;19(8):3388–402.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Thakkar R, Zhang Y, Maniruzzaman M. Structure-function correlation and personalized 3D printed tablets using a quality by design (QbD) approach. Int J Pharm. 2020;590:119945.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Thakkar R, Zhang Y, Maniruzzaman M. Microwave induced dielectric heating for the on-demand development of indomethacin amorphous solid dispersion tablets. J Drug Deliv Sci Technol. 2021a;61:102109.

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang J, Thakkar R, Pillai AR, Wang J, Lu A, et al. Functions of magnetic nanoparticles in selective laser sintering (SLS) 3D printing of pharmaceutical dosage forms; 2021b. https://doi.org/10.26434/chemrxiv.13925177.v1.

    Book  Google Scholar 

  • Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–52.

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Jiang H, Jiang T, Zhi Z, Wu C, Sun C, et al. Inclusion of celecoxib into fibrous ordered mesoporous carbon for enhanced oral bioavailability and reduced gastric irritancy. Eur J Pharm Sci. 2012a;45(5):639–47. https://doi.org/10.1016/j.ejps.2012.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Zhao P, Wang L, Sun C, Jiang T, Zhang J, Zhang Q, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm. 2012b;80(3):535–43. https://doi.org/10.1016/j.ejpb.2011.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang T, Wang J, Zheng L, Jiang T, Cheng G, et al. Fabrication of mesoporous hydroxycarbonate apatite for oral delivery of poorly water-soluble drug carvedilol. J Non-Cryst Solids. 2012c;358(2):229–35. https://doi.org/10.1016/j.jnoncrysol.2011.09.020.

    Article  CAS  Google Scholar 

  • Zhu Y, Shah NH, Malick AW, Infeld MH, McGinity JW. Solid-state plasticization of an acrylic polymer with chlorpheniramine maleate and triethyl citrate. Int J Pharm. 2002;241(2):301–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Mehta KA, McGinity JW. Influence of plasticizer level on the drug release from sustained release film coated and hot-melt extruded dosage forms. Pharm Dev Technol. 2006;11(3):285–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Chen C, Chen Z, Liu X, Li Y, Shi Y, et al. Thermo-responsive polymer-functionalized mesoporous carbon for controlled drug release. Mater Chem Phys. 2011;126(1–2):357–63. https://doi.org/10.1016/j.matchemphys.2010.11.013.

    Article  CAS  Google Scholar 

  • Zhu J, Liao L, Bian X, Kong J, Yang P, Liu B. pH-controlled delivery of doxorubicin to cancer cells, based on small mesoporous carbon nanospheres. Small. 2012;8(17):2715–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Davis Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, D.A., Thakkar, R., Maniruzzaman, M., Miller, D.A., Williams, R.O. (2022). Emerging Technologies to Increase the Bioavailability of Poorly Water-Soluble Drugs. In: Williams III, R.O., Davis Jr., D.A., Miller, D.A. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-88719-3_13

Download citation

Publish with us

Policies and ethics