Skip to main content

Age-Area Relationships in American Marsupials: A Macroevolutionary Approach

American and Australasian Marsupials

Abstract

The range size of a species changes through its persistence and this change may assume complex ways. Understanding such range dynamics may shed light on the processes of speciation and extinction. This chapter analyzes the effects of species age on range size and the effects of age and body mass on proportion of unfilled range in didelphid marsupials. To estimate the proportion of unfilled range, species distribution models for 53 species of 14 genera were built. In a model selection approach, the results of the relationships between species age versus range size and proportion of unfilled range were contrasted with the predictions of four models: age-area, taxon cycle, stasis post-expansion, and idiosyncratic. Range size was positively related to species age. Both species age and body mass were negatively related to proportion of unfilled range, showing that old species have smaller unfilled ranges than young species, supporting the stasis post-expansion model. Therefore, didelphids can reach most of their potential ranges rapidly after speciation. Thus, incorporating species ecological data, such as body mass, in addition to species age, has provided a more comprehensive understanding of the factors driving the variation and dynamic of species range size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AA:

Age-area model

AICc:

Akaike Information Criterion corrected for small samples

AUC:

Area under the receiver operating characteristic curve

GLM:

Generalized linear model

Id:

Idiosyncratic model

IUCN:

International Union for Conservation of Nature

Ma:

Million years ago

MAHAL:

Mahalanobis distance

SDM:

Species distribution model

SPE:

Stasis post-expansion model

SVM:

Support vector machine

TC:

Taxon cycle model

TSS:

True skill statistic

wi:

Akaike weight

References

  • Abellán P, Ribera I (2011) Geographic location and phylogeny are the main determinants of the size of the geographical range in aquatic beetles. BMC Evol Biol 11:344–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Abreu-Júnior EF, Brennand PGG, Percequillo AR (2017) Diversidade de mamíferos do baixo rio Jufari, Roraima, Brasil. Pap Avulsos Zool 57:37–55

    Article  Google Scholar 

  • Aiello-Lammens ME, Boria RA, Radosavljevic A et al (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Astúa D (2006) Range extension and first Brazilian record of the rare Hyladelphys kalinowskii (Hershkovitz, 1992) (Didelphimorphia, Didelphidae). Mammalia 70:174–176

    Article  Google Scholar 

  • Astúa D (2015) Family Didelphidae (opossums). In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the world, Monotremes and marsupials, vol 5. Lynx Edicions, Barcelona, pp 70–186

    Google Scholar 

  • Astúa D, Santori RT, Finotti R et al (2003) Nutritional and fibre contents of laboratory-established diets of Neotropical opossums (Didelphidae). In: Jones M, Dickman C, Archer M (eds) Predators with pouches: the biology of carnivorous marsupials. CSIRO Publishing, Collingwood, pp 225–233

    Google Scholar 

  • Böhning-Gaese K, Caprano T, van Ewijk K et al (2006) Range size: disentangling current traits and phylogenetic and biogeographic factors. Am Nat 167:555–567

    Article  PubMed  Google Scholar 

  • Bovendorp RS, Villar N, Abreu-Junior EF et al (2017) Atlantic small-mammals: a dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98:2226

    Article  PubMed  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference: a practical information–theoretic approach. Springer-Verlag, New York

    Google Scholar 

  • Cáceres NC, Weber MM, Melo GL et al (2016) Which factors determine spatial segregation in the South American opossums (Didelphis aurita and D. albiventris)? An ecological niche modelling and geometric morphometrics approach. PLoS One 11(6):e0157723. https://doi.org/10.1371/journal.pone.0157723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor SB, Sun CC, Tortolero-Luna G et al (1999) A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J Clin Epidemiol 52:885–892

    Article  CAS  PubMed  Google Scholar 

  • Carmignotto AP, Monfort T (2006) Taxonomy and distribution of the Brazilian species of Thylamys (Didelphimorphia: Didelphidae). Mammalia 70:126–144

    Article  Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 680:667–680

    Article  Google Scholar 

  • Díaz-Nieto JF (2012) New records of Marmosops noctivagus (Tschudi, 1845) (Didelphimorpia: Didelphidae) and first record of Marmosops bishopi (Pine, 1981) for Colombia. Check List 8:805

    Article  Google Scholar 

  • Díaz-Nieto JF, Voss RS (2016) A revision of the didelphid marsupial genus Marmosops, part 1. Species of the subgenus Sciophanes. Bull Am Mus Nat Hist 402:1–70

    Article  Google Scholar 

  • Diniz-Filho JAF, Tôrres NM (2002) Phylogenetic comparative methods and the geographic range size – body size relationship in new world terrestrial Carnivora. Evol Ecol 16:351–367

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Article  Google Scholar 

  • Drake JM, Randin C, Guisan A (2006) Modelling ecological niches with support vector machines. J Appl Ecol 43:424–432

    Article  Google Scholar 

  • Dudík M, Phillips SJ, Schapire RE (2004) Performance guarantees for regularized maximum entropy density estimation. In: Shawe-Taylor J, Singer Y (eds) Learning theory. Lecture notes in computer science, vol 3120. Springer, Berlin/Heidelberg, pp 472–486

    Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Evans A, Costa DP, Niklas KJ et al (2014) Allometry and body size. In: Smith FA, Gittleman JL, Brown JH (eds) Foundations of macroecology. Chicago University Press, Chicago, pp 150–153

    Google Scholar 

  • Farber O, Kadmon VR (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecol Model 160:115–130

    Article  CAS  Google Scholar 

  • Faurby S, Svenning JC (2015) A species-level phylogeny of all extant and late quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. Mol Phylogenet Evol 84:14–26

    Article  PubMed  Google Scholar 

  • Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49

    Article  Google Scholar 

  • Figueiredo MSL, Barros CS, Delciellos AC et al (2017) Abundance of Small Mammals in the Atlantic Forest (ASMAF): a data set for analyzing tropical community patterns. Ecology 98:2981

    Article  PubMed  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Gaston KJ (1990) Patterns in the geographical ranges of species. Biol Rev 65:105–129

    Article  Google Scholar 

  • Gaston KJ (1994) Rarity. Springer-Science+Business Media, B.V., Falmouth/Comwall

    Book  Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic range. Oxford University Press, Oxford

    Google Scholar 

  • Gaston KJ, Blackburn TM (1996) Range size-body size relationships: evidence of scale dependence. Oikos 75:479–485

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM (1997) Age, area and avian diversification. Biol J Linn Soc 62:239–253

    Article  Google Scholar 

  • Giarla TC, Voss RS, Jansa SA (2010) Species limits and phylogenetic relationships in the didelphid marsupial genus Thylamys based on mitochondrial DNA sequences and morphology. Bull Am Mus Nat Hist 346:1–67

    Article  Google Scholar 

  • Glazier DS (1980) Ecological shifts and the evolution of geographically restricted species of North American Peromyscus (mice). J Biogeogr 7:63–83

    Article  Google Scholar 

  • Gonçalves F, Bovendorp RS, Beca G et al (2018) Atlantic mammal traits: a data set of morphological traits of mammals in the Atlantic Forest of South America. Ecology 99:498

    Article  PubMed  Google Scholar 

  • Guo QH, Kelly M, Graham CH (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecol Model 182:75–90

    Article  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, New York

    Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hodge J, Bellwood DR (2015) On the relationship between species age and geographical range in reef fishes: are widespread species older than they seem? Glob Ecol Biogeogr 24:495–505

    Article  Google Scholar 

  • Hutchinson GE, MacArthur RJ (1959) A theoretical ecological model of size distributions among species of animals. Am Nat 93:117–125

    Article  Google Scholar 

  • IUCN (2019) The IUCN Red List of threatened species. Version 2014.1. http://www.iucnredlist.org. Accessed 20 Dec 2019

  • Jablonski D (1987) Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360–363

    Article  CAS  PubMed  Google Scholar 

  • Jones KE, Sechrest W, Gittleman JL (2005) Age and area revisited: identifying global patterns and implications for conservation. In: Purvis A, Gittleman JL, Brooks T (eds) Phylogeny and conservation. Cambridge University Press, Cambridge, pp 142–165

    Google Scholar 

  • Jønsson KA, Irestedt M, Christidis L et al (2014) Evidence of taxon cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala). Proc R Soc B 281:20131727. https://doi.org/10.1098/rspb.2013.1727

    Article  PubMed  PubMed Central  Google Scholar 

  • Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  • Lester SE, Ruttenberg BI, Gaines SD et al (2007) The relationship between dispersal ability and geographic range size. Ecol Lett 10:745–758

    Article  PubMed  Google Scholar 

  • Lomba A, Pellissier L, Randin CF et al (2010) Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biol Conserv 143:2647–2657

    Article  Google Scholar 

  • Martínez-Lanfranco JA, Flores D, Jayat JP et al (2014) A new species of lutrine opossum, genus Lutreolina Thomas (Didelphidae), from the South American Yungas. J Mammal 95:225–240

    Article  Google Scholar 

  • Mendonça A, Percequillo AR, Camargo NF et al (2018) Cerrado small mammals: abundance and distribution of marsupials, lagomorphs, and rodents in a Neotropical savanna. Ecology 99:1900

    Article  PubMed  Google Scholar 

  • Miller AI (1997) A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology 23:410–419

    Article  CAS  PubMed  Google Scholar 

  • Nascimento DC, Olímpio APM, Conceição E et al (2015) Phylogeny of Marmosops and the occurrence of Marmosops pinheiroi (Pine, 1981) (Didelphimorphia, Didelphidae) in the Cerrado savanna of Maranhão, Brazil. Genet Mol Res 14:304–313

    Article  CAS  PubMed  Google Scholar 

  • Nogués-Bravo D, Pulido F, Araújo MB et al (2014) Phenotypic correlates of potential range size and range filling in European trees. Perspect Plant Ecol 16:219–227

    Article  Google Scholar 

  • Olifiers N, Vieira MV, Grelle CEV (2004) Geographic range and body size in Neotropical marsupials. Glob Ecol Biogeogr 13:439–444

    Article  Google Scholar 

  • Paradis E, Schliep K (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528

    Article  CAS  Google Scholar 

  • Paul JR, Morton C, Taylor CM et al (2009) Evolutionary time for dispersal limits the extent but not the occupancy of species’ potential ranges in the tropical plant genus Psychotria (Rubiaceae). Am Nat 173:188–199

    Article  PubMed  Google Scholar 

  • Pavan SE, Voss RS (2016) A revised subgeneric classification of short-tailed opossums (Didelphidae: Monodelphis). Am Mus Novit 3868:1–44

    Article  Google Scholar 

  • Pavoine S, Ricotta C (2012) Testing for phylogenetic signal in biological traits: the ubiquity of cross-product statistics. Evolution 67:828–840

    Article  PubMed  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M et al (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographical distributions. Princeton University Press, Princeton

    Book  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Pigot AL, Tobias JA (2015) Dispersal and the transition to sympatry in vertebrates. Proc R Soc B 282:20141929. https://doi.org/10.1098/rspb.2014.1929

    Article  PubMed  PubMed Central  Google Scholar 

  • Pigot AL, Owens IPF, Orme CDL (2012) Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record. PLoS Biol 10:e1001260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyron M (1999) Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. J Biogeogr 26:549–558

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

    Google Scholar 

  • Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1(4):319–329

    Article  Google Scholar 

  • Ricklefs RE, Cox GW (1972) Taxon cycles in the West Indian avifauna. Am Nat 106:195–219

    Article  Google Scholar 

  • Roy K, Hunt G, Jablonski D et al (2009) A macroevolutionary perspective on species range limits. Proc R Soc London Ser B Biol Sci 276:1485–1493

    Google Scholar 

  • Santini L, Di Marco M, Visconti P et al (2013) Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24:181–186

    Google Scholar 

  • Santori RT, Astúa D, Martins M (2016) An additional record for the rare black-shouldered opossum Caluromysiops irrupta Sanborn, 1951 (Didelphimorphia: Didelphidae) in Northwestern Brazil. Check List 12:1890

    Article  Google Scholar 

  • Santos-Filho M, Valois EMS, Ignácio ARA et al (2017) Feeding ecology of Marmosa demerarae (Thomas, 1905) and Marmosops bishopi (Pine, 1981) (Mammalia, Didelphidae) in forest fragments of the southern Amazon. Mastozool Neotrop 24:409–418

    Google Scholar 

  • Sauthier DEU, Carrera M, Pardiñas UFJ (2007) Mammalia, Marsupialia, Didelphidae, Lestodelphys halli: new records, distribution extension and filling gaps. Check List 3:137–140

    Article  Google Scholar 

  • Segurado P, Araújo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Article  Google Scholar 

  • Slatyer RA, Hirst M, Sexton JP (2013) Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett 16:1104–1114

    Article  PubMed  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Svenning J, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573

    Article  Google Scholar 

  • Swaegers J, Janssens SB, Ferreira S et al (2014) Ecological and evolutionary drivers of range size in Coenagrion damselflies. J Evol Biol 27:2386–2395

    Article  CAS  PubMed  Google Scholar 

  • Taylor CM, Gotelli NJ (1994) The macroecology of Cyprinella: correlates of phylogeny, body size and geographical range. Am Nat 144:549–569

    Article  Google Scholar 

  • Teta P, Pardiñas UFJ, D’Elía G (2006) Rediscovery of Chacodelphys: a South American marsupial genus previously known from a single specimen. Mamm Biol 71:309–314

    Article  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O et al (2007) A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib 13:397–405

    Article  Google Scholar 

  • Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299

    Article  Google Scholar 

  • Voss RS, Jansa SA (2009) Phylogenetic relationships and classification of didelphid marsupials, an extant radiation of New World metatherian mammals. Bull Am Mus Nat Hist 322:1–177

    Article  Google Scholar 

  • Voss RS, Tarifa T, Yensen E (2004) An introduction to Marmosops (Marsupialia: Didelphidae), with the description of a new species from Bolivia and notes on the taxonomy and distribution of other Bolivian forms. Am Mus Novit 3466:1–40

    Article  Google Scholar 

  • Voss RS, Díaz-Nieto JF, Jansa SA (2018) A revision of Philander (Marsupialia: Didelphidae), part 1: P. quica, P. canus, and a new species from Amazonia. Am Mus Novit 3891:1–70

    Article  Google Scholar 

  • Watling JI, Brandt LA, Bucklin DN et al (2015) Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models. Ecol Model 309:48–59

    Article  CAS  Google Scholar 

  • Webb TJ, Gaston KJ (2000) Geographic range size and evolutionary age in birds. P R Soc B 267:1843–1850

    Article  CAS  Google Scholar 

  • Weber MM, Stevens RD, Lorini ML et al (2014) Have old species reached most environmentally suitable areas? A case study with South American phyllostomid bats. Glob Ecol Biogeogr 23:1177–1185

    Article  Google Scholar 

  • Willig MR, Patterson BD, Stevens RD (2003) Patterns of range size, richness, and body size in the Chiroptera. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 580–621

    Google Scholar 

  • Willis J (1922) Age and area. Cambridge University Press, London

    Google Scholar 

Download references

Acknowledgments

During the development of this chapter, MSLF was supported by a post-doctoral grant from CAPES – PNPD (1808844/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. Weber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Weber, M.M., Figueiredo, M.S.L. (2022). Age-Area Relationships in American Marsupials: A Macroevolutionary Approach. In: Cáceres, N.C., Dickman, C.R. (eds) American and Australasian Marsupials. Springer, Cham. https://doi.org/10.1007/978-3-030-88800-8_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88800-8_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88800-8

  • Online ISBN: 978-3-030-88800-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Age-Area Relationships in American Marsupials: A Macroevolutionary Approach
    Published:
    06 September 2022

    DOI: https://doi.org/10.1007/978-3-030-88800-8_12-2

  2. Original

    Age-Area Relationships in American Marsupials: A Macroevolutionary Approach
    Published:
    26 July 2022

    DOI: https://doi.org/10.1007/978-3-030-88800-8_12-1