Skip to main content

Statics Optimization of a Hexapedal Robot Modelled as a Stewart Platform

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13054))

Abstract

SILVER2 is an underwater legged robot designed with the aim of collecting litter on the seabed and sample the sediment to assess the presence of micro-plastics. Besides the original application, SILVER2 can also be a valuable tool for all underwater operations which require to interact with objects directly on the seabed. The advancement presented in this paper is to model SILVER2 as a Gough-Stewart platform, and therefore to enhance its ability to interact with the environment. Since the robot is equipped with six segmented legs with three actuated joints, it is able to make arbitrary movements in the six degrees of freedom. The robot’s performance has been analysed from both kinematics and statics points of view. The goal of this work is providing a strategy to harness the redundancy of SILVER2 by finding the optimal posture to maximize forces/torques that it can resist along/around constrained directions. Simulation results have been reported to show the advantages of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Francisco, R., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 16(2) (2019)

    Google Scholar 

  2. Ortigoza, R.S., et al.: Wheeled mobile robots: a review. IEEE Latin Am. Trans. 10(6) (2012)

    Google Scholar 

  3. Hassanalian, M., Abdessattar, A.: Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91, 99–131 (2017)

    Article  Google Scholar 

  4. Bogue, R.: Underwater robots: a review of technologies and applications. Ind. Robot. 42(3), 186–191 (2015)

    Article  Google Scholar 

  5. Calisti, M., Picardi, G., Laschi, C.: Fundamentals of soft robot locomotion. J. R. Soc. Interface 14(130) (2017)

    Google Scholar 

  6. Silva, M.F., Machado, T.: A literature review on the optimization of legged robots. J. Vib. Control 18(12), 1753–1767 (2012)

    Article  MathSciNet  Google Scholar 

  7. Khatib, O.: Mobile manipulation: the robotic assistant. Robot. Auton. Syst. 26(2), 175–183 (1999)

    Article  Google Scholar 

  8. Bayle, B., Fourquet, J.-Y., Renaud, M.: Manipulability of wheeled mobile manipulators: application to motion generation. Int. J. Robot. Res. 22(7), 565–581 (2003)

    Article  Google Scholar 

  9. Rehman, B.U., et al.: Towards a multi-legged mobile manipulator. ICRA (2016)

    Google Scholar 

  10. Galvez, J.A., Estremera, J., De Santos, Gonzalez, P.: A new legged-robot configuration for research in force distribution. Mechatronics 13(8), 907–932 (2003)

    Google Scholar 

  11. Ding, X., Yang, F.: Study on hexapod robot manipulation using legs. Robotica 34, 468–481 (2014)

    Article  Google Scholar 

  12. Katz, D., et al.: The umass mobile manipulator uman: An experimental platform for autonomous mobile manipulation (2006)

    Google Scholar 

  13. Youakim, D., et al.: Moveit!: autonomous underwater free-floating manipulation. IEEE Robot. Autom. Mag. 24(3), 41–51 (2017)

    Article  Google Scholar 

  14. Conti, R., et al.: A free floating manipulation strategy for autonomous underwater vehicles. Robot. Auton. Syst. 87, 133–146 (2017)

    Article  Google Scholar 

  15. Liu, J., et al.: Underwater mobile manipulation: a soft arm on a benthic legged robot. IEEE Robot. Autom. Mag. 27(4), 12–26 (2020)

    Article  Google Scholar 

  16. Dash, A.K., Chen, I.M., Yeo, S.H., Yang, G.: Task-oriented configuration design for reconfigurable parallel manipulator systems. Int. J. Comput. Integr. Manuf. 18(7), 615–634 (2005)

    Article  Google Scholar 

  17. Camacho-Arreguin, J., Wang, M., Dong, X., Axinte, D.: A novel class of reconfigurable parallel kinematic manipulators: concepts and fourier-based singularity analysis. Mech. Mach. Theory 153 (2020)

    Google Scholar 

  18. Russo, M., Dong, X.: A calibration procedure for reconfigurable gough-stewart manipulators. Mach. Mach. Theory 152 (2020)

    Google Scholar 

  19. Picardi, G., Laschi, C., Calisti, C.: Model-based open loop control of a multigait legged underwater robot. Mechatronics 55, 162–170 (2018)

    Article  Google Scholar 

  20. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180(1), 371–386 (1965)

    Article  Google Scholar 

  21. Mendes Lopes, A., Gomes de Almeida, F.: Manipulability optimization of a parallel structure robotic manipulator. Multibody Sys. Dyn. 9(1), 1–23 (2003)

    Article  Google Scholar 

  22. Gewald, D.: Dynamics and control of hexapod systems

    Google Scholar 

  23. Ropponen, T., Arai, T.: Accuracy analysis of a modified Stewart platform manipulator. 1995 IEEE ICRA (1995)

    Google Scholar 

  24. Picardi, G., et al.: Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci. Robot. 5(42) (2020)

    Google Scholar 

  25. Lynch, K.M., Park, F.C.: Modern Robotics: Mechanics, Planning, and Control, 1st edn. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  26. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(3) (1985)

    Google Scholar 

  27. Wang, S., Jiang, H., Cutkosky., M.R.: A palm for a rock climbing robot based on dense arrays of micro-spines. 2016 IEEE IROS (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Donato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donato, E., Picardi, G., Calisti, M. (2021). Statics Optimization of a Hexapedal Robot Modelled as a Stewart Platform. In: Fox, C., Gao, J., Ghalamzan Esfahani, A., Saaj, M., Hanheide, M., Parsons, S. (eds) Towards Autonomous Robotic Systems. TAROS 2021. Lecture Notes in Computer Science(), vol 13054. Springer, Cham. https://doi.org/10.1007/978-3-030-89177-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89177-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89176-3

  • Online ISBN: 978-3-030-89177-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics