Skip to main content

Multi-robot System for Collaborative Work Equipped with Trajectory Planning over IoT Architecture

  • Conference paper
  • First Online:
Advances in Automation and Robotics Research (LACAR 2021)

Abstract

This paper shows the design and construction of a mobile multi-robot system for collaborative applications. By using accessible elements in the local market, the researchers built three omnidirectional mobile robots. The multi-robot system has centralized control and is managed by a central Broker with ROS implementation for local communication and IoT, through MQTT protocol, for monitoring and control from the cloud. The multi-robot systems implement the classification of objects by color. The use of artificial vision for recognizing objects, obstacles, and the location of the robots within a controlled environment allows for efficient correction of errors during their operation. The Potential Fields and A* method determine the generation of routes, and a simple planning algorithm determines the mobilization of the multi-robot system when fulfilling a classification task. The results showed an error of less than 5% in both the route tracking and its final objective in various mobility test circumstances. The final product of the research is a modular, scalable, easily controlled, with ease of manufacturing and replicability prototype, along with software to control and monitor the system with the use of machine vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Horvath, I., Gerritsen, B.: Cyber Physical Systems Concepts, Technologies and Implementation Principles (2012)

    Google Scholar 

  2. Gautam, A., Mohan, S.: A review of research in multi-robot systems. ISSN: 2164-7011 (2012). https://doi.org/10.1109/ICIInfS.2012.6304778

  3. Darmanin, R.N., Bugeja, M.K.: A review on multi-robot systems categorised by application domain. ISSN 2473-3504 (2017). https://doi.org/10.1109/MED.2017.7984200

  4. Farinelli, A., Iocchi, L., Nardi, D.: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(5), 2015 (2004). https://doi.org/10.1109/TSMCB.2004.832155, http://ieeexplore.ieee.org/document/1335496/

  5. Parker, L.: Springer Handbook of Robotics. Springer, Cham, pp. 921–941 (2008). https://doi.org/10.1007/978-3-319-32552-1

  6. Şahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm Robotics. Natural Computing Series. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71541-2

  7. Wang, Z., Shi, Z., Li, Y., Tu, J.: pp. 1199–1204 (2013). https://doi.org/10.1109/ROBIO.2013.6739627

  8. González Bonifaz, G.E., Verdugo Cabrera, A.D.C.: (2018). http://repositorio.espe.edu.ec/jspui/handle/21000/14730

  9. Wan, J., Yan, H., Suo, H., Li, F.: Advances in Cyber-Physical Systems Research, vol. 5 (2011). shorturl.at/tNQR7

  10. Efraín, G.B.D., del Carmen, V.C.A., Fernando, E.C.L., Cesar, L.M.D.: Implementation of an IoT architecture based on MQTT for a multi-robot. In: System, pp. 1–6 (2018). https://doi.org/10.1109/ETCM.2018.8580321

  11. Escobar, L., Moyano, C., Aguirre, G., Guerra, G., Allauca, L., Loza, D.: Multi-Robot platform with features of Cyber-physical systems for education applications (2020). https://doi.org/10.1109/ANDESCON50619.2020.9272030

  12. Standars, V.: VDI 2206 - Design methodology for mechatronic systems (2004). shorturl.at/wCGHQ

  13. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots. MIT Press, Cambridge (2011). Google-Books-ID: 4of6AQAAQBAJ

    Google Scholar 

  14. Gfrerrer, A.: Geometry and kinematics of the Mecanum wheel. Classical Tech. Appl. Geometry 25(9), 784–791 (2008). https://doi.org/10.1016/j.cagd.2008.07.008

    Article  MathSciNet  MATH  Google Scholar 

  15. Yi, J., Wang, H., Zhang, J., Song, D., Jayasuriya, S., Liu, J.: Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation, vol. 25 (2009). https://doi.org/10.1109/TRO.2009.2026506

  16. Kushwah, M., Patra, A.: PID Controller Tuning using Ziegler-Nichols Method for Speed Control of DC Motor (2014)

    Google Scholar 

  17. Wang, L., Chai, S., Yoo, D., Gan, L., Ng, K.: PID and Predictive Control of Electrical Drives and Power Converters Using MATLAB/Simulink. John Wiley & Sons, New York (2015)

    Google Scholar 

  18. Madgwick, S.: An efficient orientation filter for inertial and inertial/magnetic sensor arrays, vol. 25 (2010)

    Google Scholar 

  19. Bravo, V.A.O., Arias, M.A.N., Cardenas, J.A.C.: Análisis y aplicación del filtro de Kalman a una señal con ruido aleatorio, vol. 18, no. 1 (2013). https://doi.org/10.22517/23447214.8241

  20. Reyes, E.: Seguimiento y estimación de posición de objetos en el plano utilizando cámaras Pan & Tilt (2019). shorturl.at/qxyBR. Accepted: 2019–03-19T23:14:26Z

  21. Roos Hoefgeest Toribio, S., Fernández García, Á., Álvarez García, I., González de los Reyes, R.C.: Localización de robots móviles en entornos industriales usando un anillo de cámaras. Universidade da Coruáa. Servizo de Publicacións (2020). https://doi.org/10.17979/spudc.9788497497169.849

  22. Pessacg, F., Fischer, T.: Localizacion externa para robots moviles utilizando multiples camaras (2017)

    Google Scholar 

  23. Cabrera, L., Campos, R., Castro, J.: Pasos críticos en la estimación de pose en cámara: una evaluación usando la biblioteca LTI-LIB2 (2014). https://doi.org/10.18845/tm.v0i0.1656

  24. OpenCV.org: Camera Calibration and 3D Reconstruction (2014). shorturl.at/zF147

  25. Barba Guamán, L.R., Calderón Córdova, C., Quezada Sarmiento, P.: Detection of moving objects through color thresholding, p. 6 (2017). https://doi.org/10.23919/CISTI.2017.7975755

  26. OpenCV.org: Contour Features (2016). shorturl.at/hLO35

  27. OpenCV.org: Structural Analysis and Shape Descriptors (2017). shorturl.at/qHZ47

  28. Rebaza, J.V.: Detección de bordes mediante el algoritmo de Canny (2011)

    Google Scholar 

  29. Quintana, C., Javier, C.: Determinación de distancias entre objetos de una imagen (2019). shorturl.at/dqrFS. Accepted: 2019–06-24T16:55:00Z

  30. Janković, M.: Pose estimation and camera movement tracking

    Google Scholar 

  31. Lee, D.H., Lee, S.S., Kang, H.H., Ahn, C.K.: Camera Position Estimation for UAVs Using SolvePnP with Kalman Filter (2018). https://doi.org/10.1109/HOTICN.2018.8606037

  32. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006). https://doi.org/10.1017/CBO9780511546877

  33. Potential field methods and their inherent approaches for path planning, vol. 11 (2016)

    Google Scholar 

  34. Duchoň, F., Babinec, A.: Path Planning with Modified a Star Algorithm for a Mobile Robot, vol. 96 (2014). https://doi.org/10.1016/j.proeng.2014.12.098

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago D. Puma-Araujo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerra, G., Allauca, L., Escobar, L., Sánchez-Sánchez, X., Puma-Araujo, S.D., Ramirez-Mendoza, R.A. (2022). Multi-robot System for Collaborative Work Equipped with Trajectory Planning over IoT Architecture. In: Moreno, H.A., Carrera, I.G., Ramírez-Mendoza, R.A., Baca, J., Banfield, I.A. (eds) Advances in Automation and Robotics Research. LACAR 2021. Lecture Notes in Networks and Systems, vol 347. Springer, Cham. https://doi.org/10.1007/978-3-030-90033-5_24

Download citation

Publish with us

Policies and ethics