Skip to main content

Application of Life Cycle Assessment (LCA) to Urban Sludge Treatment Techniques for a Comparison Study: A Review

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2020) (AI2SD 2020)

Abstract

The objective of this study is to illustrate and schematize the application of Life Cycle Assessment (LCA) to the evaluation of different conventional and current urban sludge treatment techniques. This contribution encompasses and analyzes more than 45 articles, based on the quantification of the environmental impact of wastewater treatment plant sludge disposal processes and pathways. As a whole, the methodological hypotheses reflect the steps undertaken to carry out the life cycle analysis approach. As for the technical hypotheses, they clarify and examine each sludge treatment process including: incineration, pyrolysis, wet oxidation, anaerobic digestion, composting, agricultural land application, landfill and urban sludge recovery. It is of great interest to introduce effective substitution in the sludge treatment process for energy recovery. The combination of anaerobic digestion with other disposal routes leads to conclusive results. The authors confirm that thermal treatment pathways are of paramount importance. They significantly reduce the volume of sludge, while allowing the recovery of energy and materials including fluidized bed incineration and pyrolysis. This article allows the selection of the most relevant and cost-effective sludge treatment alternatives and scenarios, as it establish an information base for any appropriate future assessment, as part of the development of sustainable and promising sludge management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuşoğlu, A., Özahi, E., İhsan Kutlar, A., Al-jaf, H.: Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production. J. Clean Prod. 142, 1684–1692 (2017). https://doi.org/10.1016/j.jclepro.2016.11.121

    Article  Google Scholar 

  2. Alyaseri, I., Zhou, J.: Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology. Heliyon 3, e00268 (2017). https://doi.org/10.1016/j.heliyon.2017.e00268

  3. Andrianandraina, A.: Approche d’éco-conception basée sur la combinaison de l’Analyse de Cycle de Vie et de l’Analyse de Sensibilité (2014)

    Google Scholar 

  4. Barberio, G., Cutaia, L., Librici, V.: Treatment and disposal of sewage sludge: comparative life cycle assessment on Italian case study extended abstract. Environ. Eng. Manage. J. 12, 7–10 (2013)

    Google Scholar 

  5. Bień, J.B.: Sewage sludge–theory and practice. Wyd Politech Częstoch, Częstochowa 289 (2007)

    Google Scholar 

  6. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012)

    Article  Google Scholar 

  7. Buonocore, E., Mellino, S., De Angelis, G., Liu, G., Ulgiati, S.: Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol. Indic. 94, 13–23 (2018). https://doi.org/10.1016/j.ecolind.2016.04.047

    Article  Google Scholar 

  8. Cao, Y., Pawłowski, A.: Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew. Sustain. Energy Rev. 16, 1657–1665 (2012)

    Article  Google Scholar 

  9. Cartes, J., Neumann, P., Hospido, A., Vidal, G.: Life cycle assessment of management alternatives for sludge from sewage treatment plants in Chile: does advanced anaerobic digestion improve environmental performance compared to current practices? J. Mater. Cycles Waste Manage. 20, 1530–1540 (2018). https://doi.org/10.1007/s10163-018-0714-9

    Article  Google Scholar 

  10. Chen, G., Wang, X., Li, J., Yan, B., Wang, Y., Wu, X., Velichkova, R., Cheng, Z., Ma, W.: Environmental, energy, and economic analysis of integrated treatment of municipal solid waste and sewage sludge: a case study in China. Sci. Total Environ. 647, 1433–1443 (2019). https://doi.org/10.1016/j.scitotenv.2018.08.104

    Article  Google Scholar 

  11. Collet, P., Flottes, E., Favre, A., Raynal, L., Pierre, H., Capela, S., Peregrina, C.: Techno-economic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl. Energy 192, 282–295 (2017). https://doi.org/10.1016/j.apenergy.2016.08.181

    Article  Google Scholar 

  12. Cusidó, J.A., Cremades, L.V.: Environmental effects of using clay bricks produced with sewage sludge: leachability and toxicity studies. Waste Manage. 32, 1202–1208 (2012). https://doi.org/10.1016/j.wasman.2011.12.024

    Article  Google Scholar 

  13. Dominguez, A., Menéndez, J.A., Pis, J.J.: Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. J. Anal. Appl. Pyrol. 77, 127–132 (2006)

    Article  Google Scholar 

  14. Fuentes, A., Lloréns, M., Sáez, J., Isabel Aguilar, M., Ortuño, J.F., Meseguer, V.F.: Comparative study of six different sludges by sequential speciation of heavy metals. Bioresour. Technol. 99, 517–525 (2008). https://doi.org/10.1016/j.biortech.2007.01.025

    Article  Google Scholar 

  15. Fytili, D., Zabaniotou, A.: Utilization of sewage sludge in EU application of old and new methods-a review. Renew. Sustain. Energy Rev. 12, 116–140 (2008). https://doi.org/10.1016/j.rser.2006.05.014

    Article  Google Scholar 

  16. Gao, N., Quan, C., Liu, B., Li, Z., Wu, C., Li, A.: Continuous pyrolysis of sewage sludge in a screw-feeding reactor: products characterization and ecological risk assessment of heavy metals. Energy Fuels 31, 5063–5072 (2017)

    Article  Google Scholar 

  17. Heimersson, S., Svanström, M., Cederberg, C., Peters, G.: Improved life cycle modelling of benefits from sewage sludge anaerobic digestion and land application. Resour. Conserv. Recycl. 122, 126–134 (2017). https://doi.org/10.1016/j.resconrec.2017.01.016

    Article  Google Scholar 

  18. Homma, T., Saltelli, A.: Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 52, 1–17 (1996)

    Article  Google Scholar 

  19. Hong, J., Hong, J., Otaki, M., Jolliet, O.: Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manage. 29, 696–703 (2009). https://doi.org/10.1016/j.wasman.2008.03.026

    Article  Google Scholar 

  20. Hong, J., Xu, C., Hong, J., Tan, X., Chen, W.: Life cycle assessment of sewage sludge co-incineration in a coal-based power station. Waste Manage. 33, 1843–1852 (2013). https://doi.org/10.1016/j.wasman.2013.05.007

    Article  Google Scholar 

  21. Hospido, A., Carballa, M., Moreira, M., Omil, F., Lema, J.M., Feijoo, G.: Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants. Water Res. 44, 3225–3233 (2010). https://doi.org/10.1016/j.watres.2010.03.004

    Article  Google Scholar 

  22. Hospido, A., Moreira, M.T., Martín, M., Rigola, M., Feijoo, G.: Environmental evaluation of different treatment processes for sludge from urban wastewater treatments: anaerobic digestion versus thermal processes. Int. J. Life Cycle Assess. 10, 336–345 (2005). https://doi.org/10.1065/lca2005.05.210

    Article  Google Scholar 

  23. Houillon, G., Jolliet, O.: Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. J. Clean Prod. 13, 287–299 (2005). https://doi.org/10.1016/j.jclepro.2004.02.022

    Article  Google Scholar 

  24. Jolliet, O., Saadé, M., Crettaz, P.: Analyse du cycle de vie: comprendre et réaliser un écobilan. PPUR Presses polytechniques (2010)

    Google Scholar 

  25. Kacprzak, M., et al.: Sewage sludge disposal strategies for sustainable development. Environ. Res. 156, 39–46 (2017). https://doi.org/10.1016/j.envres.2017.03.010

  26. Kelessidis, A., Stasinakis, A.S.: Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manage. 32, 1186–1195 (2012). https://doi.org/10.1016/j.wasman.2012.01.012

    Article  Google Scholar 

  27. Li, H., Feng, K.: Life cycle assessment of the environmental impacts and energy efficiency of an integration of sludge anaerobic digestion and pyrolysis. J. Clean Prod. 195, 476–485 (2018). https://doi.org/10.1016/j.jclepro.2018.05.259

    Article  Google Scholar 

  28. Li, H., Jin, C., Zhang, Z., O’Hara, I., Mundree, S.: Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways. Energy 126, 649–657 (2017). https://doi.org/10.1016/j.energy.2017.03.068

    Article  Google Scholar 

  29. Lishan, X., Tao, L., Yin, W., Zhilong, Y., Jiangfu, L.: Comparative life cycle assessment of sludge management: a case study of Xiamen, China. J. Clean Prod. 192, 354–363 (2018). https://doi.org/10.1016/j.jclepro.2018.04.171

    Article  Google Scholar 

  30. Lombardi, L., Nocita, C., Bettazzi, E., Fibbi, D., Carnevale, E.: Environmental comparison of alternative treatments for sewage sludge: an Italian case study. Waste Manage. 69, 365–376 (2017). https://doi.org/10.1016/j.wasman.2017.08.040

    Article  Google Scholar 

  31. Lozano-Miralles, J.A., Hermoso-Orzáez, M.J., Martínez-García, C., Rojas-Sola, J.I.: Comparative study on the environmental impact of traditional clay bricks mixed with organic waste using life cycle analysis. Sustain 10 (2018). https://doi.org/10.3390/su10082917

  32. Lundin, M., Olofsson, M., Pettersson, G.J., Zetterlund, H.: Environmental and economic assessment of sewage sludge handling options. Resour. Conserv. Recycl. 41, 255–278 (2004). https://doi.org/10.1016/j.resconrec.2003.10.006

    Article  Google Scholar 

  33. Malerius, O., Werther, J.: Modeling the adsorption of mercury in the flue gas of sewage sludge incineration. Chem. Eng. J. 96, 197–205 (2003)

    Article  Google Scholar 

  34. Mälkki, H., Hakala, S., Virtanen, Y., Leppänen, A.: Life cycle assessment of environmental impacts of Finnish beverage packaging systems. Helsinki Assoc. Packag. Technol. Res. 43 (1995)

    Google Scholar 

  35. Miettinen, P., Hämäläinen, R.P.: How to benefit from decision analysis in environmental life cycle assessment (LCA). Eur. J. Oper. Res. 102, 279–294 (1997). https://doi.org/10.1016/S0377-2217(97)00109-4

    Article  MATH  Google Scholar 

  36. Mills, N., Pearce, P., Farrow, J., Thorpe, R.B., Kirkby, N.F.: Environmental and economic life cycle assessment of current and future sewage sludge to energy technologies. Waste Manage. 34, 185–195 (2014). https://doi.org/10.1016/j.wasman.2013.08.024

    Article  Google Scholar 

  37. Morero, B., Vicentin, R., Campanella, E.A.: Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manage. 61, 195–205 (2017). https://doi.org/10.1016/j.wasman.2016.11.033

    Article  Google Scholar 

  38. Murray, A., Horvath, A., Nelson, K.L.: Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China. Environ. Sci. Technol. 42, 3163–3169 (2008). https://doi.org/10.1021/es702256w

    Article  Google Scholar 

  39. Nakic, D.: Environmental evaluation of concrete with sewage sludge ash based on LCA. Sustain. Prod. Consum. 16, 193–201 (2018). https://doi.org/10.1016/j.spc.2018.08.003

    Article  Google Scholar 

  40. Nielsen, M., Nielsen, O-K., Thomsen, M.: Emissions from decentralised CHP plants 2007-Energinet. dk Environmental project no. no NERI Tech Rep (2010)

    Google Scholar 

  41. Niero, M., Pizzol, M., Bruun, H.G., Thomsen, M.: Comparative life cycle assessment of wastewater treatment in Denmark including sensitivity and uncertainty analysis. J. Clean Prod. 68, 25–35 (2014). https://doi.org/10.1016/j.jclepro.2013.12.051

    Article  Google Scholar 

  42. Peregrina, C.A., Lecomte, D., Arlabosse, P., Rudolph, V.: Life Cycle Assessment (LCA) applied to the design of an innovative drying process for sewage sludge. Process. Saf. Environ. Prot. 84, 270–279 (2006). https://doi.org/10.1205/psep.05169

    Article  Google Scholar 

  43. Raheem, A., Sikarwar, V.S., He, J., Dastyar, W., Dionysiou, D.D., Wang, W., Zhao, M.: Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review. Chem. Eng. J. 337, 616–641 (2018). https://doi.org/10.1016/j.cej.2017.12.149

    Article  Google Scholar 

  44. Remy, C., Lesjean, B., Waschnewski, J.: Identifying energy and carbon footprint optimization potentials of a sludge treatment line with life cycle assessment. Water Sci. Technol. 67, 63–73 (2013). https://doi.org/10.2166/wst.2012.529

    Article  Google Scholar 

  45. Rivers, U.S., Raymond, P.A.: Inputs of fossil carbon from wastewater treatment plants to. Environ. Sci. Technol. 43, 5647–5651 (2009)

    Article  Google Scholar 

  46. Rulkens, W.: Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels 22, 9–15 (2008). https://doi.org/10.1021/ef700267m

    Article  Google Scholar 

  47. Singh, R.P., Agrawal, M.: Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008). https://doi.org/10.1016/j.wasman.2006.12.010

    Article  Google Scholar 

  48. Stefaniak, J., Zelazna, A., Pawłowski, A.: Environmental assessment of different dewatering and drying methods on the basis of life cycle assessment. Water Sci. Technol. 69, 783–788 (2014). https://doi.org/10.2166/wst.2013.778

    Article  Google Scholar 

  49. Suh, Y., Rousseaux, P.: An LCA of alternative wastewater sludge treatment scenarios. Resour. Conserv. Recycl. 35,191–200 (2002)

    Google Scholar 

  50. Svanström, M., Fröling, M., Modell, M., Peters, W.A., Tester, J.: Environmental assessment of supercritical water oxidation of sewage sludge. Resour. Conserv. Recycl. 41, 321–338 (2004). https://doi.org/10.1016/j.resconrec.2003.12.002

    Article  Google Scholar 

  51. Tarantini, M., Buttol, P., Maiorino, L.: An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal. Therm. Sci. 11, 153–164 (2007). https://doi.org/10.2298/TSCI0703153T

    Article  Google Scholar 

  52. Teoh, S.K., Li, L.Y.: Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean Prod. 247, 119495 (2020). https://doi.org/10.1016/j.jclepro.2019.119495

  53. Usapein, P., Chavalparit, O.: Life cycle assessment of bio-sludge for disposal with different alternative waste management scenarios: a case study of an olefin factory in Thailand. J. Mater Cycles Waste Manage. 19, 545–559 (2017). https://doi.org/10.1007/s10163-015-0385-8

    Article  Google Scholar 

  54. Valderrama, C., Granados, R., Cortina, J.L., Gasol, C.M., Guillem, M., Josa, A.: Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. J. Clean Prod. 51, 205–213 (2013). https://doi.org/10.1016/j.jclepro.2013.01.026

    Article  Google Scholar 

  55. Wang, X., Li, J., Liu, R., Hai, R., Zou, D., Zhu, X., Luo, N.: Responses of Bacterial Communities to CuO nanoparticles in activated sludge system. Environ. Sci. Technol. 51, 5368–5376 (2017). https://doi.org/10.1021/acs.est.6b06137

    Article  Google Scholar 

  56. Wang, X., Yu, F., Fan, Q.: Life cycle assessment of sewage sludge treatment in China. IOP Conf. Ser. Earth Environ. Sci. 300 (2019). https://doi.org/10.1088/1755-1315/300/3/032057

  57. Werle, S., Wilk, R.K.: A review of methods for the thermal utilization of sewage sludge: the polish perspective. Renew. Energy 35, 1914–1919 (2010). https://doi.org/10.1016/j.renene.2010.01.019

    Article  Google Scholar 

  58. Xu, C., Chen, W., Hong, J.: Life-cycle environmental and economic assessment of sewage sludge treatment in China. J. Clean Prod. 67, 79–87 (2014). https://doi.org/10.1016/j.jclepro.2013.12.002

    Article  Google Scholar 

  59. Yang, G., Zhang, G., Wang, H.: Current state of sludge production, management, treatment and disposal in China. Water Res. 78, 60–73 (2015)

    Article  Google Scholar 

  60. Yoshida, H., Christensen, T.H., Scheutz, C.: Life cycle assessment of sewage sludge management: a review. Waste Manage. Res. 31, 1083–1101 (2013). https://doi.org/10.1177/0734242X13504446

    Article  Google Scholar 

  61. Yoshida, H., ten Hoeve, M., Christensen, T.H., Bruun, S., Jensen, L.S., Scheutz, C.: Life cycle assessment of sewage sludge management options including long-term impacts after land application. J. Clean Prod. 174, 538–547 (2018). https://doi.org/10.1016/j.jclepro.2017.10.175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawla Moulato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moulato, K., Fakih Lanjri, A., Ammari, M., Ben Allal, L. (2022). Application of Life Cycle Assessment (LCA) to Urban Sludge Treatment Techniques for a Comparison Study: A Review. In: Kacprzyk, J., Balas, V.E., Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2020). AI2SD 2020. Advances in Intelligent Systems and Computing, vol 1417. Springer, Cham. https://doi.org/10.1007/978-3-030-90633-7_19

Download citation

Publish with us

Policies and ethics