Skip to main content

Convergence Between IoT and AI for Smart Health and Predictive Medicine

  • Chapter
  • First Online:
Integrating Artificial Intelligence and IoT for Advanced Health Informatics

Part of the book series: Internet of Things ((ITTCC))

Abstract

In the last years, the Internet of Things (IoT) has pilot the vision of a smarter world into reality with a massive amount of data and numerous services. The development of smart sensorial media and devices is getting remarkable attention from academia, government, industry, and healthcare communities. IoT-powered systems produce valuable sources of information and can transform healthcare. With the increase of healthcare services in non-clinical environments, which use vital signs provided by sensors and devices connected to patients, the need to mine and process the physiological measurements is growing significantly. The utilization of IoT to support healthcare is possible thanks to the artificial intelligence (AI). AI techniques, like natural language processing, data analytics, machine learning, and its sub-category deep learning, offer immense opportunities including disease diagnosis and monitoring, clinical workflow augmentation, and hospital optimization. The synergy between the IoT and AI is promising to monitor state of health of patients and to move upon traditional healthcare structures. Accompanied by communication technologies, cloud computing, and big data, it led to the emergence of the Smart Health concept. The chapter exhibits a literature review conducted to determine the most important technologies, methodologies, algorithms, and models for smart health systems. In addition, the main benefits and challenges of smart health were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.gov.uk/government/organisations/innovate-uk.

  2. 2.

    https://www.ibm.com/uk-en/services/artificial-intelligence.

References

  1. Abawajy, J.H., Hassan, M.M.: Federated Internet of things and cloud computing pervasive patient health monitoring system. IEEE Commun. Mag. 55(1), 48–53 (2017)

    Article  Google Scholar 

  2. Achrekar, H., Gandhe, A., Lazarus, R., Yu, S.-H., Liu, B.: Predicting flu trends using twitter data. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 702–707 (2011)

    Google Scholar 

  3. Agapito, G., Calabrese, B., Care, I., Falcone, D., Guzzi, P.H., Ielpo, N., Lamprinoudi, T., Milano, M., Simeoni, M. and Cannataro, M.: Profiling basic health information of tourists: towards a recommendation system for the adaptive delivery of medical certified nutrition contents. In: 2014 International Conference on High Performance Computing & Simulation (HPCS), pp. 616–620. IEEE, Piscataway (2014)

    Google Scholar 

  4. Agapito, G., Calabrese, B., Guzzi, P.H., Cannataro, M., Simeoni, M., Caré, I., Lamprinoudi, T., Fuiano, G., Pujia, A.: DIETOS: A recommender system for adaptive diet monitoring and personalized food suggestion. In: 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1–8. IEEE, Piscataway (2016)

    Google Scholar 

  5. Agapito, G., Guzzi, P.H., Cannataro, M.: Parallel extraction of association rules from genomics data. Appl. Math. Comput. 350, 434–446 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Ahmadi, H., Arji, G., Shahmoradi, L., Safdari, R., Nilashi, M. and Alizadeh, M.: The application of Internet of things in healthcare: a systematic literature review and classification. Univ. Access Inf. Soc. 18(4), 837–869 (2019)

    Article  Google Scholar 

  7. Akmandor, A.O., Jha, N.K.: Keep the stress away with soda: Stress detection and alleviation system. IEEE Trans. Multi-Scale Comput. Syst. 3(4), 269–282 (2017)

    Article  Google Scholar 

  8. Almotiri, S.H., Khan, M.A. and Alghamdi, M.A.: Mobile health (m-health) system in the context of IoT. In: 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), pp. 39–42 (2016)

    Google Scholar 

  9. Bragg, D.D., Edis, H., Clark, S., Parsons, S.L., Perumpalath, B., Lobo, D.N. and Maxwell-Armstrong, C.A.: Development of a telehealth monitoring service after colorectal surgery: a feasibility study. World J. Gastroenterol. 9, 193 (2017). Open Access article. OL 18.04.2018

    Google Scholar 

  10. Cho, K.J., Asada, H.H.: Wireless, battery-less stethoscope for wearable health monitoring. In: Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342), pp. 187–188 (2002)

    Google Scholar 

  11. Chunara, R., Andrews, J.R. and Brownstein, J.S.: Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. Am. Soc. Trop. Med. Hygiene 86(1), 39–45 (2012)

    Article  Google Scholar 

  12. Comito, C., Forestiero, A., Pizzuti, C.: Word embedding based clustering to detect topics in social media. In: 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 192–199 (2019)

    Google Scholar 

  13. Comito, C., Falcone, D., Forestiero, A.: Integrating IoT and social media for smart health monitoring. In: Proceedings of the Web Intelligence And Intelligent Agent Technology (2020)

    Google Scholar 

  14. Comito, C., Falcone, D. and Forestiero, A.: A power-aware approach for smart health monitoring and decision support. In: 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1389–1395 (2020)

    Google Scholar 

  15. Culotta, A.: Towards detecting influenza epidemics by analyzing twitter messages. In: Proceedings of the First Workshop on Social Media Analytics, SOMA ’10, pp. 115–122. Association for Computing Machinery, New York (2010)

    Google Scholar 

  16. Denecke, K., Krieck, M., Otrusina, L., Smrz, P., Dolog, P., Nejdl, W., Velasco, E.: How to exploit twitter for public health monitoring? Methods Inf. Med. 52(4), 326–39 (2013)

    Article  Google Scholar 

  17. Deshkar, S., Thanseeh, R.A., Menon, V.G.: A review on IoT based m-health systems for diabetes. Int. J. Comput. Sci. Telecommun. 8(1), 13–18 (2017)

    Google Scholar 

  18. Diaz-Aviles, E., Stewart, A.: Tracking twitter for epidemic intelligence: Case study: EHEC/HUS outbreak in Germany, 2011. In: Proceedings of the 4th Annual ACM Web Science Conference, WebSci ’12, pp. 82–85. Association for Computing Machinery, , New York (2012)

    Google Scholar 

  19. Fan, Y.J., Yin, Y.H., Xu, L., Zeng, Y., Wu, F.: IoT-based smart rehabilitation system. IEEE Trans. Ind. Inf. 10, 1568–1577 (2014)

    Article  Google Scholar 

  20. Faust, O., Hagiwara, Y., Hong, T.J., Lih, O.S., Acharya, U.R.: Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Prog. Biomed. 161, 1–13 (2018)

    Article  Google Scholar 

  21. Fu, C., Zhang, P., Jiang, J., Yang, K., Lv, Z.: A Bayesian approach for sleep and wake classification based on dynamic time warping method. Multimedia Tools Appl. 76(17), 17765–17784 (2017)

    Article  Google Scholar 

  22. Gomide, J., Veloso, A., Meira Jr, W., Almeida, V., Benevenuto, F., Ferraz, F. and Teixeira, M.: Dengue surveillance based on a computational model of spatio-temporal locality of twitter. In: Proceedings of the 3rd International Web Science Conference, pp. 1–8 (2011)

    Google Scholar 

  23. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22), 2402–2410 (2016)

    Article  Google Scholar 

  24. Gunn, A.: The diagnosis of acute abdominal pain with computer analysis. J. R. Coll. Surg. Edinb. 21(3), 170–172 (1976)

    Google Scholar 

  25. Gupta, P., Maharaj, B.T., Malekian, R.: A novel and secure IoT based cloud centric architecture to perform predictive analysis of users activities in sustainable health centres. Multimedia Tools Appl. 76, 18489–18512 (2016)

    Article  Google Scholar 

  26. Hamza, R., Yan, Z., Muhammad, K., Bellavista, P. and Titouna, F.: A privacy-preserving cryptosystem for IoT e-healthcare. Inf. Sci. 527, 493–510 (2020)

    Article  MathSciNet  Google Scholar 

  27. Hossain, M.S., Muhammad, G.: Deep learning based pathology detection for smart connected healthcares. IEEE Netw. 34(6), 120–125 (2020)

    Article  MathSciNet  Google Scholar 

  28. Hyung, W.J., Son, T., Park, M., Lee, H., Kim, Y.N., Kim, H.I., Kim, J.W., Cheong, J.H., Choi, S.H., Noh, S.H., Kim, J.: Superior prognosis prediction performance of deep learning for gastric cancer compared to Yonsei prognosis prediction model using Cox regression. J. Clin. Oncol. 35(4_suppl), 164–164 (2017)

    Google Scholar 

  29. Kaur, A., Jasuja, A.: Health monitoring based on IoT using raspberry PI. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 1335–1340. IEEE, Piscataway (2017)

    Google Scholar 

  30. Lee, K., Agrawal, A., Choudhary, A.: Real-time disease surveillance using twitter data: Demonstration on flu and cancer. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, pp. 1474–1477. Association for Computing Machinery, New York (2013)

    Google Scholar 

  31. Lin, K., Xia, F., Wang, W., Tian, D., Song, J.: System design for big data application in emotion-aware healthcare. IEEE Access 4, 6901–6909 (2016)

    Article  Google Scholar 

  32. Linke, A.C., Mash, L.E., Fong, C.H., Kinnear, M.K., Kohli, J.S., Wilkinson, M., Tung, R., Keehn, R.J., Carper, R.A., Fishman, I., et al.: Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders. NeuroImage 223, 117383 (2020)

    Article  Google Scholar 

  33. Mainetti, L., Manco, L., Patrono, L., Secco, A., Sergi, I., Vergallo, R.: An ambient assisted living system for elderly assistance applications. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6 (2016)

    Google Scholar 

  34. Mamoshina, P., Vieira, A., Putin, E., Zhavoronkov, A.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016)

    Article  Google Scholar 

  35. Mohammadian, E., Noferesti, M., Jalili, R.: Fast: Fast anonymization of big data streams. In: Proceedings of the 2014 International Conference on Big Data Science and Computing, BigDataScience ’14. Association for Computing Machinery, New York (2014)

    Google Scholar 

  36. Moosavi, S.R., Gia, T.N., Nigussie, E., Rahmani, A.M., Virtanen, S., Tenhunen, H., Isoaho, J.: End-to-end security scheme for mobility enabled healthcare Internet of things. Future Gener. Comput. Syst. 64, 108–124 (2016)

    Article  Google Scholar 

  37. Mutlag, A.A., Khanapi Abd Ghani, M., Mohammed, M.A., Maashi, M.S., Mohd, O., Mostafa, S.A., Abdulkareem, K.H., Marques, G., de la Torre Díez, I.: Mafc: Multi-agent fog computing model for healthcare critical tasks management. Sensors 20(7), 1853 (2020)

    Google Scholar 

  38. Odlum, M., Yoon, S.: What can we learn about the ebola outbreak from tweets? Am. J. Infect. Control 43(6), 563–571 (2015)

    Article  Google Scholar 

  39. Pathak, S., Kumar, M., Mohan, A. and Kumar, B.: Energy optimization of ZigBee based WBAN for patient monitoring. Procedia Comput. Sci. 70, 414–420 (2015)

    Article  Google Scholar 

  40. Peiffer-Smadja, N., Rawson, T.M., Ahmad, R., Buchard, A., Georgiou, P., Lescure, F.X., Birgand, G., Holmes, A.H.: Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clin. Microbiol. Infect. 26(5), 584–595 (2020)

    Article  Google Scholar 

  41. Poplin, R., Chang, P.C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P.T., et al.: A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36(10), 983–987 (2018)

    Article  Google Scholar 

  42. Prouski, G., Jafari, M., Zarrabi, H.: Internet of things in eye diseases, introducing a new smart eyeglasses designed for probable dangerous pressure changes in human eyes. In: 2017 International Conference on Computer and Applications (ICCA), pp. 364–368 (2017)

    Google Scholar 

  43. Ramesh, A.N., Kambhampati, C., Monson, J.R.T., Drew, P.J.: Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 86(5), 334 (2004)

    Article  Google Scholar 

  44. Ray, P.P.: Home health hub Internet of things (h3IoT): An architectural framework for monitoring health of elderly people. In: 2014 International Conference on Science Engineering and Management Research (ICSEMR), pp. 1–3 (2014)

    Google Scholar 

  45. Roy, A., Klinefelter, A., Yahya, F.B., Chen, X., Gonzalez-Guerrero, L.P., Lukas, C.J., Kamakshi, D.A., Boley, J., Craig, K., Faisal, M., Oh, S., Roberts, N.E., Shakhsheer, Y., Shrivastava, A., Vasudevan, D.P., Wentzloff, D.D., Calhoun, B.H.: A 6.45 μw self-powered soc with integrated energy-harvesting power management and ULP asymmetric radios for portable biomedical systems. IEEE Trans. Biomed. Circuits Syst. 9(6), 862–874 (2015)

    Google Scholar 

  46. Santos, A., Macedo, J., Costa, A., Nicolau, M.J.: Internet of things and smart objects for m-health monitoring and control. Procedia Technology, 16:1351–1360, 2014. CENTERIS 2014 - Conference on ENTERprise Information Systems/ProjMAN 2014 - International Conference on Project MANagement/HCIST 2014 - International Conference on Health and Social Care Information Systems and Technologies.

    Google Scholar 

  47. Sarma, J., Katiyar, A., Biswas, R., Mondal, H.K.: Power-aware IoT based smart health monitoring using wireless body area network. In: 20th International Symposium on Quality Electronic Design (ISQED), pp. 117–122. IEEE, Piscataway (2019)

    Google Scholar 

  48. Sato, J.A., Yoshida, K.: Wearable ECG monitoring and alerting system associated with smartphone. Int. J. E-Health Med. Commun. 4, 1–15 (2013)

    Google Scholar 

  49. Sedayao, J., Bhardwaj, R., Gorade, N.: Making big data, privacy, and anonymization work together in the enterprise: experiences and issues. In: 2014 IEEE International Congress on Big Data, pp. 601–607. IEEE, Piscataway (2014)

    Google Scholar 

  50. Shaltis, P.A., Reisner, A., Asada, H.H.: Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 908–911 (2006)

    Google Scholar 

  51. Shorten, G., Burke, M.: The application of dynamic time warping to measure the accuracy of ECG compression. Int. J. Circ. Syst. Signal Process. 5(3), 305–313 (2011)

    Google Scholar 

  52. Sidana, S., Amer-Yahia, S., Clausel, M., Rebai, M., Mai, S.T., Amini, M.R.: Health monitoring on social media over time. IEEE Trans. Knowl. Data Eng. 30(8), 1467–1480 (2018)

    Article  Google Scholar 

  53. Sung, W.T., Chang, K.Y.: Evidence-based multi-sensor information fusion for remote health care systems. Sensors Actuators A Phys. 204, 1–19 (2013)

    Article  Google Scholar 

  54. Tomašev, N., Glorot, X., Rae, J.W., Zielinski, M., Askham, H., Saraiva, A., Mottram, A., Meyer, C., Ravuri, S., Protsyuk, I., et al.: A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572(7767), 116–119 (2019)

    Article  Google Scholar 

  55. Turkki, R., Linder, N., Kovanen, P.E., Pellinen, T., Lundin, J.: Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples. J. Pathol. Inform. 7(1), 38 (2016)

    Article  Google Scholar 

  56. Tuzcu, V., Nas, S.: Dynamic time warping as a novel tool in pattern recognition of ECG changes in heart rhythm disturbances. In: 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 182–186 (2005)

    Article  Google Scholar 

  57. Uhm, K.E., Yoo, J.S., Chung, S.H., Lee, J.D., Lee, I., Kim, J.I., Lee, S.K., Nam, S.J., Park, Y.H., Lee, J.Y. and Hwang, J.H.: Effects of exercise intervention in breast cancer patients: is mobile health (mhealth) with pedometer more effective than conventional program using brochure? Breast Cancer Res. Treat. 161(3), 443–452 (2017)

    Article  Google Scholar 

  58. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., Jubert, I.S., Mazura, M., Harrison, M., Eisenhauer, M., et al.: Internet of things strategic research roadmap. Internet Things Glob. Technol. Societal Trends 1(2011), 9–52 (2011)

    Google Scholar 

  59. Villarrubia, G., Bajo, J., De Paz, J.F., Corchado, J.M.: Monitoring and detection platform to prevent anomalous situations in home care. Sensors 14(6), 9900–9921 (2014)

    Article  Google Scholar 

  60. Woznowski, P., Fafoutis, X., Song, T., Hannuna, S., Camplani, M., Tao, L., Paiement, A., Mellios, E., Haghighi, M., Zhu, N., et al.: A multi-modal sensor infrastructure for healthcare in a residential environment. In: 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 271–277. IEEE, Piscataway (2015)

    Google Scholar 

  61. Yin, H., Jha, N.K.: A health decision support system for disease diagnosis based on wearable medical sensors and machine learning ensembles. IEEE Trans. Multi-Scale Comput. Syst. 3(4), 228–241 (2017)

    Article  Google Scholar 

  62. Yin, H., Zhu, X., Ma, S., Yang, S., Chen, L.: A novel similarity comparison approach for dynamic ECG series. Bio-med. Mater. Eng. 26(Suppl 1), S1095–105 (2015)

    Article  Google Scholar 

  63. Zhang, X., Yang, L.T., Liu, C., Chen, J.: A scalable two-phase top-down specialization approach for data anonymization using mapreduce on cloud. IEEE Trans. Parallel Distrib. Syst. 25(2), 363–373 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Falcone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Comito, C., Falcone, D., Forestiero, A. (2022). Convergence Between IoT and AI for Smart Health and Predictive Medicine. In: Comito, C., Forestiero, A., Zumpano, E. (eds) Integrating Artificial Intelligence and IoT for Advanced Health Informatics. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-91181-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91181-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91180-5

  • Online ISBN: 978-3-030-91181-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics