Skip to main content

Processing Technologies to Produce Plant Protein Concentrates and Isolates

  • Chapter
  • First Online:
Plant Protein Foods

Abstract

The demand for new healthy food ingredients and products is on the rise. The global plant-based protein market is projected to grow from US$10.3 billion in 2020 to US$14.5 billion by 2025, recording a compound annual growth rate of 7.1% during the forecast period. Plant protein ingredients, namely concentrate (65–90% w/w protein dry basis) and isolate (90%+ w/w protein dry basis), are increasingly finding their way into a broad range of food products, not only due to their nutritional value but also given that such ingredients interact well with other food ingredients. However, their functional properties differ depending on the protein source and on the way the ingredients are processed and/or extracted. Key functional properties include solubility, water- and fat-adsorption capacities, emulsifying properties, foam-forming capacity and stability, and gelling properties. The main plant protein sources are oilseeds (soybean, canola, flax, etc.), pulses (pea, chickpea, bean, lentil, etc.), and cereals (wheat, corn, barley, etc.), with soybean, wheat, pea and corn being the current key players in the plant-based foods market. However, new alternative sources are finding their way into the market, including barley, bean, camelina, canola, chickpea, flax, hemp, lentil, mustard, peanut, pea, quinoa, rice, sesame, sorghum, and sunflower. Plant proteins can be extracted directly from the oilseeds, pulses and cereals moreover, several sources of plant proteins are from different agro-industrial waste materials. The redirection of by-products, which are usually used as animal feed livestock, to human consumption helps to preserve the environment, ensure food security and support the sustainability of food systems. Many technologies are involved in the production of plant protein concentrates and isolates, including milling to obtain flour, and drying to dry the protein extracts into a powder when wet extraction is carried out. However, the core of the process is protein extraction and separation. Protein extraction and separation processes can be classified into two main categories: dry fractionation and wet extraction processes. Wet extraction processes are the most common methods used to produce plant protein ingredients and include conventional processes such as alkaline extraction–isoelectric precipitation (AE-IP), salt extraction–dialysis (SED), and micellar precipitation (MP). They also include emerging processes such as enzyme-assisted extraction, ultrasound-assisted extraction, microwave-assisted extraction, and membrane technologies. The selection of the most appropriate plant protein extraction/separation process depends on many factors, such as the composition of the oilseeds, pulses, and cereals (fiber-rich content, polysaccharides, and fat), the part that is used, the targeted level of proteins in the ingredients, and so on. This chapter provides a review of the processing technologies used to produce plant protein concentrates and isolates, and discusses their impact on the main plant protein sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebowale YA, Adeyemi IA, Oshodi AA, Niranjan K (2007) Isolation, fractionation and characterisation of proteins from Mucuna bean. Food Chem 104:287–299

    Article  CAS  Google Scholar 

  • Agboola S, Ng D, Mills D (2005) Characterisation and functional properties of Australian rice protein isolates. J Cereal Sci 41:283–290

    Article  CAS  Google Scholar 

  • Aguilar O, Rito-Palomares M (2008) Processing of soybean (Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins. J Chem Technol Biotechnol 83:286–293

    Article  CAS  Google Scholar 

  • Aider M, Barbana C (2011) Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity – A practical and critical review. Trends Food Sci Technol 22:21–39

    Article  CAS  Google Scholar 

  • Aiking H (2011) Future protein supply. Trends Food Sci Technol 22:112–120

    Article  CAS  Google Scholar 

  • Albe Slabi S, Mathe C, Basselin M, Framboisier X, Ndiaye M, Galet O, Kapel R (2020) Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chem 317:126423

    Article  CAS  PubMed  Google Scholar 

  • Ali F, Ippersiel D, Lamarche F, Mondor M (2010) Characterization of low-phytate soy protein isolates produced by membrane technologies. Innov Food Sci Emerg Technol 11:162–168

    Article  CAS  Google Scholar 

  • Ali F, Mondor M, Ippersiel D, Lamarche F (2011) Production of low-phytate soy protein isolate by membrane technologies: impact of salt addition to the extract on the purification process. Innov Food Sci Emerg Technol 12:171–177

    Article  CAS  Google Scholar 

  • Alibhai Z, Mondor M, Moresoli C, Ippersiel D, Lamarche F (2006) Production of soy protein concentrates isolates: traditional and membrane technologies. Desalination 191:351–358

    Article  CAS  Google Scholar 

  • Amagliani L, O’Regan J, Kelly AL, O’Mahony JA (2017) The composition, extraction, functionality and applications of rice proteins: a review. Trends Food Sci Technol 64:1–12

    Article  CAS  Google Scholar 

  • Apinunjarupong S, Lapnirun S, Theerakulkait C (2009) Preparation and some functional properties of rice bran protein concentrate at different degree of Hydrolysis using Bromelain and alkaline extraction. Prep Biochem Biotechnol 39(2):183–193

    Article  CAS  PubMed  Google Scholar 

  • Arogundade LA, Eromosele CO, Ademuyiwa O, Eromosele IC (2009) Aggregation profile, preparation and nutritional characterization of African yam bean (Sphenostylis stenocarpa) acid and salt protein isolates. Food Hydrocoll 23:2294–2301

    Article  CAS  Google Scholar 

  • Banjac V, Pezo L, Pezo M, Vukmirović Đ, Čolović D, Fišteš A et al (2017) Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal – chemometric and CFD approach. Adv Powder Technol 28:1069–1078

    Article  CAS  Google Scholar 

  • Barbana C, Boye JI (2013) In vitro protein digestibility and physico-chemical properties of flours and protein concentrates from two varieties of lentil (Lens culinaris). Food Funct 4:310–321

    Article  CAS  PubMed  Google Scholar 

  • Batt HP, Thomas RL, Rao A (2003) Characterization of isoflavones in membrane processed soy protein concentrate. J Food Sci 68:401–404

    Article  CAS  Google Scholar 

  • Bean SR, Ioerger BP, Park SH, Singh H (2006) Interaction between sorghum protein extraction and precipitation conditions on yield, purity, and composition of purified protein fractions. Cereal Chem 83(1):99–107

    Article  CAS  Google Scholar 

  • Bedin S, Zanella K, Bragagnolo N, Taranto OP (2019) Implication of microwaves on the extraction process of rice bran protein. Braz J Chem Eng 6(4):1653–1665

    Article  Google Scholar 

  • Bedin S, Netto F, Bragagnolo N, Taranto OP (2020) Reduction of the process time in the achieve of rice bran protein through ultrasound-assisted extraction and microwave-assisted extraction. Sep Sci Technol 55(2):300–312

    Article  CAS  Google Scholar 

  • Bilgi B, Celik S (2004) Solubility and emulsifying properties of barley protein concentrate. Eur Food Res Technol 218:437–441

    Article  CAS  Google Scholar 

  • Boye JI, Aksay S, Roufik S, Ribéreau S, Mondor M, Farnworth E, Rajamohamed SH (2010) Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int 43:537–546

    Article  CAS  Google Scholar 

  • Boyle C, Hansen L, Hinnenkamp C, Ismail BP (2018) Emerging camelina protein: extraction, modification, and structural/functional characterization. J Am Oil Chem Soc 95:1049–1062

    Article  CAS  Google Scholar 

  • Brasil M, da Cruz Meleiro LA, Beninca C, Zanoleo EF (2015) Yield of soybean protein isolate from defatted soybean flakes treated in an industrial plant and in laboratory: experiments and modeling. J Food Process Eng 39:636–644

    Article  Google Scholar 

  • Byanju B, Rahman MM, Hojilla-Evangelista MP, Lamsal BP (2020) Effect of high-power sonication pretreatment on extraction and some physicochemical properties of proteins from chickpea, kidney bean, and soybean. Int J Biol Macromol 145:712–721

    Article  CAS  PubMed  Google Scholar 

  • Campbell KA, Glatz CE (2010) Protein recovery from enzyme-assisted aqueous extraction of soybean. Biotechnol Prog 26(2):488–495

    CAS  PubMed  Google Scholar 

  • Capobiango M, Fialho Lopes DC, Carreira Linharez L, de Oliveira Afonso W, Duarte Segall S, Coelho Silvestre MP (2007) Optimization of enzyme assisted processes for extracting and hydrolysing corn proteins aiming phenylalanine removal. Int J Food Eng 3(6):10

    Article  Google Scholar 

  • Chittapalo T, Noomhorm A (2009) Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. Int J Food Sci Technol 44:1843–1849

    Article  CAS  Google Scholar 

  • Choi I, Choi SJ, Chun JK, Moon TW (2006) Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J Food Process Preserv 30:407–419

    Article  CAS  Google Scholar 

  • Dabbour M, He R, Ma H, Musa A (2018) Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties. J Food Process Eng 41:e12799

    Article  Google Scholar 

  • Dakhili S, Abdolalizadeh L, Hosseini SM, Shojaee-Aliabadi S, Mirmoghtadaie L (2019) Quinoa protein: composition, structure and functional properties. Food Chem 299:125161

    Article  CAS  PubMed  Google Scholar 

  • Dapčević-Hadnađev T, Dizdar M, Pojić M, Krstonošić V, Zychowski LM, Hadnađev M (2019) Emulsifying properties of hemp proteins: effect of isolation technique. Food Hydrocoll 89:912–920

    Article  Google Scholar 

  • de Mesa-Stonestreet NJ, Alavi S, Bean SR (2010) Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J Food Sci 75(5):R90–R104

    PubMed  Google Scholar 

  • de Moura JMLN, Campbell K, Mahfuz A, Jung S, Glatz CE, Johnson L (2008) Enzyme-assisted aqueous extraction of oil and protein from soybeans and cream de-emulsification. J Am Oil Chem Soc 85:985–995

    Article  Google Scholar 

  • de Moura JMLN, Campbell K, de Almeida NM, Glatz CE, Johnson LA (2011) Protein recovery in aqueous extraction processing of soybeans using isoelectric precipitation and nanofiltration. J Am Oil Chem Soc 88:1447–1454

    Article  CAS  Google Scholar 

  • de Souza D, Sbardelotto AF, Ziegler DR, Ferreira Marczak LD, Tessaro IC (2016) Characterization of rice starch and protein obtained by a fast alkaline extraction method. Food Chem 191:36–44

    Article  CAS  PubMed  Google Scholar 

  • Dendukuri D, Diosady LL (2003) Oil-free protein isolates from full-fat, dehulled mustard flour by microfiltration. J Am Oil Chem Soc 80(3):287–294

    Article  CAS  Google Scholar 

  • Dong X-Y, Guo L-L, Wei F, Li J-F, Jiang M-L, Li G-M, Zhao Y-D, Chen H (2011) Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. J Sci Food Agric 91:1488–1498

    Article  CAS  PubMed  Google Scholar 

  • Du M, Xie J, Gong B, Xu X, Tang W, Li X, Li C, Xie M (2018) Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocoll 76:131–140

    Article  CAS  Google Scholar 

  • Elsohaimy SA, Refaay TM, Zaytoun MAM (2015) Physicochemical and functional properties of quinoa protein isolate. Ann Agric Sci 60(2):297–305

    Article  Google Scholar 

  • Espinosa-Pardo FA, Savoire R, Subra-Paternault P, Harscoat-Schiavo C (2020) Oil and protein recovery from corn germ: extraction yield, composition and protein functionality. Food Bioprod Process 120:131–142

    Article  CAS  Google Scholar 

  • Fabian C, Ju Y-H (2011) A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr 51(9):816–827

    Article  CAS  PubMed  Google Scholar 

  • Fasuan TO, Omobuwajo TO, Gbadamosi SO (2018) Optimization of simultaneous recovery of oil and protein from sesame (Sesamum indicum) seed. J Food Process Preserv 42:e13341

    Article  Google Scholar 

  • Fetzer A, Herfellner T, Eisner P (2019) Rapeseed protein concentrates for non-food applications prepared from prepressed and cold-pressed press cake via acidic precipitation and ultrafiltration. Ind Crop Prod 132:396–406

    Article  CAS  Google Scholar 

  • Fischer M, Kofod LV, Schols HA, Piersma SR, Gruppen H, Voragen AGJ (2001) Enzymatic extractability of soybean meal proteins and carbohydrates: heat and humidity effects. J Agric Food Chem 49:4463–4469

    Article  CAS  PubMed  Google Scholar 

  • Föste M, Elgeti D, Brunner A-K, Jekle M, Becker T (2015) Isolation of quinoa protein by milling fractionation and solvent extraction. Food Bioprod Process 96:20–26

    Article  Google Scholar 

  • Gao Z, Shen P, Lan Y, Cui L, Ohm J-B, Chen B, Rao J (2020) Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Res Int 131:109045

    Article  CAS  PubMed  Google Scholar 

  • Gerliani N, Hammami R, Aider M (2020) Extraction of protein and carbohydrates from soybean meal using acidic and alkaline solutions produced by electroactivation. J Food Sci Nutr 8:1125–1138

    CAS  Google Scholar 

  • Gerzhova A, Mondor M, Benali M, Aider M (2015a) Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of Zeta-potential/turbidimetry analysis to optimize the extraction conditions. Food Chem 201:243–252

    Article  Google Scholar 

  • Gerzhova A, Mondor M, Benali M, Aider M (2015b) A comparative study between the electro-activation technique and conventional extraction method on the extractability, composition and physico-chemical properties of canola protein concentrates and isolates. Food Biosci 11:56–71

    Article  CAS  Google Scholar 

  • Gerzhova A, Mondor M, Benali M, Aider M (2015c) Study of the functional properties of canola protein concentrates and isolates extracted by electro-activated solutions as non-invasive extraction method. Food Biosci 12:128–138

    Article  CAS  Google Scholar 

  • Ghodsvali A, Haddad Khodaparast MH, Vosoughi M, Diosady LL (2005) Preparation of canola protein materials using membrane technology and evaluation of meals functional properties. Food Res Int 28:223–231

    Article  Google Scholar 

  • Ghribi AM, Maklouf Gafsi I, Blecker C, Danthine S, Attia H, Besbes S (2015) Effect of drying methods on physico-chemical and functional properties of chickpea protein concentrates. J Food Eng 165:179–188

    Article  CAS  Google Scholar 

  • Gonzalez-Perez S, Merck KB, Vereijken JM, van Koningsveld GA, Gruppen H, Voragen AGJ (2002) Isolation and characterization of undenatured chlorogenic acid free sunflower (Helianthus annuus) proteins. J Agric Food Chem 50:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Görgüç A, Bircan C, Yılmaz FM (2019) Sesame bran as an unexploited by-product: effect of enzyme and ultrasound assisted extraction on the recovery of protein and antioxidant compounds. Food Chem 283:637–645

    Article  PubMed  Google Scholar 

  • Görgüç A, Ozer P, Yılmaz FM (2020a) Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. J Food Process Preserv 44:e14304

    Article  Google Scholar 

  • Görgüç A, Ozer P, Yılmaz FM (2020b) Simultaneous effect of vacuum and ultrasound assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran. J Food Compos Anal 87:103424

    Article  Google Scholar 

  • Gu Z, Glatz CE (2007) Aqueous two-phase extraction for protein recovery from corn extracts. J Chromatogr B 845:38–50

    Article  CAS  Google Scholar 

  • Hanmoungjai P, Pyle DL, Niranjan K (2001) Enzymatic process for extracting oil and protein from rice bran. J Am Oil Chem Soc 78:817–821

    Article  CAS  Google Scholar 

  • Hanmoungjai P, Pyle DL, Niranjan K (2002) Enzyme-assisted water-extraction of oil and protein from rice bran. J Chem Technol Biotechnol 77:771–776

    Article  CAS  Google Scholar 

  • Hansen JØ, Skrede A, Mydland LT, Øverland M (2017) Fractionation of rapeseed meal by milling, sieving and air classification – Effect on crude protein, amino acids and fiber content and digestibility. Anim Feed Sci Technol 230:143–153

    Article  CAS  Google Scholar 

  • Hemery Y, Holopainen U, Lampi A-M, Lehtinen P, Nurmi T, Piironen V, Edelmann M, Rouau X (2011) Potential of dry fractionation of wheat bran for the development of food ingredients, part II: electrostatic separation of particles. J Cereal Sci 53:9–18

    Article  CAS  Google Scholar 

  • Hernández-Álvarez AJ, Carrasco-Castilla J, Dávila-Ortiz G, Alaiz M, Girón-Calle J, Vioque-Peña J, Jacinto-Hernández C, Jimenez-Martíneza C (2013) Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds. J Sci Food Agric 93:961–966

    Article  PubMed  Google Scholar 

  • Hojilla-Evangelista MP (2002) Improved solubility and emulsification of wet-milled corn germ protein recovered by ultrafiltration–diafiltration. J Am Oil Chem Soc 91:1623–1631

    Article  Google Scholar 

  • Hojilla-Evangelista MP, Sessa DJ, Mohamed A (2004) Functional properties of soybean and lupin protein concentrates produced by ultrafiltration – diafiltration. J Am Oil Chem Soc 81:1153–1157

    Article  CAS  Google Scholar 

  • Hojilla-Evangelista MP, Sutivisedsak N, Evangelista RL, Cheng HN, Biswas A (2018) Composition and functional properties of saline-soluble protein concentrates prepared from four common dry beans (Phaseolus vulgaris L.). J Am Oil Chem Soc 95:1001–1012

    Article  CAS  Google Scholar 

  • Hou F, Ding W, Qu W, Oladejo AO, Xiong F, Zhang W, He R, Ma H (2017) Alkali solution extraction of rice residue protein isolates: influence of alkali concentration on protein functional, structural properties and lysinoalanine formation. Food Chem 218:207–215

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Khodaei N, Benkerroum N, Karboune S (2018) Barley protein concentrates: extraction, structural and functional properties. Food Chem 254:367–376

    Article  CAS  PubMed  Google Scholar 

  • Hu X-Z, Cheng Y-Q, Fan J-F, Lu Z-H, Yamaki K, Li L-T (2010) Effects of drying method on physicochemical and functional properties of soy protein isolates. J Food Process Preserv 34(3):520–540

    Article  CAS  Google Scholar 

  • İşçimen EM, Hayta M (2018) Optimisation of ultrasound assisted extraction of rice bran proteins: effects on antioxidant and antiproliferative properties. Qual Assur Saf Crops Foods 10(2):165–174

    Article  Google Scholar 

  • Jarpa-Parra M, Bamdad F, Wang Y, Tian Z, Temelli F, Han J, Chen L (2014) Optimization of lentil protein extraction and the influence of process pH on protein structure and functionality. LWT Food Sci Technol 57:461–469

    Article  CAS  Google Scholar 

  • Jung S, Lamsal BP, Stepien V, Johnson LA, Murphy PA (2006) Functionality of soy protein produced by enzyme-assisted extraction. J Am Oil Chem Soc 83:71–78

    Article  CAS  Google Scholar 

  • Karaca AC, Low N, Nickerson M (2011a) Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res Int 44:2742–2750

    Article  CAS  Google Scholar 

  • Karaca AC, Low N, Nickerson M (2011b) Emulsifying properties of canola and flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food Res Int 44:2991–2998

    Article  CAS  Google Scholar 

  • Karki B, Lamsal BP, Grewell D, Pometto AL, van Leeuwen J, Khanal SK et al (2009) Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. J Am Oil Chem Soc 86:1021–1028

    Article  CAS  Google Scholar 

  • Kaushik P, Dowling K, McKnight S, Barrow CJ, Wang B, Adhikari B (2016) Preparation, characterization and functional properties of flax seed protein isolate. Food Chem 197:212–220

    Article  CAS  PubMed  Google Scholar 

  • Kdidi S, Vaca Medina G, Peydecastaing J, Oukarroum A, Fayoud NEH, Barakat A (2019) Electrostatic separation for sustainable production of rapeseed oil cake protein concentrate: effect of mechanical disruption on protein and lignocellulosic fiber separation. Powder Technol 344:10–16

    Article  CAS  Google Scholar 

  • Khan SH, Butt MS, Anjum FM, Jamil A (2009) Antinutritional appraisal and protein extraction from differently stabilized rice bran. Pak J Nutr 8(8):1281–1286

    Article  CAS  Google Scholar 

  • Kongo-Dia-Moukala J, Zhang H (2011) Defatted corn protein extraction: Optimization by response surface methodology and functional properties. Am J Food Technol 6(10):870–881

    Article  CAS  Google Scholar 

  • Krause J-P, Schultz M, Dudek S (2002) Effect of extraction conditions on composition, surface activity and rheological properties of protein isolates from flaxseed (Linum usitativissimum L). J Sci Food Agric 82:970–976

    Article  Google Scholar 

  • Kumagai T, Kawamura H, Fuse T, Watanabe T, Saito Y, Masumura T, Watanabe R, Kadowaki M (2006) Production of rice protein by alkaline extraction improves its digestibility. J Nutr Sci Vitaminol 52:467–472

    Article  CAS  PubMed  Google Scholar 

  • Kumar NSK, Yea MK, Cheryan M (2003) Soy protein concentrates by ultrafiltration. J Food Sci 68:2278–2283

    Article  CAS  Google Scholar 

  • L’Hocine L, Boye JI, Arcand Y (2006) Composition and functional properties of soy protein isolates prepared using alternative defatting and extraction procedures. J Food Sci 71(3):C137–C145

    Article  Google Scholar 

  • Lafarga T, Álvarez C, Bobo G, Aguiló-Aguayo I (2018) Characterization of functional properties of proteins from Ganxet beans (Phaseolus vulgaris L. var. Ganxet) isolated using an ultrasound-assisted methodology. LWT Food Sci Technol 98:106–112

    Article  CAS  Google Scholar 

  • Laguna O, Barakat A, Alhamada H, Durand E, Baréa B, Fine F, Villeneuve P, Citeau M, Dauguet S, Lecomte J (2018) Production of proteins and phenolic compounds enriched fractions from rapeseed and sunflower meals by dry fractionation processes. Ind Crop Prod 118:160–172

    Article  CAS  Google Scholar 

  • Lam ACY, Karaca AC, Tyler RT, Nickerson MT (2018) Pea protein isolates: structure, extraction, and functionality. Food Rev Int 34(2):126–147

    Article  CAS  Google Scholar 

  • Lan Y, Ohm J-B, Chen B, Rao J (2020) Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocoll 104:105731

    Article  CAS  Google Scholar 

  • Langton M, Ehsanzamir S, Karkehabadi S, Feng X, Johansson M, Johansson DP (2020) Gelation of faba bean proteins – Effect of extraction method, pH and NaCl. Food Hydrocoll 103:105622

    Article  CAS  Google Scholar 

  • Latif S, Anwar F (2011) Aqueous enzymatic sesame oil and protein extraction. Food Chem 125:679–684

    Article  CAS  Google Scholar 

  • Latif S, Pfannstiel J, Makkar HPS, Becker K (2013) Amino acid composition, antinutrients and allergens in the peanut protein fraction obtained by an aqueous enzymatic process. Food Chem 136:213–217

    Article  CAS  PubMed  Google Scholar 

  • Li K, Ma H, Li S, Zhang, & C., Dai, C. (2017) Effect of ultrasound on alkali extraction protein from rice dreg flour. J Food Process Eng 40:e12377

    Article  Google Scholar 

  • Liu K, Barrows FT (2017) Wet processing of barley grains into concentrates of proteins, β-glucan, and starch. Cereal Chem 94(2):161–169

    Article  Google Scholar 

  • Liu Y, Zhao G, Ren J, Zhao M, Yang B (2011) Effect of denaturation during extraction on the conformational and functional properties of peanut protein isolate. Innov Food Sci Emerg Technol 12:375–380

    Article  CAS  Google Scholar 

  • Liu C, Hao L, Chen F, Yang C (2020) Study on extraction of peanut protein and oil bodies by aqueous enzymatic extraction and characterization of protein. J Chem 2020:5148967

    Google Scholar 

  • Loginov M, Boussetta N, Lebovka N, Vorobiev E (2013) Separation of polyphenols and proteins from flaxseed hull extracts by coagulation and ultrafiltration. J Membr Sci 442:177–186

    Article  CAS  Google Scholar 

  • Lovatto NM, Goulart FR, Loureiro BB, Speroni CS, Bender ABB, Giacomini SJ, Neto JR, da Silva LP (2017) Crambe (Crambe abyssinica) and sunflower (Helianthus annuus) protein concentrates: production methods and nutritional properties for use in fish feed. An Acad Bras Cienc 89(3 Suppl):2495–2504

    Article  CAS  PubMed  Google Scholar 

  • Luthria DL, John KMM, Marupaka R, Natarajan S (2018) Recent update on methodologies for extraction and analysis of soybean seed proteins. J Sci Food Agric 98:5572–5580

    Article  CAS  PubMed  Google Scholar 

  • Malomo SA, Aluko RE (2015) Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration. Innov Food Sci Emerg Technol 31:151–159

    Article  CAS  Google Scholar 

  • Malomo SA, He R, Aluko RE (2014) Structural and functional properties of hemp seed protein products. J Food Sci 79(8):C1512–C1521

    Article  CAS  PubMed  Google Scholar 

  • Marambe HK, Wanasundara JPD (2017) Protein from flaxseed (Linum usitatissimum L.). In: Nadathur SR, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Academic Press, pp 133–144

    Chapter  Google Scholar 

  • Markets and Markets (n.d.). https://www.marketsandmarkets.com/Market-Reports/plant-based-protein-market-14715651.html?gclid=EAIaIQobChMIwcGJi8jt6gIVg8DICh2eBQviEAAYASAAEgIyKPD_BwE. Accessed on July 27, 2020

  • Marnoch R, Diosady LL (2006) Production of mustard protein isolates from oriental mustard seed (Brassica juncea L.). J Am Oil Chem Soc 83(1):65–69

    Article  CAS  Google Scholar 

  • Martinez-Flores HE, Barrera ES, Garnica-Romo MG, Penagos CJC, Saavedra JP, Macazaga-Alvarez R (2006) Functional characteristics of protein flaxseed concentrate obtained applying a response surface methodology. J Food Sci 71(8):C495–C498

    Article  CAS  Google Scholar 

  • Maskus H, Bourré L, Fraser S, Sarkar A, Malcolmson L (2016) Effects of grinding method on the compositional, physical, and functional properties of whole and split yellow pea flours. Cereal Foods World 61:59–64

    Article  CAS  Google Scholar 

  • McCurdy SM, Knipfel JE (1990) Investigation of Faba Bean protein recovery and application to pilot scale processing. J Food Sci 55(4):1093–1101

    Article  CAS  Google Scholar 

  • Mohamed A, Hojilla-Evangelista MP, Peterson ST, Biresaw G (2007) Barley protein isolate: thermal, functional, rheological, and surface properties. J Am Oil Chem Soc 84:281–288

    Article  CAS  Google Scholar 

  • Mondor M, Ippersiel D, Lamarche F, Boye JI (2004) Production of soy protein concentrates using a combination of electroacidification and ultrafiltration. J Agric Food Chem 52:6991–6996

    Article  CAS  PubMed  Google Scholar 

  • Mondor M, Aksay S, Drolet H, Roufik S, Farnworth E, Boye JI (2009) Influence of processing on composition and antinutritional factors of chickpea protein concentrates produced by isoelectric precipitation and ultrafiltration. Innov Food Sci Emerg Technol 10(3):342–347

    Article  CAS  Google Scholar 

  • Mondor M, Ali F, Ippersiel D, Lamarche F (2010) Impact of ultrafiltration/diafiltration sequence on the production of soy protein isolate by membrane technologies. Innov Food Sci Emerg Technol 11:491–497

    Article  CAS  Google Scholar 

  • Mune Mune MA, Singh Sogi D (2015) Functional properties of protein concentrates of Cowpea and Bambara bean involving different drying techniques. J Food Process Preserv 39:2304–2313

    Article  CAS  Google Scholar 

  • Mune Mune MA, Bouba AA, Minka SR (2016) Effects of extraction conditions on the functional properties of bambara bean protein concentrates. Int J Food Eng 12(2):195–201

    Article  CAS  Google Scholar 

  • Navarro-Lisboa R, Herrera C, Zúniga RN, Enrione J, Guzmán F, Matiacevich S, Astudillo-Castro C (2017) Quinoa proteins (Chenopodium quinoa Willd.) fractionated by ultrafiltration using ceramic membranes: the role of pH on physicochemical and conformational properties. Food Bioprod Process 102:20–30

    Article  CAS  Google Scholar 

  • Ndlela SC, de Moura JMLN, Olson NK, Johnson LA (2012) Aqueous extraction of oil and protein from soybeans with subcritical water. J Am Oil Chem Soc 89:1145–1153

    Article  CAS  Google Scholar 

  • Noordman TR, Kooiker K, Bel W, Dekker M, Wesselingh JA (2003) Concentration of aqueous extracts of defatted soy flour by ultrafiltration: effect of suspended particles on the filtration flux. J Food Eng 58:135–141

    Article  Google Scholar 

  • Ochoa-Rivas A, Nava-Valdez Y, Serna-Saldívar SO, Chuck-Hernández C (2017) Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: effects in yield and functional properties of protein isolates. Food Bioprocess Technol 10:543–555

    Article  CAS  Google Scholar 

  • Opazo-Navarrete M, Tagle Freire D, Boom RM, Janssen AEM, Schutyser MAI (2018) Dry fractionation of quinoa sweet varieties Atlas and Riobamba for sustainable production of protein and starch fractions. J Food Compos Anal 78:95–101

    Article  Google Scholar 

  • Ordonez C, Asenjo MG, Benitez C, Gonzalez JL (2001) Obtaining a protein concentrate from integral defatted sunflower flour. Bioresour Technol 78:187–190

    Article  CAS  PubMed  Google Scholar 

  • Östbring K, Malmqvist E, Nilsson K, Rosenlind I, Rayner M (2020) The effects of oil extraction methods on recovery yield and emulsifying properties of proteins from rapeseed meal and press cake. Foods 9(19). https://doi.org/10.3390/foods9010019

  • Otegui I, Fernandez-Quintela A, De Diego A, Cid C, Macarulla MT, Partearroyo MA (1997) Properties of spray-dried and freeze-dried faba bean protein concentrates. Int J Food Sci Technol 32:439–443

    Article  CAS  Google Scholar 

  • Özbek AG, Bilek SE (2018) Plant based protein sources and extraction. Curr Investig Agric Curr Res 2(1):169–171

    Google Scholar 

  • Papalamprou EM, Doxastakis GI, Kiosseoglou V (2010) Chickpea protein isolates obtained by wet extraction as emulsifying agents. J Sci Food Agric 90:304–313

    Article  CAS  PubMed  Google Scholar 

  • Paraman I, Hettiarachchy NS, Schaefer C, Beck MI (2006) Physicochemical properties of rice endosperm proteins extracted by chemical and enzymatic methods. Cereal Chem 83(6):663–667

    Article  CAS  Google Scholar 

  • Paraman I, Hettiarachchy NS, Schaefer C (2008) Preparation of rice endosperm protein isolate by alkali extraction. Cereal Chem 85(1):76–81

    Article  CAS  Google Scholar 

  • Pazmino A, Vasquez G, Carrillo W (2018) Pigeon pea protein concentrate (Cajanus cajan) seeds grown in Ecuador functional properties. Asian J Pharm Clin Res 11(6):430–435

    Article  Google Scholar 

  • Pelgrom PJM, Vissers AM, Boom RM, Schutyser MAI (2013) Dry fractionation for production of functional pea protein concentrates. Food Res Int 53:232–239

    Article  CAS  Google Scholar 

  • Phongthai S, Lim S-T, Rawdkuen S (2016) Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J Cereal Sci 70:146–154

    Article  CAS  Google Scholar 

  • Phongthai S, Lim S-T, Rawdkuen S (2017) Ultrasonic-assisted extraction of rice bran protein using response surface methodology. J Food Biochem 41:e12314

    Article  Google Scholar 

  • Piñuel L, Vilcacundo E, Boeri P, Barrio DA, Morales D, Pinto A, Moran R, Samaniego I, Carrillo W (2019) Extraction of protein concentrate from red bean (Phaseolus vulgaris L.): antioxidant activity and inhibition of lipid peroxidation. J Appl Pharm Sci 9(9):45–58

    Article  Google Scholar 

  • Piotrowicz IBB, Salas-Mellado MM (2017) Protein concentrates from defatted rice bran: preparation and characterization. J Food Sci Technol Campinas 37(Suppl. 1):165–172

    Article  Google Scholar 

  • Pojić M, Mišan A, Tiwari B (2018) Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Technol 75:93–104

    Article  Google Scholar 

  • Pontieri P, Troisi J, Bean SR, Tilley M, Di Salvo M, Boffa A, Pignone D, Del Giudice F, Aletta M, Alifiano P, Del Giudice L (2019) Comparison of extraction methods for isolating kafirin protein from food grade sorghum flour. Aust J Crop Sci 13(08):1297–1304

    Article  CAS  Google Scholar 

  • Preece KE, Hooshyar N, Krijgsman AJ, Fryer PJ, Zuidam NJ (2017a) Intensification of protein extraction from soybean processing materials using hydrodynamic cavitation. Innovative Food Sci Emerg Technol 41:47–55

    Article  CAS  Google Scholar 

  • Preece KE, Hooshyar N, Krijgsman AJ, Fryer PJ, Zuidam NJ (2017b) Pilot-scale ultrasound-assisted extraction of protein from soybean processing materials shows it is not recommended for industrial usage. J Food Eng 206:1–12

    Article  CAS  Google Scholar 

  • Preece KE, Hooshyar N, Zuidam NJ (2017c) Whole soybean protein extraction processes: A review. Innovative Food Sci Emerg Technol 43:163–172

    Article  CAS  Google Scholar 

  • Rao A, Shallo HE, Ericson AP, Thomas RL (2002) Characterization of soy protein concentrate produced by membrane ultrafiltration. J Food Sci 67:1412–1418

    Article  CAS  Google Scholar 

  • Rempel C, Geng X, Zhang Y (2019) Industrial scale preparation of pea flour fractions with enhanced nutritive composition by dry fractionation. Food Chem 276:119–128

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues IM, Carvalho MGVS, Rocha JMS (2017) Increase of protein extraction yield from rapeseed meal through a pretreatment with phytase. J Sci Food Agric 97:2641–2646

    Article  CAS  PubMed  Google Scholar 

  • Rommi K, Hakala TK, Holopainen U, Nordlund E, Poutanen K, Lantto R (2014) Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed (Brassica rapa L. and Brassica napus L.) press cakes. J Agric Food Chem 62:7989–7997

    Article  CAS  PubMed  Google Scholar 

  • Rommi K, Ercili-Cura D, Hakala TK, Nordlund E, Poutanen K, Lantto R (2015a) Impact of total solid content and extraction pH on enzyme-aided recovery of protein from defatted rapeseed (Brassica rapa L.) press cake and physicochemical properties of the protein fractions. J Agric Food Chem 63:2997–3003

    Article  CAS  PubMed  Google Scholar 

  • Rommi K, Holopainen U, Pohjola S, Hakala TK, Lantto R, Poutanen K, Nordlund E (2015b) Impact of particle size reduction and carbohydrate-hydrolyzing enzyme treatment on protein recovery from rapeseed (Brassica rapa L.) press cake. Food Bioprocess Technol 8:2392–2399

    Article  CAS  Google Scholar 

  • Rosenthal A, Pyle DL, Niranjan K (1998) Simultaneous aqueous extraction of oil and protein from soybean: mechanisms for process design. Trans Inst Chem Eng 76(Part C):224–230

    CAS  Google Scholar 

  • Rosenthal A, Pyle DL, Niranjan K, Gilmour S, Trinca L (2001) Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzym Microb Technol 28:499–509

    Article  CAS  Google Scholar 

  • Rosset M, Acquaro Junior VR, del Pino Beléia A (2014) Protein extraction from defatted soybean flour with Viscozyme L pretreatment. J Food Process Preserv 38:784–790

    Article  CAS  Google Scholar 

  • Rui X, Boye JI, Ribereau S, Simpson BK, Prasher SO (2011) Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Res Int 44:2497–2504

    Article  CAS  Google Scholar 

  • Russin TA, Arcand Y, Boye JI (2007) Particle size effect on soy protein isolate extraction. J Food Process Preserv 31:308–319

    Article  CAS  Google Scholar 

  • Salgado PR, Molina Ortiz SE, Petruccelli S, Mauri AN (2011) Sunflower protein concentrates and isolates prepared from oil cakes have high water solubility and antioxidant capacity. J Am Oil Chem Soc 88:351–360

    Article  CAS  Google Scholar 

  • Sanchez-Vioque R, Clemente A, Vioque J, Bautista J, Millan F (1999) Protein isolates from chickpea (Cicer arietinum L.): chemical composition, functional properties and protein characterization. Food Chem 64:237–243

    Article  CAS  Google Scholar 

  • Sari YW, Bruins ME, Sanders JPM (2013) Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind Crop Prod 43:78–83

    Article  CAS  Google Scholar 

  • Sari YW, Mulder WJ, Sanders JPM, Bruins ME (2015) Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J 10:1138–1157

    Article  CAS  PubMed  Google Scholar 

  • Sarker AK, Saha D, Begum H, Zaman A, Rahman MM (2015) Comparison of cake compositions, pepsin digestibility and amino acids concentration of proteins isolated from black mustard and yellow mustard cakes. AMB Express 5:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkis JR, Boussetta N, Blouet C, Tessaro IC, Marczak LDF, Vorobiev E (2015) Effect of pulsed electric fields and high voltage electrical discharges on polyphenol and protein extraction from sesame cake. Innovative Food Sci Emerg Technol 29:170–177

    Article  CAS  Google Scholar 

  • Sarv V, Trass O, Diosady LL (2017) Preparation and characterization of camelina sativa protein isolates and mucilage. J Am Oil Chem Soc 94:1279–1285

    Article  CAS  Google Scholar 

  • Schutyser MAI, Pelgrom PJM, van der Goot AJ, Boom RM (2015) Dry fractionation for sustainable production of functional legume protein concentrates. Trends Food Sci Technol 45:327–335

    Article  CAS  Google Scholar 

  • Sereewatthanawut I, Prapintip S, Watchiraruji K, Goto M, Sasaki M, Shotipruk A (2008) Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour Technol 99:555–561

    Article  CAS  PubMed  Google Scholar 

  • Shchekoldina T, Aider M (2014) Production of low chlorogenic and caffeic acid containing sunflower meal protein isolate and its use in functional wheat bread making. J Food Sci Technol 51(10):2331–2343

    Article  CAS  PubMed  Google Scholar 

  • Silventoinen P, Rommi K, Holopainen-Mantila U, Poutanen K, Nordlund E (2019) Biochemical and techno-functional properties of protein and fibre-rich hybrid ingredients produced by dry fractionation from rice bran. Food Bioprocess Technol 12:1487–1499

    Article  Google Scholar 

  • Skorepova J, Moresoli C (2007) Carbohydrate and mineral removal during the production of low-phytate soy protein isolate by combined electroacidification and high shear tangential flow ultrafiltration. J Agric Food Chem 55:5645–5652

    Article  CAS  PubMed  Google Scholar 

  • Soetrisno USS, Holmes ZA (1992) Protein yields and characteristics from acid and salt coagulations of Yellow Pea (Pisum sativum L. Miranda) flour extractions. J Agric Food Chem 40:970–974

    Article  CAS  Google Scholar 

  • Steffolani ME, Villacorta P, Morales-Soriano ER, Repo-Carrasco R, Leon AE, Pérez GT (2016) Physicochemical and functional characterization of protein isolated from different quinoa varieties (Chenopodium quinoa Willd.). Cereal Chem 93(3):275–281

    Article  CAS  Google Scholar 

  • Stone AK, Avramenko NA, Warkentin TD, Nickerson MT (2015a) Functional properties of protein isolates from different pea cultivars. Food Sci Biotechnol 24:827–833

    Article  CAS  Google Scholar 

  • Stone AK, Karalash A, Tyler RT, Warkentin TD, Nickerson MT (2015b) Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res Int 76:31–38

    Article  CAS  Google Scholar 

  • Sun L-H, Lv S-W, He L-Y (2017) Comparison of different physical technique-assisted alkali methods for the extraction of rice bran protein and its characterizations. Int J Food Eng:20170070

    Google Scholar 

  • Sunphorka S, Chavasiri W, Oshima Y, Ngamprasertsith S (2012) Protein and sugar extraction from rice bran and de-oiled rice bran using subcritical water in a semi-continuous reactor: optimization by response surface methodology. Int J Food Eng 8(3):26

    Article  Google Scholar 

  • Tabtabaei S, Hijar B, Chen BK, Diosady LL (2017) Functional properties of protein isolates produced by aqueous extraction of de-hulled yellow Mustard. J Am Oil Chem Soc 94:149–160

    Article  CAS  Google Scholar 

  • Tabtabaei S, Konakbayeva D, Reza Rajabzadeh A, Legge RL (2019) Functional properties of navy bean (Phaseolus vulgaris) protein concentrates obtained by pneumatic tribo-electrostatic separation. Food Chem 283:101–110

    Article  CAS  PubMed  Google Scholar 

  • Taherian AR, Mondor M, Labranche J, Drolet H, Ippersiel D, Lamarche F (2011) Comparative study of functional properties of commercial and membrane processed yellow pea protein isolates. Food Res Int 44:2505–2514

    Article  CAS  Google Scholar 

  • Talati JG, Patel KV, Patel BK (2004) Biochemical composition, in vitro protein digestibility, antinutritional factors and functional. J Food Sci Technol 41(6):608–612

    CAS  Google Scholar 

  • Tan SH, Mailer RJ, Blanchard CL, Agboola SO (2011) Canola proteins for human consumption: extraction, profile, and functional properties. J Food Sci 76(1):R16–R28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan E-S, Ngoh Y-Y, Gan C-Y (2014) A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food Chem 152:447–455

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Hettiarachchy NS, Shellhammer TH (2002) Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments. J Agric Food Chem 50:7444–7448

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Hettiarachchy NS, Eswaranandam S, Crandall P (2003) Protein extraction from heat-stabilized defatted rice bran: II. The role of amylase, celluclast, and viscozyme. J Food Sci 68(2):471–475

    Article  CAS  Google Scholar 

  • Tang C-H, Ten Z, Wang X-S, Yang X-Q (2006) Physicochemical and functional properties of hemp (Cannabis sativa L.) protein isolate. J Agric Food Chem 54:8945–8950

    Article  CAS  PubMed  Google Scholar 

  • Teh S-S, El-Din Bekhit A, Carne A, Birch J (2014) Effect of the defatting process, acid and alkali extraction on the physicochemical and functional properties of hemp, flax and canola seed cake protein isolates. Food Measure 88:92–104

    Article  Google Scholar 

  • Tirgar M, Silcock P, Carne A, Birch EJ (2017) Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem 215:417–424

    Article  CAS  PubMed  Google Scholar 

  • Tirgarian B, Farmani J, Milani JM (2019) Enzyme-assisted aqueous extraction of oil and protein hydrolysate from sesame seed. J Food Meas Charact 13:2118–2129

    Article  Google Scholar 

  • Tiwari B, Singh N (2012) Pulse chemistry and technology. RSC Publishing, Cambridge, UK, pp 1–10

    Google Scholar 

  • Toews R, Wang N (2013) Physicochemical and functional properties of protein concentrates from pulses. Food Res Int 52:445–451

    Article  CAS  Google Scholar 

  • Tömösközi S, Lμsztity R, Haraszi R, Baticz O (2001) Isolation and study of the functional properties of pea proteins. Nahrung/Food 45(6):399–401

    Article  PubMed  Google Scholar 

  • Vishwanathan KH, Govindaraju K, Singh V, Subramanian R (2011) Production of okara and soy protein concentrates using membrane technology. J Food Sci 76:E158–E164

    Article  CAS  PubMed  Google Scholar 

  • Vogelsang-O’Dwyer M, Petersen IL, Skejovic Joehnke M, Sørensen JC, Bez J, Detzel A, Busch M, Krueger M, O’Mahony JA, Arendt EK, Zannini E (2020) Comparison of Faba Bean protein ingredients produced using dry fractionation and isoelectric precipitation: techno-functional, nutritional and environmental performance. Foods 9:322

    Article  PubMed Central  Google Scholar 

  • Von Der Haar D, Müller K, Bader-Mittermaier S, Eisner P (2014) Rapeseed proteins – Production methods and possible application ranges. OCL 21(1):D104

    Article  Google Scholar 

  • Wanasundara PKJPD, Shahidi F (1996) Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J Food Sci 61(3):604–607

    Article  CAS  Google Scholar 

  • Wanasundara JPD, Tan S, Alashi AM, Pudel F, Blanchard C (2017) Proteins from canola/rapeseed: current status. In: Nadathur SR, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Academic Press, pp 285–304

    Chapter  Google Scholar 

  • Wang X-S, Tang C-H, Yang X-Q, Gao W-R (2008a) Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem 107:11–18

    Article  CAS  Google Scholar 

  • Wang Y, Wang Z, Cheng S, Han F (2008b) Aqueous enzymatic extraction of oil and protein hydrolysates from peanut. Food Sci Technol Res 14(6):533–540

    Article  CAS  Google Scholar 

  • Wang C, Tian Z, Chen L, Temelli F, Liu H, Wang Y (2010) Functionality of barley proteins extracted and fractionated by alkaline and alcohol methods. Cereal Chem 87(6):597–606

    Article  Google Scholar 

  • Wang M, Jiang L, Li Y, Liu Q, Wang S, Sui X (2011) Optimization of extraction process of protein isolate from Mung Bean. Procedia Eng 15:5250–5258

    Article  CAS  Google Scholar 

  • Wiboonsirikul J, Kimura Y, Kadota M, Morita H, Tsuno T, Adachi S (2007) Properties of extracts from defatted rice bran by its subcritical water treatment. J Agric Food Chem 55:8759–8765

    Article  CAS  PubMed  Google Scholar 

  • Xia N, Wang J, Yang X, Yin S, Qi J, Hu L, Zhou X (2012) Preparation and characterization of protein from heat-stabilized rice bran using hydrothermal cooking combined with amylase pretreatment. J Food Eng 110:95–101

    Article  CAS  Google Scholar 

  • Xing Q, de Wit M, Kyriakopoulou K, Boom RM, Schutyser MAI (2018) Protein enrichment of defatted soybean flour by fine milling and electrostatic separation. Innov Food Sci Emerg Technol 50:42–49

    Article  CAS  Google Scholar 

  • Xu L, Diosady LL (1994) The production of Chinese rapeseed protein isolates by membrane processing. J Am Oil Chem Soc 71(9):935–939

    Article  CAS  Google Scholar 

  • Xu L, Diosady LL (2002) Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Res Int 35:23–30

    Article  CAS  Google Scholar 

  • Yagoub AA, Ma H, Zhou C (2017) Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus L.) meal: optimization of extraction conditions and structural characteristics of the protein. Int Food Res J 24(2):621–629

    CAS  Google Scholar 

  • Yin S-W, Tang C-H, Wen Q-B, Yang X-Q (2010) Functional and conformational properties of phaseolin (Phaseolus vulgaris L.) and kidney bean protein isolate: A comparative study. J Sci Food Agric 90:599–607

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Bals O, Grimi N, Vorobiev E (2015) A new way for the oil plant biomass valorization: polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Ind Crops Prod 74:309–318

    Article  CAS  Google Scholar 

  • Zeidanloo MH, Ghavidel RA, Davoodi MG, Arianfar A (2019) Functional properties of Grass pea protein concentrates prepared using various precipitation methods. J Food Sci Technol 56(11):4799–4808

    Article  Google Scholar 

  • Zhang SB, Yu Lu Q, Yang H, Li Y, Wang S (2011) Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. J Am Oil Chem Soc 88:727–732

    Article  CAS  Google Scholar 

  • Zhang Q, Li Y, Wang Z, Qi B, Sui X, Jiang L (2019a) Recovery of high value-added protein from enzyme-assisted aqueous extraction (EAE) of soybeans by dead-end ultrafiltration. J Food Sci Nutr 7:858–868

    CAS  Google Scholar 

  • Zhang Y, Wang B, Zhang W, Xu W, Hu Z (2019b) Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction. J Cereal Sci 87:318–324

    Article  CAS  Google Scholar 

  • Zhao G, Liu Y, Ren J, Zhao M, Yang B (2013a) Effect of protease pretreatment on the functional properties of protein concentrate from defatted peanut flour. J Food Process Eng 36:9–17

    Article  Google Scholar 

  • Zhao Q, Xiong H, Selomulya C, Chen XD, Huang S, Ruan X, Zhou Q, Sun W (2013b) Effects of spray drying and freeze drying on the properties of protein isolate from rice dreg protein. Food Bioproc Technol 6:1759–1769

    Article  CAS  Google Scholar 

  • Zhu K-X, Sun X-H, Zhou H-M (2009) Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. J Cereal Sci 50:266–271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Mondor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondor, M., Hernández-Álvarez, A.J. (2022). Processing Technologies to Produce Plant Protein Concentrates and Isolates. In: Manickavasagan, A., Lim, LT., Ali, A. (eds) Plant Protein Foods. Springer, Cham. https://doi.org/10.1007/978-3-030-91206-2_3

Download citation

Publish with us

Policies and ethics