Skip to main content

Protein Kinase C and the Chronification of Acute Pain

  • Chapter
  • First Online:
Pathogenesis of Neuropathic Pain

Abstract

This chapter examines the role of protein kinase in the neuroplastic changes that convert acute pain to chronic pain. For this reason, we do not only look at PKC alone, but also at its interaction with other important molecules in the process. We will attempt to understand chronification as mediated by protein kinase, discuss the proposed molecular mechanisms of chronification; and try to identify cause-specific prophylaxis against and treatments of this malady. The Protein kinase C (PKC) enzyme is known to play a critical role in several life functions. These functions include learning, memory, and the processing and maintenance of nociceptive messages in the CNS. The enzyme interacts with the G-protein coupled metabotropic receptor and phosphorylates serine and threonine residues on the intracellular C-termini of various receptor subunits. These termini are denoted numerically and vary from species-to-species but in general have been conserved throughout mammalian and non-mammalian evolution. The phosphorylation event impacts the trafficking of the receptor both into and out of the cell membrane at or near the region of the membrane known as the perisynaptic or postsynaptic density (PSD). This chapter will discuss the role of the phosphorylation event itself and the fate of the phosphorylation target element and the subsequent physiologic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daubresse M, et al. Ambulatory diagnosis and treatment of nonmalignant pain in the United States, 2000–2010. Med Care. 2013;51(10):870–8.

    Article  PubMed  Google Scholar 

  2. Verhaak PF, et al. Prevalence of chronic benign pain disorder among adults: a review of the literature. Pain. 1998;77(3):231–9.

    Article  PubMed  Google Scholar 

  3. Miyashita T, et al. Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem. 2008;89(3):269–84.

    Article  CAS  PubMed  Google Scholar 

  4. Lee JH, et al. Calmodulin dynamically regulates the trafficking of the metabotropic glutamate receptor mGluR5. Proc Natl Acad Sci U S A. 2008;105(34):12575–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yan JZ, et al. Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. J Biol Chem. 2011;286(28):25187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bogen O, et al. Generation of a pain memory in the primary afferent nociceptor triggered by PKCepsilon activation of CPEB. J Neurosci. 2012;32(6):2018–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang JP, et al. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance. Mol Gen Genomics. 2016;291(2):661–76.

    Article  CAS  Google Scholar 

  8. Ritter DM, et al. Modulation of Kv3.4 channel N-type inactivation by protein kinase C shapes the action potential in dorsal root ganglion neurons. J Physiol. 2012;590(1):145–61.

    Article  CAS  PubMed  Google Scholar 

  9. Esseltine JL, Ribeiro FM, Ferguson SS. Rab8 modulates metabotropic glutamate receptor subtype 1 intracellular trafficking and signaling in a protein kinase C-dependent manner. J Neurosci. 2012;32(47):16933–42a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu Y, et al. Calcium-dependent isoforms of protein kinase C mediate glycine-induced synaptic enhancement at the calyx of held. J Neurosci. 2012;32(40):13796–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Specht CG, et al. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J. 2011;30(18):3842–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Byrnes KR, et al. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia. 2009;57(5):550–60.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sen A, et al. Protein kinase C (PKC) promotes synaptogenesis through membrane accumulation of the postsynaptic density protein PSD-95. J Biol Chem. 2016;291(32):16462–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim HY, et al. Superoxide signaling in pain is independent of nitric oxide signaling. Neuroreport. 2009;20(16):1424–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naziroglu M, Dikici DM, Dursun S. Role of oxidative stress and Ca(2)(+) signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res. 2012;37(10):2065–75.

    Article  CAS  PubMed  Google Scholar 

  16. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Araldi D, Ferrari LF, Levine JD. Repeated mu-opioid exposure induces a novel form of the hyperalgesic priming model for transition to chronic pain. J Neurosci. 2015;35(36):12502–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrari LF, Bogen O, Levine JD. Second messengers mediating the expression of neuroplasticity in a model of chronic pain in the rat. J Pain. 2014;15(3):312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joseph EK, Reichling DB, Levine JD. Shared mechanisms for opioid tolerance and a transition to chronic pain. J Neurosci. 2010;30(13):4660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joseph EK, Levine JD. Multiple PKCepsilon-dependent mechanisms mediating mechanical hyperalgesia. Pain. 2010;150(1):17–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dutra RC, et al. The antinociceptive effects of the tetracyclic triterpene euphol in inflammatory and neuropathic pain models: the potential role of PKCepsilon. Neuroscience. 2015;303:126–37.

    Article  CAS  PubMed  Google Scholar 

  22. Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 2009;32(12):611–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Souza GR, et al. Involvement of nuclear factor kappa B in the maintenance of persistent inflammatory hypernociception. Pharmacol Biochem Behav. 2015;134:49–56.

    Article  CAS  PubMed  Google Scholar 

  24. Lau CG, et al. SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci. 2010;30(1):242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang WY, et al. Acidosis mediates the switching of Gs-PKA and Gi-PKCepsilon dependence in prolonged hyperalgesia induced by inflammation. PLoS One. 2015;10(5):e0125022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Khasar SG, et al. Stress induces a switch of intracellular signaling in sensory neurons in a model of generalized pain. J Neurosci. 2008;28(22):5721–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Solinski HJ, et al. Human sensory neuron-specific Mas-related G protein-coupled receptors-X1 sensitize and directly activate transient receptor potential cation channel V1 via distinct signaling pathways. J Biol Chem. 2012;287(49):40956–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koda K, et al. Sensitization of TRPV1 by protein kinase C in rats with mono-iodoacetate-induced joint pain. Osteoarthr Cartil. 2016;24(7):1254–62.

    Article  CAS  Google Scholar 

  29. Malek N, et al. The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Mol Cell Neurosci. 2015;65:1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Yan X, Weng HR. Endogenous interleukin-1beta in neuropathic rats enhances glutamate release from the primary afferents in the spinal dorsal horn through coupling with presynaptic N-methyl-D-aspartic acid receptors. J Biol Chem. 2013;288(42):30544–57.

    Article  CAS  PubMed  Google Scholar 

  31. Yan X, et al. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain. J Physiol. 2013;591(7):2001–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ko MH, et al. Intact subepidermal nerve fibers mediate mechanical hypersensitivity via the activation of protein kinase C gamma in spared nerve injury. Mol Pain. 2016;12:1744806916656189.

    PubMed  PubMed Central  Google Scholar 

  33. Compton P, et al. Hyperalgesia in heroin dependent patients and the effects of opioid substitution therapy. J Pain. 2012;13(4):401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nadeau MJ, Levesque S, Dion N. Ultrasound-guided regional anesthesia for upper limb surgery. Can J Anaesth. 2013;60(3):304–20.

    Article  PubMed  Google Scholar 

  35. Neal JM, et al. Upper extremity regional anesthesia: essentials of our current understanding, 2008. Reg Anesth Pain Med. 2009;34(2):134–70.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rivat C, Bollag L, Richebe P. Mechanisms of regional anaesthesia protection against hyperalgesia and pain chronicization. Curr Opin Anaesthesiol. 2013;26(5):621–5.

    Article  CAS  PubMed  Google Scholar 

  37. Meleine M, et al. Sciatic nerve block fails in preventing the development of late stress-induced hyperalgesia when high-dose fentanyl is administered perioperatively in rats. Reg Anesth Pain Med. 2012;37(4):448–54.

    Article  CAS  PubMed  Google Scholar 

  38. Krubitzer L, et al. Interhemispheric connections of somatosensory cortex in the flying fox. J Comp Neurol. 1998;402(4):538–59.

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Munoz M, et al. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2012;37(2):338–49.

    Article  CAS  PubMed  Google Scholar 

  40. Zalewski PD, et al. Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton. FEBS Lett. 1990;273(1–2):131–4.

    Article  CAS  PubMed  Google Scholar 

  41. Garzon J, et al. RGSZ2 binds to the neural nitric oxide synthase PDZ domain to regulate mu-opioid receptor-mediated potentiation of the N-methyl-D-aspartate receptor-calmodulin-dependent protein kinase II pathway. Antioxid Redox Signal. 2011;15(4):873–87.

    Article  CAS  PubMed  Google Scholar 

  42. He Y, et al. PKCdelta-targeted intervention relieves chronic pain in a murine sickle cell disease model. J Clin Invest. 2016;126(8):3053–7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hernandez AI, et al. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem. 2003;278(41):40305–16.

    Article  CAS  PubMed  Google Scholar 

  44. Ling DS, et al. Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci. 2002;5(4):295–6.

    Article  CAS  PubMed  Google Scholar 

  45. Marchand F, et al. Specific involvement of atypical PKCzeta/PKMzeta in spinal persistent nociceptive processing following peripheral inflammation in rat. Mol Pain. 2011;7:86.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li W, Wang P, Li H. Upregulation of glutamatergic transmission in anterior cingulate cortex in the diabetic rats with neuropathic pain. Neurosci Lett. 2014;568:29–34.

    Article  CAS  PubMed  Google Scholar 

  47. An K, et al. Spinal protein kinase Mzeta contributes to the maintenance of peripheral inflammation-primed persistent nociceptive sensitization after plantar incision. Eur J Pain. 2015;19(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  48. Price TJ, Ghosh S. ZIPping to pain relief: the role (or not) of PKMzeta in chronic pain. Mol Pain. 2013;9:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Francis JT, Song W. Neuroplasticity of the sensorimotor cortex during learning. Neural Plast. 2011;2011:310737.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dou Y, et al. Orai1 plays a crucial role in central sensitization by modulating neuronal excitability. J Neurosci. 2018;38(4):887–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. King T, et al. Contribution of PKMzeta-dependent and independent amplification to components of experimental neuropathic pain. Pain. 2012;153(6):1263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Melemedjian OK, et al. BDNF regulates atypical PKC at spinal synapses to initiate and maintain a centralized chronic pain state. Mol Pain. 2013;9:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kays J, et al. Peripheral synthesis of an atypical protein kinase C mediates the enhancement of excitability and the development of mechanical hyperalgesia produced by nerve growth factor. Neuroscience. 2018;371:420–32.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang YH, et al. Nerve growth factor enhances the excitability of rat sensory neurons through activation of the atypical protein kinase C isoform. PKMzeta J Neurophysiol. 2012;107(1):315–35.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Q, et al. Involvement of spinal PKMzeta expression and phosphorylation in remifentanil-induced long-term hyperalgesia in rats. Cell Mol Neurobiol. 2017;37(4):643–53.

    Article  CAS  PubMed  Google Scholar 

  56. Lee M, et al. A comprehensive review of opioid-induced hyperalgesia. Pain Physician. 2011;14(2):145–61.

    Article  PubMed  Google Scholar 

  57. Li XY, et al. Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science. 2010;330(6009):1400–4.

    Article  CAS  PubMed  Google Scholar 

  58. Derrode N, et al. Influence of peroperative opioid on postoperative pain after major abdominal surgery: sufentanil TCI versus remifentanil TCI. A randomized, controlled study. Br J Anaesth. 2003;91(6):842–9.

    Article  CAS  PubMed  Google Scholar 

  59. Celerier E, et al. Long-lasting hyperalgesia induced by fentanyl in rats: preventive effect of ketamine. Anesthesiology. 2000;92(2):465–72.

    Article  CAS  PubMed  Google Scholar 

  60. Hong BH, et al. Effects of intraoperative low dose ketamine on remifentanil-induced hyperalgesia in gynecologic surgery with sevoflurane anesthesia. Korean J Anesthesiol. 2011;61(3):238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Trafton JA, et al. Postsynaptic signaling via the [mu]-opioid receptor: responses of dorsal horn neurons to exogenous opioids and noxious stimulation. J Neurosci. 2000;20(23):8578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Borgland SL. Acute opioid receptor desensitization and tolerance: is there a link? Clin Exp Pharmacol Physiol. 2001;28(3):147–54.

    Article  CAS  PubMed  Google Scholar 

  63. Gardell LR, et al. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci. 2002;22(15):6747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vanderah TW, et al. Dynorphin promotes abnormal pain and spinal opioid antinociceptive tolerance. J Neurosci. 2000;20(18):7074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim SH, et al. Remifentanil-acute opioid tolerance and opioid-induced hyperalgesia: a systematic review. Am J Ther. 2015;22(3):e62–74.

    Article  PubMed  Google Scholar 

  66. Jalil SJ, Sacktor TC, Shouval HZ. Atypical PKCs in memory maintenance: the roles of feedback and redundancy. Learn Mem. 2015;22(7):344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xin Y, et al. Up-regulation of PKMzeta expression in the anterior cingulate cortex following experimental tooth movement in rats. Arch Oral Biol. 2014;59(7):749–55.

    Article  CAS  PubMed  Google Scholar 

  68. Laferriere A, et al. PKMzeta is essential for spinal plasticity underlying the maintenance of persistent pain. Mol Pain. 2011;7:99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Asiedu MN, et al. Spinal protein kinase M zeta underlies the maintenance mechanism of persistent nociceptive sensitization. J Neurosci. 2011;31(18):6646–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kukkar A, et al. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res. 2013;36(3):237–51.

    Article  CAS  PubMed  Google Scholar 

  71. Ryu JH, et al. Effects of pregabalin on the activity of glutamate transporter type 3. Br J Anaesth. 2012;109(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  72. Vellani V, Giacomoni C. Gabapentin inhibits protein kinase C epsilon translocation in cultured sensory neurons with additive effects when Coapplied with paracetamol (acetaminophen). ScientificWorldJournal. 2017;2017:3595903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Gil YS, et al. Gabapentin inhibits the activity of the rat excitatory glutamate transporter 3 expressed in Xenopus oocytes. Eur J Pharmacol. 2015;762:112–7.

    Article  CAS  PubMed  Google Scholar 

  74. Werdehausen R, et al. Lidocaine metabolites inhibit glycine transporter 1: a novel mechanism for the analgesic action of systemic lidocaine? Anesthesiology. 2012;116(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang YB, et al. Gabapentin effects on PKC-ERK1/2 signaling in the spinal cord of rats with formalin-induced visceral inflammatory pain. PLoS One. 2015;10(10):e0141142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Yan X, Jiang E, Weng HR. Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta. J Neuroinflammation. 2015;12:222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bright DP, Smart TG. Protein kinase C regulates tonic GABA(A) receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci. 2013;38(10):3408–23.

    Article  PubMed  Google Scholar 

  78. Stemkowski PL, Zamponi GW. The tao of IGF-1: insulin-like growth factor receptor activation increases pain by enhancing T-type calcium channel activity. Sci Signal. 2014;7(346):pe23.

    Article  PubMed  CAS  Google Scholar 

  79. Kawasaki Y, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14(3):331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu WT, et al. Spinal matrix metalloproteinase-9 contributes to physical dependence on morphine in mice. J Neurosci. 2010;30(22):7613–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pan C, et al. Procyanidins attenuate neuropathic pain by suppressing matrix metalloproteinase-9/2. J Neuroinflammation. 2018;15(1):187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Li J, et al. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases. Pain. 2016;157(8):1711–23.

    Article  CAS  PubMed  Google Scholar 

  83. Hagenacker T, et al. Sensitization of voltage activated calcium channel currents for capsaicin in nociceptive neurons by tumor-necrosis-factor-alpha. Brain Res Bull. 2010;81(1):157–63.

    Article  CAS  PubMed  Google Scholar 

  84. Meotti FC, et al. Involvement of p38MAPK on the antinociceptive action of myricitrin in mice. Biochem Pharmacol. 2007;74(6):924–31.

    Article  CAS  PubMed  Google Scholar 

  85. Gao W, et al. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCepsilon-dependent activation of TRPV1. Acta Pharmacol Sin. 2016;37(9):1166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang R, et al. Toward chelerythrine optimization: analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells. Bioorg Med Chem. 2016;24(19):4600–10.

    Article  CAS  PubMed  Google Scholar 

  87. Herbert JM, et al. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990;172(3):993–9.

    Article  CAS  PubMed  Google Scholar 

  88. Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev. 2008;88(4):1341–78.

    Article  CAS  PubMed  Google Scholar 

  89. Wei L, et al. The alpha1 adrenoceptors in ventrolateral orbital cortex contribute to the expression of morphine-induced behavioral sensitization in rats. Neurosci Lett. 2016;610:30–5.

    Article  CAS  PubMed  Google Scholar 

  90. Thakur V, et al. Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals. Mol Cell Neurosci. 2016;72:46–53.

    Article  CAS  PubMed  Google Scholar 

  91. Hughes DI, et al. Morphological, neurochemical and electrophysiological features of parvalbumin-expressing cells: a likely source of axo-axonic inputs in the mouse spinal dorsal horn. J Physiol. 2012;590(16):3927–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Celio MR, Heizmann CW. Calcium-binding protein parvalbumin as a neuronal marker. Nature. 1981;293(5830):300–2.

    Article  CAS  PubMed  Google Scholar 

  93. Petitjean H, et al. Dorsal horn parvalbumin neurons are gate-keepers of touch-evoked pain after nerve injury. Cell Rep. 2015;13(6):1246–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang L, et al. Phorbol ester modulation of Ca2+ channels mediates nociceptive transmission in dorsal horn neurones. Pharmaceuticals (Basel). 2013;6(6):777–87.

    Article  CAS  Google Scholar 

  95. Kim EC, et al. Phorbol 12-myristate 13-acetate enhances long-term potentiation in the hippocampus through activation of protein kinase Cdelta and epsilon. Korean J Physiol Pharmacol. 2013;17(1):51–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meng F, et al. Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO-01. Bioresour Technol. 2010;101(12):4564–9.

    Article  CAS  PubMed  Google Scholar 

  97. Pham-Dang N, et al. Activation of medullary dorsal horn gamma isoform of protein kinase C interneurons is essential to the development of both static and dynamic facial mechanical allodynia. Eur J Neurosci. 2016;43(6):802–10.

    Article  PubMed  Google Scholar 

  98. Kohno T, et al. Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J Neurosci. 2008;28(17):4533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gu Y, et al. Genome-wide identification and abiotic stress responses of DGK gene family in maize. J Plant Biochem Biotechnol. 2018;27(2):156–66.

    CAS  Google Scholar 

  100. Carther KFI, et al. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase (DGK) gene family in soybean (Glycine max) under abiotic stresses. Int J Mol Sci. 2019;20(6):1361.

    Article  CAS  PubMed Central  Google Scholar 

  101. Seo J, et al. Regulation of hippocampal long-term potentiation and long-term depression by diacylglycerol kinase zeta. Hippocampus. 2012;22(5):1018–26.

    Article  CAS  PubMed  Google Scholar 

  102. Ma C, et al. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science. 2013;339(6118):421–5.

    Article  CAS  PubMed  Google Scholar 

  103. Gharbi SI, et al. Diacylglycerol kinase zeta controls diacylglycerol metabolism at the immunological synapse. Mol Biol Cell. 2011;22(22):4406–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pan HC, Chou YC, Sun SH. P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia. 2015;63(5):877–93.

    Article  PubMed  Google Scholar 

  105. Loram LC, et al. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling. Brain Behav Immun. 2013;33:112–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mo G, et al. Neuropathic Nav1.3-mediated sensitization to P2X activation is regulated by protein kinase C. Mol Pain. 2011;7:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl I. Smith .

Editor information

Editors and Affiliations

Appendix

Appendix

Element

Comments/Characteristics

PKCγ

Visceral pain

IL-1β

IL-1beta reduces glial glutamate transporter activities through enhancing the endocytosis of both GLT-1 and GLAST glial glutamate transporters.

TRPV1

Sensitization

PKMζ

Critical role in generating/maintaining sensitivity produced by NGF

Critical for maintenance of hippocampal LTP

Only molecule implicated in perpetuating L-LTP maintenance.

Autonomously active, aPKC isoform; necessary/sufficient to maintain LTP and long-term memory

PKCε

Inhibition of PKCε reduced persistent inflammatory hypernociception,

Hyperalgesia and priming are PKCε and G(i) dependent; transition from acute to chronic pain, and development of mu-opioid receptor tolerance and dependence linked by common cellular mechanisms in the primary afferent

IGF and PKC

IGF-1 receptor activation after nerve injury enhances T-type channel current and DRG excitability; recruits a Gβγ-dependent PKCα pathway

Phorbol

Activates C1 domain proteins on PKC → Phosphorylation of Voltage Dependent Ca++Channels (VDCC)

NMDA-R

Possesses ion channel characteristic; activity is modulated by phosphorylation of NR1

DGKs

Converts DAG to Phosphatidic acid (deactivates); requires PSD-95 proteins for synaptic localization; regulates DAG signaling/ neurotransmitter release in LTD.

Bradykinin

Activates multiple kinases in dorsal horn → Potentiates Glutamatergic mediated hypersensitivity

BDNF

Binds specific TrkB receptors

Mediates PKMζ (and PKCλ)

Regulates PKMzeta, and aPKCs

Maintains centralized chronic pain state.

Critical role in initiating and maintaining persistent sensitization

Occurs via a ZIP-reversible process.

Controls synaptic PKMζ and PKCλ synthesis via mTORC1 and BDNF enhances PKMzeta phosphorylation

Sustains L-LTP through PKMzeta in a protein synthesis-independent manner

Promotes neuronal growth, development, synaptogenesis, differentiation, survival and neurogenesis following nerve injury

EAAT3

(Excitatory amino acid transporters)- Activity leads to re-uptake of AA neurotransmitters and” turn off” noxious impulse.

GABA-R

Activity inhibits nociception but increased PKC decreases GABA activity

Summary chart of potential PKC-mediating therapeutic elements

Inhibitors

Comments

Procyanidins

Suppress matrix metalloproteinase and reduce phosphorylation of PKCγ

Chelerythrine

Prevented protein kinase C activation in the hind paw after intraplantar injection of phorbol-myristate acetate

Attenuates remifentanil induced thermal and mechanical hyperalgesia

Quercetin (polyphenolic flavonoid)

Inhibits translocation of PKCepsilon from the cytoplasm to the membrane in the spinal cord and DRG of paclitaxel-treated rats.

Inhibits excessive histamine release from paclitaxel-stimulated RBL-2H3 cells in vitro, suppressed the high plasma histamine levels in paclitaxel-treated rats.

Raises thresholds for heat hyperalgesia and mechanical allodynia in paclitaxel-treated rats and mice.

Suppresses increased expression of PKCε and TRPV1 in SC and DRG (paclitaxel-murine)

Melatonin

Inhibit PKCγ and NR1 activities in the spinal cord.

IL-10

Decreases the expression of IL-1β and inhibits PKC phosphorylation.

Myricetin(flavonoid)

Inhibited phosphorylation of p38 in the spinal cord induced by intrathecal cytokine administration

AP5 (2-amino-5-phosphopentanoic-acid)

AP5 reduces the amplitude of monosynaptic EPSCs evoked by dorsal root stimulation. Blocks GluN2A-containing NMDARs (murine)

DGKζ

Terminates DAG signaling by converting DAG to Phosphatidic acid

ZIP

Microinjection into ACC attenuates upregulation of glutamate transmission and painful behaviors in STZ-injected rats.

BDNF inhibitor

Inhibition of PKMzeta reversed BDNF-dependent form of L-LTP

Pregabalin/gabapentin

Gabapentin decreased EAAT3 activity in a concentration-dependent manner. Inhibitory effect on the PKC-ERK1/2 signaling pathway

Bisindolylmaleimide

PKC inhibitor. Attenuates status epilepticus-induced reactive astrogliosis.

GF109203X

General protein kinase C (PKC) inhibitor. Possibly used to prevent the conversion from acute to chronic pain

Stuarosporine

General protein kinase C (PKC) inhibitor. Possibly used to prevent the conversion from acute to chronic pain

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyers, B., Fleming, D.S., Smith, D.I. (2022). Protein Kinase C and the Chronification of Acute Pain. In: Smith, D.I., Tran, H. (eds) Pathogenesis of Neuropathic Pain. Springer, Cham. https://doi.org/10.1007/978-3-030-91455-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91455-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91454-7

  • Online ISBN: 978-3-030-91455-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics