Skip to main content

Application of Wire Arc Additive Manufacturing for Inconel 718 Superalloy

  • Chapter
  • First Online:
Materials, Structures and Manufacturing for Aircraft

Part of the book series: Sustainable Aviation ((SA))

  • 1573 Accesses

Abstract

The wire arc additive manufacturing (WAAM) is one of the advanced manufacturing processes to fabricate full-density 3D Inconel 718 (IN718) metal parts in an open freeform environment. Thus, there is no size restriction of the fabricated parts using this process which is suitable for industry-led medium to large production supply chain. So far, the use of WAAM process in the fabrication of IN718 parts is solely focused on the structure–property relationship under heat-treated conditions. Therefore, the present study is attempted to investigate the effects of welding parameters, heat-treatment, and high-oxidation temperature on the processing–microstructure–property relationship of IN718 alloys manufactured via gas tungsten arc welding (GTAW)-based WAAM process. A wrought IN718 alloy was also studied for comparison.

It was observed that increasing the arc current increased the width and reduced the height of the walls as a result of higher surface tension and arc pressure acting upon a constant volume of material under constant wire feed speed and travel speed. A complete opposite trend was seen with increasing wire feed speed under constant arc current and travel speed. Increasing the travel speed adversely affected both the width and height of the walls due to the deposition of lower volume of material. Irrespective of welding conditions, a highly textured and homogeneous microstructure of γ-matrix was developed parallel to the build-up direction. Due to the elemental segregation of heavy elements, the matrix microstructure was mostly composed of Nb-depleted dendritic core region (DCR) along with Nb-enriched interdendritic region (IDR). The mechanical properties in terms of microhardness and tensile strength were found to be similar and independent of the effect of processing parameters. A modified homogenization (1100 °C for 1 h/air cooling)-annealed (720 °C for 8 h/furnace cooling at ~71.2 °C/h to 620 °C for 8 h/air cooling) condition was performed on WAAM IN718 alloys to dissolve laves phase and precipitate out strengthening phase of γ″. The heat-treated WAAM parts showed weakly anisotropic tensile properties at room temperature and exceeded the minimum requirements for cast IN718, but not that of wrought IN718 due to its large columnar grain structure. The high-temperature oxidation study at 1000 °C revealed that the kinetics of oxidation followed the parabolic rate law and were independent on the thermal history, microstructural, and compositional heterogeneities of WAAM parts. Both AF and HA alloys formed oxide scales that were identical in nature. The external oxidation of the protective Cr2O3 scale was formed at the air/alloy interface, which was covered by an outermost thin layer of rutile-TiO2 and spinel-MnCr2O4 at air/scale interface. The internal oxidation of Nb-rich rutile-Ti0.67Nb1.33O4 scale at the scale/alloy interface and subscale of Al2O3 within the alloy was observed. Based on the thermodynamic data and kinetics abilities of metal cations, a mechanism of oxide layer formation was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Ampere (C/s)

AF:

As-fabricated

AM:

Additive manufacturing

AMS:

Aerospace material specifications

ARP:

As-received plate

bct:

Body-centered tetragonal

BD:

Build direction

CMT:

Cold metal transfer

DCEN:

Direct current electrode negative

EBM:

Electron beam melting

EDM:

Electrical discharge machining

EDS:

Energy-dispersive X-ray spectroscopy

fcc:

Face-centered cubic

GTAW:

Gas tungsten arc welding

HA:

Homogenization-annealed

HAP:

Homogenization-annealed plate

HSA:

Homogenization-solution-annealed

IN718:

Inconel 718

LBM:

Laser beam melting

MIG:

Metal inert gas

MZ:

Middle zone

NSZ:

Near-substrate zone

PAW:

Plasma arc welding

PDAS:

Primary dendritic arm spacing

SAE:

Society of automotive engineers

SDAS:

Secondary dendritic arm spacing

SEM:

Scanning electron microscope

TD:

Transverse direction

TIG:

Tungsten inert gas

TZ:

Top zone

UTS:

Ultimate tensile strength (MPa)

WAAM:

Wire-arc additive manufacturing

WD:

Welding direction

XRD:

X-ray diffraction

YS:

Yield strength (MPa

γ:

Gamma (Austenite)

γ′:

Gamma prime

γ″:

Gamma double prime

δ:

Delta

References

  1. Akca, E., & Gürsel, A. (2015). A review on superalloys and IN718 nickel-based INCONEL superalloy. Periodicals of Engineering and Natural Sciences, 3(1), 15–27.

    Google Scholar 

  2. Scharfrik, R., & Sprague, R. (2004). The saga of gas turbine materials, Part III. Advanced Materials and Processes, 162, 33–35.

    Google Scholar 

  3. Pollock, T. M., & Tin, S. (2006). Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. Journal of Propulsion and Power, 22(2), 361–374.

    Article  Google Scholar 

  4. Patel, S., deBarbadillo, J., & Coryell, S. (2018). Superalloy 718: Evolution of the alloy from high to low temperature application. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications.

    Google Scholar 

  5. Special Metals - Inconel® alloy 718. Retrieved from https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf.

  6. Kwon, S. I., Bae, S. H., Do, J. H., Jo, C. Y., & Hong, H. U. (2016). Characterization of the microstructures and the cryogenic mechanical properties of electron beam welded inconel 718. Metallurgical and Materials Transactions A, 47(2), 777–787.

    Article  Google Scholar 

  7. Chen, K., Dong, J., & Yao, Z. (2021). Creep failure and damage mechanism of inconel 718 alloy at 800–900° C. Metals and Materials International, 27, 970–984.

    Article  Google Scholar 

  8. Kuo, C.-M., Yang, Y.-T., Bor, H.-Y., Wei, C.-N., & Tai, C.-C. (2009). Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Materials Science and Engineering: A, 510, 289–294.

    Article  Google Scholar 

  9. Shi, J.J, Li, X., Zhang, Z.X., Cao, G.H., Russell, A.M., Zhou Z.J., Li, C.P. & Chen, G.F. (2019). Study on the microstructure and creep behavior of Inconel 718 superalloy fabricated by selective laser melting. Materials Science and Engineering: A, 765, 138282.

    Google Scholar 

  10. Ono, Y., Yuri, T., Nagashima, N., Ogata, T., & Nagao, N. (2015). Effect of microstructure on high-cycle fatigue properties of Alloy718 plates. In IOP conference series: Materials science and engineering.

    Google Scholar 

  11. Ono, Y., Yuri, T., Sumiyoshi, H., Takeuchi, E., Matsuoka, S., & Ogata, T. (2004). High-cycle fatigue properties at cryogenic temperatures in Inconel 718 nickel-based superalloy. Materials Transactions, 45(2), 342–345.

    Article  Google Scholar 

  12. Seow, C. E., Coules, H. E., Wu, G., Khan, R. H., Xu, X., & Williams, S. (2019). Wire+ Arc Additively Manufactured Inconel 718: Effect of post-deposition heat treatments on microstructure and tensile properties. Materials & Design, 183, 108157.

    Article  Google Scholar 

  13. Paulonis, D. F., Oblak, J. M., & Duvall, D. S. (1969). Precipitation in nickel-base alloy 718. American Society of Metals, 62, 611–622.

    Google Scholar 

  14. Hong, S. J., Chen, W. P., & Wang, T. W. (2001). A diffraction study of the γ″ phase in INCONEL 718 superalloy. Metallurgical and Materials Transactions A, 32(8), 1887–1901.

    Article  Google Scholar 

  15. Cozar, R., & Pineau, A. (1973). Morphology of y′ and y″ precipitates and thermal stability of inconel 718 type alloys. Metallurgical Transactions, 4(1), 47–59.

    Article  Google Scholar 

  16. Oblak, J. M., Paulonis, D. F., & Duvall, D. S. (1974). Coherency strengthening in Ni base alloys hardened by DO22 γ′ precipitates. Metallurgical Transactions, 5(1), 143–153.

    Article  Google Scholar 

  17. Chaturvedi, M. C., & Han, Y.-F. (1983). Strengthening mechanisms in Inconel 718 superalloy. Metal science, 17(3), 145–149.

    Article  Google Scholar 

  18. Han, Y.-F., Deb, P., & Chaturvedi, M. C. (1982). Coarsening behaviour of γ″-and γ′-particles in Inconel alloy 718. Metal Science, 16(12), 555–562.

    Article  Google Scholar 

  19. Drexler, A., Oberwinkler, B., Primig, S., Turk, C., Povoden-Karadeniz, E., Heinemann, A., Ecker, W., & Stockinger, M. (2018). Experimental and numerical investigations of the γ ″and γ′ precipitation kinetics in Alloy 718. Materials Science and Engineering: A, 723, 314–323.

    Article  Google Scholar 

  20. Munjal, V., & Ardell, A. J. (1975). Precipitation hardening of Ni-12.19 at.% Al alloy single crystals. Acta Metallurgica, 23(4), 513–520.

    Article  Google Scholar 

  21. Greene, G. A., & Finfrock, C. C. (2001). Oxidation of Inconel 718 in air at high temperatures. Oxidation of Metals, 55(5–6), 505–521.

    Article  Google Scholar 

  22. Sadeghimeresht, E., Karimi, P., Zhang, P., Peng, R., Andersson, J., Pejryd, L., & Joshi, S. (2018). Isothermal oxidation behavior of EBM-additive manufactured alloy 718. In Proceedings of the 9th international symposium on superalloy 718 & derivatives: Energy, aerospace, and industrial applications.

    Google Scholar 

  23. Jia, Q., & Gu, D. (2014). Selective laser melting additive manufactured Inconel 718 superalloy parts: High-temperature oxidation property and its mechanisms. Optics & Laser Technology, 62, 161–171.

    Article  Google Scholar 

  24. Al-Hatab, K. A., Al-Bukhaiti, M. A., Krupp, U., & Kantehm, M. (2011). Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures. Oxidation of Metals, 75(3–4), 209–228.

    Article  Google Scholar 

  25. Klapper, H. S., Zadorozne, N. S., & Rebak, R. B. (2017). Localized corrosion characteristics of nickel alloys: A review. Acta Metallurgica Sinica (English Letters), 30(4), 296–305.

    Article  Google Scholar 

  26. Luo, S., Huang, W., Yang, H., Yang, J., Wang, Z., & Zeng, X. (2019). Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments. Additive Manufacturing, 30, 100875.

    Article  Google Scholar 

  27. Debarbadillo, J. J., & Mannan, S. K. (2012). Alloy 718 for oilfield applications. JOM, 64(2), 265–270.

    Article  Google Scholar 

  28. Hamdani, F. (2015). Improvement of the corrosion and oxidation resistance of Ni-based alloys by optimizing the chromium content. Ph.D. Thesis, INSA de Lyon (France) and Tohoku University (Japan).

    Google Scholar 

  29. Muralidharan, B. G., Shankar, V., & Gill, T. P. S. (1996). Weldability of Inconel 718—A review. Indira Gandhi Centre for Atomic Research.

    Google Scholar 

  30. Clark, D., Bache, M. R., & Whittakerm, M. T. (2008). Shaped metal deposition of a nickel alloy for aero engine applications. Journal of Materials Processing Technology, 203(1–3), 439–448.

    Article  Google Scholar 

  31. Baufeld, B. (2012). Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD). Journal of Materials Engineering and Performance, 21(7), 1416–1421.

    Article  Google Scholar 

  32. Jia, Z., Wan, X., & Guo, D. (2020). Study on microstructure and mechanical properties of Inconel718 components fabricated by UHFP-GTAW technology. Materials Letters, 261, 127006.

    Article  Google Scholar 

  33. Xu, X., Ding, J., Ganguly, S., & Williams, S. (2019). Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire+ arc additive manufacture process. Journal of Materials Processing Technology, 265, 201–209.

    Article  Google Scholar 

  34. Xu, X., Ganguly, S., Ding, J., Seow, C. E., & Williams, S. (2018). Enhancing mechanical properties of wire+ arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing. Materials & Design, 160, 1042–1051.

    Article  Google Scholar 

  35. Wang, K., Liu, Y., Sun, Z., Lin, J., Lv, Y., & Xu, B. (2020). Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. Journal of Alloys and Compounds, 819, 152936.

    Article  Google Scholar 

  36. Zhang, L. N., & Ojo, O. A. (2020). Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy. Journal of Alloys and Compounds, 829, 154455.

    Article  Google Scholar 

  37. Bhujangrao, T., Veiga, F., Suárez, A., Iriondo, E., & Mata, F. G. (2020). High-temperature mechanical properties of IN718 alloy: Comparison of additive manufactured and wrought samples. Crystals, 10(8), 689.

    Article  Google Scholar 

  38. Kindermann, R. M., Roy, M. J., Morana, R., & Prangnell, P. B. (2020). Process response of Inconel 718 to wire+ arc additive manufacturing with cold metal transfer. Materials & Design, 195, 109031.

    Article  Google Scholar 

  39. Tsurumaki, T., Tsukamoto, S., Chibahara, H., & Sasahara, H. (2019). Precise additive fabrication of wall structure on thin plate end with interlayer temperature monitoring. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 13(2), JAMDSM0028.

    Article  Google Scholar 

  40. Clark, D., Bache, M. R., & Whittaker, M. T. (2010). Microstructural characterization of a polycrystalline nickel-based superalloy processed via tungsten-intert-gas-shaped metal deposition. Metallurgical and Materials Transactions B, 41(6), 1346–1353.

    Article  Google Scholar 

  41. Mohsan, A. U. H., Liu, Z., & Padhy, G. K. (2017). A review on the progress towards improvement in surface integrity of Inconel 718 under high pressure and flood cooling conditions. The International Journal of Advanced Manufacturing Technology, 91(1–4), 107–125.

    Article  Google Scholar 

  42. Williams, S. W., Martina, F., Addison, A. C., Ding, J., Pardal, G., & Colegrove, P. (2016). Wire+ arc additive manufacturing. Materials Science and Technology, 32(7), 641–647.

    Article  Google Scholar 

  43. Cunningham, C. R., Flynn, J. M., Shokrani, A., Dhokia, V., & Newman, S. T. (2018). Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing, 22, 672–686.

    Article  Google Scholar 

  44. Pan, Z., Ding, D., Wu, B., Cuiuri, D., Li, H., & Norrish, J. (2018). Arc welding processes for additive manufacturing: A review. In Transactions on intelligent welding manufacturing (pp. 3–24). Springer.

    Chapter  Google Scholar 

  45. Manikandan, S.G.K, Sivakumar, D., & Kamaraj, M. (2019). Welding the Inconel 718 superalloy: Reduction of micro-segregation and laves phases: Elsevier.

    Google Scholar 

  46. Sonar, T., Balasubramanian, V., Malarvizhi, S., Venkateswaran, T., & Sivakumar, D. (2020). Effect of delta current and delta current frequency on microstructure and tensile properties of gas tungsten constricted arc (GTCA)-welded Inconel 718 alloy joints. Metallurgical and Materials Transactions A, 51, 3920–3937.

    Article  Google Scholar 

  47. Bush, D., Bodily, B., Watson, H., Chastka, M., Colvin, E., & Satoh, G. (2017). Arconic development of the ampliforge process. In AeroMat conference and exposition.

    Google Scholar 

  48. Dinovitzer, M., Chen, X., Laliberte, J., Huang, X., & Frei, H. (2019). Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Additive Manufacturing, 26, 138–146.

    Article  Google Scholar 

  49. Yangfan, W., Xizhang, C., & Chuanchu, S. (2019). Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surface and Coatings Technology, 374, 116–123.

    Article  Google Scholar 

  50. Seow, C. E., Zhang, J., Coules, H. E., Wu, G., Jones, C., Ding, J., & Williams, S. (2020). Effect of crack-like defects on the fracture behaviour of Wire+ Arc Additively Manufactured nickel-base Alloy 718. Additive Manufacturing, 36, 101578.

    Article  Google Scholar 

  51. Ezugwu, E. O., Bonney, J., & Yamane, Y. (2003). An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology, 134(2), 233–253.

    Article  Google Scholar 

  52. Sui, S., Chen, J., Zhang, R., Ming, X., Liu, F., & Lin, X. (2017). The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure. Materials Science and Engineering: A, 688, 480–487.

    Article  Google Scholar 

  53. Radavich, J. F. (1989). The physical metallurgy of cast and wrought alloy 718. In Superalloys 718 metallurgy and applications.

    Google Scholar 

  54. Radhakrishna, C. H., & Rao, K. P. (1997). The formation and control of Laves phase in superalloy 718 welds. Journal of Materials Science, 32(8), 1977–1984.

    Article  Google Scholar 

  55. Sivaprasad, K., & Raman, S. G. S. (2008). Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments. Metallurgical and Materials Transactions A, 39(9), 2115–2127.

    Article  Google Scholar 

  56. Song, K., Yu, K., Lin, X., Chen, J., Yang, H., & Huang, W. (2015). Microstructure and mechanical properties of heat treatment laser solid forming superalloy Inconel 718. Acta Metallurgica Sinica, 51(8), 935–942.

    Google Scholar 

  57. Giggins, C. S., & Pettit, F. S. (1971). Oxidation of Ni-Cr-Al alloys between 1000° and 1200°C. Journal of the Electrochemical Society, 118(11), 1782–1790.

    Article  Google Scholar 

  58. Sanviemvongsak, T., Monceau, D., Desgranges, C., & Macquaire, B. (2020). Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing. Corrosion Science, 170, 108684.

    Article  Google Scholar 

  59. Vayyala, A., Povstugar, I., Galiullin, T., Naumenko, D., Quadakkers, W. J., Hattendorf, H., & Mayer, J. (2019). Effect of Nb addition on oxidation mechanisms of high Cr ferritic steel in Ar–H2–H2O. Oxidation of Metals, 92(5–6), 471–491.

    Article  Google Scholar 

  60. Sanviemvongsak, T., Monceau, D., & Macquaire, B. (2018). High temperature oxidation of IN 718 manufactured by laser beam melting and electron beam melting: Effect of surface topography. Corrosion Science, 141, 127–145.

    Article  Google Scholar 

  61. Adria, B.S. (2020). Oxidation resistance of additively manufactured Inconel 718 for gas turbine applications. Master’s Thesis, Carleton University.

    Google Scholar 

  62. ISO/ASTM 52900:2015 Additive manufacturing—General Principles—Terminology. Retrieved from https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en.

  63. Snbacka, N. (2013). On arc efficiency in gas tungsten arc welding. Soldagem & Inspeção, 18(4), 380–390.

    Article  Google Scholar 

  64. Li, Z., Chen, J., Sui, S., Zhong, C., Lu, X., & Lin, X. (2020). The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition. Additive Manufacturing, 31, 100941.

    Article  Google Scholar 

  65. Geels, K., Fowler, D. B., Kopp, W.-U., & Rückert, M. (2007). Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing. ASTM International.

    Book  Google Scholar 

  66. ASTM E8/E8M - 13a Standard Test Methods for Tension Testing of Metallic Materials. Retrieved from https://www.astm.org/DATABASE.CART/HISTORICAL/E8E8M-13A.htm.

  67. ASTM F3122–14 Standard Guide for Evaluating Mechanical Properties of Metal Materials Made via Additive Manufacturing Processes. Retrieved from https://www.astm.org/Standards/F3122.htm.

  68. AMS 5832H Nickel Alloy, Corrosion and Heat Resistant, Welding Wire, 52.5Ni - 19Cr - 3.0Mo - 5.1Cb(Nb) - 0.90Ti - 0.50Al - 18Fe, Consumable Electrode or Vacuum Induction Melted. Retrieved from https://www.sae.org/standards/content/ams5832h/

  69. AMS 5597G Nickel Alloy, Corrosion and Heat Resistant, Sheet, Strip, and Plate, 52.5Ni - 19Cr - 3.0Mo - 5.1Cb(Nb) - 0.90Ti - 0.50Al - 18Fe, Consumable Electrode or Vacuum Induction Melted, 1950 °F (1066°C) Solution Heat Treatment. Retrieved from https://www.sae.org/standards/content/ams5597g/.

  70. Mitchell, A. (2010). Primary carbides in Alloy 718. Superalloys 718 and derivatives.

    Google Scholar 

  71. Mitchell, A. (2005). The precipitation of primary carbides in IN 718 and its relation to solidification conditions. Superalloys 718, 625, 706 and derivatives.

    Google Scholar 

  72. Mitchell, A., Schmalz, A. J., Schvezov, C., & Cockcroft, S. L. (1994). The precipitation of primary carbides in alloy 718. Superalloys 718, 625, 706 and various derivatives.

    Google Scholar 

  73. Cockcroft, S. L., Degawa, T., Mitchell, A., Tripp, D. W., & Schmalz, A. (1992). Inclusion precipitation in superalloys. Superalloys 1992.

    Google Scholar 

  74. Phillips, D. H. (2016). Welding engineering: An introduction. Wiley.

    Book  Google Scholar 

  75. Wu, B., Ding, D., Pan, Z., Cuiuri, D., Li, H., Han, J., & Fei, Z. (2017). Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. Journal of Materials Processing Technology, 250, 304–312.

    Article  Google Scholar 

  76. Yildiz, A. S., Davut, K., Koc, B., & Yilmaz, O. (2020). Wire arc additive manufacturing of high-strength low alloy steels: Study of process parameters and their influence on the bead geometry and mechanical characteristics. The International Journal of Advanced Manufacturing Technology, 108(11), 3391–3404.

    Article  Google Scholar 

  77. Nursyifaulkhair, D., Park, N., Baek, E. R., & Lee, J.-b. (2019). Effect of process parameters on the formation of lack of fusion in directed energy deposition of Ti-6Al-4V alloy. Journal of Welding and Joining., 37(6), 579–584.

    Article  Google Scholar 

  78. Lampman, S. (1997). Weld solidification. In Weld integrity and performance (pp. 3–21). ASM International.

    Chapter  Google Scholar 

  79. Lippold, J. C. (2015). Welding metallurgy principles. In Welding metallurgy and weldability (pp. 9–83). Wiley Online Library.

    Chapter  Google Scholar 

  80. Barrett, C. S., & Massalski, T. B. (1966). Structure of metals: Crystallographic methods, principles, and data. McGraw-Hill.

    Google Scholar 

  81. Gao, J., Jie, W., Yuan, Y., Wang, T., Zha, G., & Tong, J. (2011). Dependence of film texture on substrate and growth conditions for CdTe films deposited by close-spaced sublimation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(5), 051507.

    Article  Google Scholar 

  82. Knorovsky, G. A., Cieslak, M. J., Headley, T. J., Romig, A. D., & Hammetter, W. F. (1989). Inconel 718: A solidification diagram. Metallurgical Transactions A, 20(10), 2149–2158.

    Article  Google Scholar 

  83. Chalmers, B. (1970). Principles of solidification. In Applied solid state physics (pp. 161–170). Springer.

    Chapter  Google Scholar 

  84. Stefanescu, D. M., & Ruxanda, R. (2004). Fundamentals of solidification. In ASM handbook (Metallography and microstructures) (Vol. 9, pp. 71–92). ASM International.

    Google Scholar 

  85. Kurz, W., & Fisher, D. J. (1984). Fundamentals of solidification. Trans Tech Publications.

    Google Scholar 

  86. David, S. A., & Vitek, J. M. (1989). Correlation between solidification parameters and weld microstructures. International Materials Reviews, 34(1), 213–245.

    Article  Google Scholar 

  87. Antonsson, T., & Fredriksson, H. (2005). The effect of cooling rate on the solidification of INCONEL 718. Metallurgical and Materials Transactions B, 36(1), 85–96.

    Article  Google Scholar 

  88. Mondol, A., Gupta, R., Das, S., & Dutta, T. (2018). An insight into Newton’s cooling law using fractional calculus. Journal of Applied Physics, 123(6), 064901.

    Article  Google Scholar 

  89. Newton’s Law of Cooling. Retrieved from https://www.carolina.com/teacher-resources/Interactive/newtons-law-of-cooling/tr36401.tr.

  90. AMS 5383 Nickel Alloy, Corrosion and Heat-Resistant, Investment Castings, 52.5Ni - 19Cr - 3.0Mo - 5.1Cb(Nb) - 0.90Ti - 0.60Al - 18Fe, Vacuum Melted Homogenization and Solution Heat Treated. Retrieved from https://www.sae.org/standards/content/ams5383/.

  91. Young, D. J. (2008). The nature of high temperature oxidation. In High temperature oxidation and corrosion of metals (pp. 1–27). Elsevier.

    Google Scholar 

  92. Kang, Y.-J., Yang, S., Kim, Y.-K., AlMangour, B., & Lee, K.-A. (2019). Effect of post-treatment on the microstructure and high-temperature oxidation behaviour of additively manufactured inconel 718 alloy. Corrosion Science, 158, 108082.

    Article  Google Scholar 

  93. Calandri, M., Manfredi, D., Calignano, F., Ambrosio, E. P., Biamino, S., Lupoi, R., & Ugues, D. (2018). Solution treatment study of inconel 718 produced by SLM additive technique in view of the oxidation resistance. Advanced Engineering Materials, 20(11), 1800351.

    Article  Google Scholar 

  94. Li, L., Gong, X., Ye, X., Teng, J., Nie, Y., Li, Y., & Lei, Q. (2018). Influence of building direction on the oxidation behavior of inconel 718 alloy fabricated by additive manufacture of electron beam melting. Materials, 11(12), 2549.

    Article  Google Scholar 

  95. Cao, G., Li, Z., Tang, J., Sun, X., & Liu, Z. (2016). Oxidation kinetics and spallation model of oxide scale during cooling process of low carbon microalloyed steel. High Temperature Materials and Processes, 36(9), 927–935.

    Article  Google Scholar 

  96. Evans, H. E. (1995). Stress effects in high temperature oxidation of metals. International Materials Reviews, 40(1), 1–40.

    Article  Google Scholar 

  97. Bose, S. (2017). Oxidation. In High temperature coatings (pp. 45–71). Butterworth-Heinemann.

    Google Scholar 

  98. Elorz, J. A. P.-S., González, D. F., & Verdeja, L. F. (2019). Structural materials: Metals. In Structural materials: Properties and selection (pp. 21–30). Springer.

    Chapter  Google Scholar 

  99. Abe, F., Araki, H., Yoshida, H., & Okada, M. (1987). The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800°C. Oxidation of Metals, 27(1), 21–36.

    Article  Google Scholar 

  100. Kassim, S. A., Thor, J. A., Seman, A. A., & Abdullah, T. K. (2020). High temperature corrosion of Hastelloy C22 in molten alkali salts: The effect of pre-oxidation treatment. Corrosion Science, 173, 108761.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from University of Wollongong (UOW) and Commonwealth Scientific and Industrial Research Organization (CSIRO), respectively. The authors also would like to acknowledge the use of the facilities within the UOW Electron Microscopy center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sujan, G.K., Li, H., Pan, Z., Liang, D., Alam, N. (2022). Application of Wire Arc Additive Manufacturing for Inconel 718 Superalloy. In: Kuşhan, M.C., Gürgen, S., Sofuoğlu, M.A. (eds) Materials, Structures and Manufacturing for Aircraft. Sustainable Aviation. Springer, Cham. https://doi.org/10.1007/978-3-030-91873-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91873-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91872-9

  • Online ISBN: 978-3-030-91873-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics