Skip to main content

Hybrid Additive Manufacturing of Island Grain Bicrystals

  • Conference paper
  • First Online:
TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3448 Accesses

Abstract

We demonstrate cylindrical island grain bicrystals grown via a hybrid additive manufacturing/directional solidification technique. The island grain bicrystal is formed using a specialized mold in which one grain (the island) is enveloped by another larger grain (the surrounding matrix). The grain boundary plane orientation varies continuously around the circumference of the island grain, making these specimens ideal for probing grain boundary structure–property relations. We report thermal groove angle measurements along the grain boundary in a tin island grain bicrystal which show the grain boundary energy as a function of a single degree of freedom in the five-dimensional grain boundary parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saylor DM, Morawiec A, Rohrer GS (2003) Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51:3663–3674. https://doi.org/10.1016/S1359-6454(03)00181-2

    Article  CAS  Google Scholar 

  2. Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655. https://doi.org/10.1016/j.actamat.2004.04.018

    Article  CAS  Google Scholar 

  3. Johnson G, King A, Honnicke MG, Marrow J, Ludwig W (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J Appl Cryst 41:310–318. https://doi.org/10.1107/S0021889808001726.

  4. Chalmers B (1953) The preparation of single crystals and bicrystals by the controlled solidification of molten metals. Can J Phys 31:132–146. https://doi.org/10.1139/p53-012

    Article  CAS  Google Scholar 

  5. Furtkamp M, Gottstein G, Molodov DA, Semenov VN, Shvindlerman LS (1998) Grain boundary migration in Fe–3.5% Si bicrystals with [001] tilt boundaries. Acta Materialia 46:4103–4110. https://doi.org/10.1016/S1359-6454(98)00105-0

  6. Ware LG, Suzuki DH, Wicker KR, Cordero ZC (2018) Grain boundary plane manipulation in directionally solidified bicrystals and tricrystals. Scripta Mater 152:98–101. https://doi.org/10.1016/j.scriptamat.2018.03.047

    Article  CAS  Google Scholar 

  7. Ware LG, Suzuki DH, Cordero ZC (2020) Thermodynamic stability and kinematic accessibility of curved grain boundaries in directionally solidified bicrystals. J Mater Sci 55:8564–8575. https://doi.org/10.1007/s10853-020-04618-2

    Article  CAS  Google Scholar 

  8. Straumal BB, Polyakov SA, Bischoff E, Gust W, Mittemeijer EJ (2001) Faceting of Σ3 and Σ9 grain boundaries in copper. Interface Sci 9:287–292. https://doi.org/10.1023/A:1015174921561

    Article  CAS  Google Scholar 

  9. Straumal BB, Polyakov SA, Chang L-S, Mittemeijer EJ (2007) The effect of bismuth segregation on the faceting of Σ3 and Σ9 coincidence boundaries in copper bicrystals. IJMR 98:451–456. https://doi.org/10.3139/146.101502

    Article  CAS  Google Scholar 

  10. Straumal BB, Polyakov SA, Bischoff E, Gust W, Baretzky B (2005) Faceting of Σ3 and Σ9 grain boundaries in Cu–Bi alloys. Acta Mater 53:247–254. https://doi.org/10.1016/j.actamat.2004.08.015

    Article  CAS  Google Scholar 

  11. Straumal BB, Polyakov SA, Bischoff E, Mittemeijer EJ (2004) Grain boundary faceting close to the Σ3 coincidence misorientation in copper. MEKU 95:939–944. https://doi.org/10.3139/146.018033

    Article  CAS  Google Scholar 

  12. Straumal BB, Semenov VN, Khruzhcheva AS, Watanabe T (2005) Faceting of the Σ3 coincidence tilt boundary in Nb. J Mater Sci 40:871–874. https://doi.org/10.1007/s10853-005-6503-6

    Article  CAS  Google Scholar 

  13. Straumal BB, Sursaeva VG, Polyakov SA (2001) Faceting and roughening of the asymmetric twin grain boundaries in zinc. Interface Sci 9:275–279. https://doi.org/10.1023/A:1015115013170

    Article  CAS  Google Scholar 

  14. Banadaki AD, Patala S (2016) A simple faceting model for the interfacial and cleavage energies of grain boundaries in the complete boundary plane orientation space. Comput Mater Sci 112, Part A:147–160. https://doi.org/10.1016/j.commatsci.2015.09.062

  15. Straumal BB, Sursaeva VG, Shvindlerman LS (1980) Dependence of the rate of nonactivated motion of a grain boundary on its orientation. Phys Met Metallogr 49:102–107

    Google Scholar 

  16. Straumal B, Kucherinenko Y, Baretzky B (2004) 3-dimensional Wulff diagrams for Σ3 grain boundaries in Cu. Rev Adv Mater Sci 6:23–31

    Google Scholar 

  17. Catalanotto AM, Ware LG, Chagolla JA, Suzuki DH, Cordero ZC (2018) Stereolithography-based manufacturing of molds for directionally solidified castings. In: Proceedings of the 29th annual international solid freeform fabrication symposium, pp 398–402

    Google Scholar 

  18. Priesmeyer HG, Stalder M, Vogel S, Meggers K, Bless R, Trela W (1970) Bragg-edge transmission as an additional tool for strain measurement. Textures Microstruct 33:173–185

    Article  Google Scholar 

  19. Santisteban JR, Edwards L, Fitzpatrick ME, Steuwer A, Withers PJ, Daymond MR, Johnson MW, Rhodes N, Schooneveld EM (2002) Strain imaging by Bragg edge neutron transmission. Nucl Instrum Methods Phys Res, Sect A 481:765–768. https://doi.org/10.1016/S0168-9002(01)01256-6

    Article  CAS  Google Scholar 

  20. Barzagli E, Grazzi F, Salvemini F, Scherillo A, Sato H, Shinohara T, Kamiyama T, Kiyanagi Y, Tremsin A, Zoppi M (2014) Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy. Eur Phys J Plus 129:158. https://doi.org/10.1140/epjp/i2014-14158-3

    Article  CAS  Google Scholar 

  21. Song G, Lin JYY, Bilheux JC, Xie Q, Santodonato LJ, Molaison JJ, Skorpenske HD, Dos Santos AM, Tulk CA, An K, Stoica AD, Kirka MM, Dehoff RR, Tremsin AS, Bunn J, Sochalski-Kolbus LM, Bilheux HZ (2017) Characterization of crystallographic structures using bragg-edge neutron imaging at the spallation neutron source. J Imaging 3:65. https://doi.org/10.3390/jimaging3040065

    Article  Google Scholar 

  22. Greenhill EB, McDonald SR (1953) Surface energy of solid paraffin wax. Nature 171:37–37. https://doi.org/10.1038/171037a0

    Article  CAS  Google Scholar 

  23. Tyson WR, Miller WA (1977) Surface free energies of solid metals: estimation from liquid surface tension measurements. Surf Sci 62:267–276. https://doi.org/10.1016/0039-6028(77)90442-3

    Article  CAS  Google Scholar 

  24. Eckold P, Sellers MS, Niewa R, Hügel W (2015) The surface energies of β-Sn—a new concept for corrosion and whisker mitigation. Microelectron Reliab 55:2799–2807. https://doi.org/10.1016/j.microrel.2015.08.018

    Article  Google Scholar 

  25. Mykura H (1955) An interferometric study of grain boundary grooves in tin. Acta Metall 3:436–441. https://doi.org/10.1016/0001-6160(55)90131-0

    Article  CAS  Google Scholar 

  26. Rowenhorst DJ, Voorhees PW (2005) Measurements of the grain boundary energy and anisotropy in tin. Metall Mater Trans A 36:2127–2135. https://doi.org/10.1007/s11661-005-0333-7

    Article  Google Scholar 

  27. Patala S, Schuh CA (2013) Symmetries in the representation of grain boundary-plane distributions. Phil Mag 93:524–573. https://doi.org/10.1080/14786435.2012.722700

    Article  CAS  Google Scholar 

  28. Kalonji G, Cahn JW (1982) Symmetry constraints on the orientation dependence of interfacial properties: the group of the Wulff plot. J Phys Colloques 43:C6-25–C6-31. https://doi.org/10.1051/jphyscol:1982603

  29. Hoffman DW, Cahn JW (1972) A vector thermodynamics for anisotropic surfaces. Surf Sci 31:368–388. https://doi.org/10.1016/0039-6028(72)90268-3

    Article  CAS  Google Scholar 

  30. Cahn JL, Hoffman DL (1974) A vector thermodynamics for anisotropic surfaces—II. Curved and faceted surfaces. Acta Metall 22:1205–1214. https://doi.org/10.1016/0001-6160(74)90134-5

  31. Abdeljawad F, Foiles SM, Moore A, Hinkle AR, Barr C, Heckman NM, Hattar K, Boyce BL (2018) The role of the interface stiffness tensor on grain boundary dynamics. Acta Mater 158:440–453. https://doi.org/10.1016/j.actamat.2018.06.025.

Download references

Acknowledgements

This work was supported by the George R. Brown School of Engineering at Rice University. A portion of the research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. The authors would like to thank Baker Hughes for providing optical profilometry facilities. The authors would also like to thank Professor Srikanth Patala for his help determining the misorientation point group, as well as for his suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Ware .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ware, L.G., Herstein, B.S., Zhang, Y., Bilheux, H.Z., Cordero, Z.C. (2022). Hybrid Additive Manufacturing of Island Grain Bicrystals. In: TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92381-5_99

Download citation

Publish with us

Policies and ethics