Skip to main content

New Results from Archaeogeophysical Investigations in Machu Picchu

  • Chapter
  • First Online:
Machu Picchu in Context

Abstract

The ITACA Mission of the CNR, in collaboration with the University of Warsaw and the PIAISHM from 2017 to 2019, conducted for the first time in Machu Picchu an interdisciplinary survey project aimed at exploring the subsoil for archaeological purposes with remote sensing and geophysics. Excavations carried out by the PIAISHM in 2016 opened new questions to which the geophysical investigations have attempted to provide an answer. This chapter shows and discusses the results mainly based on georadar surveys, integrated in some cases with geomagnetic prospecting, that on the one hand have highlighted the effectiveness of the approach, on the other hand have brought to light information (albeit indirect, being geophysical anomalies) on the presence of potential buried structures, linked to human frequentation phases preceding the architectural evidences. The exploration of the subsoil made it possible to characterize the stratigraphy both for archaeological and geotechnical purposes, as in the case of the Principal temple, providing some useful data to understand the cause-and-effect mechanisms of the structural failure affecting the same temple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The kancha is the Inca basic architectural unit characterized by a rectangular plan commonly composed of three walls; it is also a set of enclosures with three or more rectangular structures around the courtyard (Hyslop 1990, 17).

References

  • Aitken MJ, Webster G, Rees A (1958) Magnetic prospecting. Antiquity 32:270–271

    Google Scholar 

  • Bastante JM (2016/2017) Los trabajos de las Expediciones Peruanas de Yale en la Llaqta de Machupicchu. Estudios Latinoamericanos 36/37:27–67

    Google Scholar 

  • Bastante JM, Astete F, Fernandez A, Usca AI (2020) Estado de la cuestión: historia y arqueología de la llaqta de Machupicchu. In: Astete F, Bastante J (eds) Machupicchu Investigaciones Interdisciplinarias. Ministerio de Cultura del Peru, GD Impactos, Miraflores—Lima, vol I, pp 141–236

    Google Scholar 

  • Bastante JM, Fernandez A, Astete F (2021) Machu Picchu: interdisciplinary researches. In this Book

    Google Scholar 

  • Bingham H (1913) In the Wonderland of Peru. Natl Geogr 24:387–573

    Google Scholar 

  • Bingham H (1922) Inca Land: explorations in the highlands of Peru, 2nd edn. Houghton Mifflin, Boston

    Google Scholar 

  • Bonomo N, Osella A, Ratto N (2010) Detecting and mapping buried buildings with Ground-Penetrating Radar at an ancient village in northwestern Argentina. J Archaeol Sci 37:3247–3255

    Article  Google Scholar 

  • Campana S, Piro S (2009) Seeing the unseen—geophysics and landscape archaeology. CRC Press, London, UK, p 376. ISBN 978-0-415-44721-8

    Google Scholar 

  • Canuti P, Fanti R, Margottini C, Spizzichino D (2008) Effects of landslides on Machu Picchu Cultural Heritage—Proceedings of The First World Landslide Forum 18–21 November, Tokyo, Japan, pp 411–416

    Google Scholar 

  • Canuti P, Margottini C, Casagli N, Delmonaco G, Falconi L, Ferretti A, Lollino G, Puglisi C, Spizzichino D, Tarchi D (2009) Monitoring, geomorphological evolution and slope stability of Inca citadel of Machu Picchu: results from Italian Interfrasi Project. In: Sassa K, Canuti P (eds) Landslide—disaster risk reduction. Springer Verlag Berlin Heidelberg, 249–257 pp (978-3-540-699668)

    Google Scholar 

  • Capozzoli L, Caputi A, De Martino G, Giampaolo V, Luongo R, Perciante F, Rizzo E (2015) Electrical and electromagnetic techniques applied to an archaeological framework reconstructed in laboratory, Advanced Ground Penetrating Radar (IWAGPR), 2015 8th International Workshop on Advanced Ground Penetrating Radar, IEEE, 7–10 July, Firenze. https://doi.org/10.1109/IWAGPR.2015.7292655

  • Capozzoli L, De Martino G, Capozzoli V, Duplouy A, Henning A, Rizzo E (2020a) The pre-Roman hilltop settlement of Monte Torretta di Pietragalla: first results of the geophysical survey. Archaeol Prospect. https://doi.org/10.1002/arp.1793

    Article  Google Scholar 

  • Capozzoli L, Catapano I, De Martino G, Gennarelli G, Ludeno G, Rizzo E, Soldovieri F, Uliano Scelza F, Zuchtriegel G (2020b) The discovery of a buried temple in Paestum: the advantages of the geophysical multi-sensor application. Remote Sens 12:2711

    Article  Google Scholar 

  • Carlotto V, Cárdenas JLF (2009) La geología, evolución geomorfológica y geodinámica externa de la ciudad inca de Machupicchu, Cusco-Perú. Revista de la Asociación Geológica Argentina 65(4):725–747

    Google Scholar 

  • Catapano I, Gennarelli G, Ludeno G, Soldovieri F, Persico R (2019) Ground penetrating radar: operation principle and data processing. In: Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, Hoboken, NJ, pp 1–23

    Google Scholar 

  • Fedi M, Cella F, Florio G, La Manna M, Paoletti V (2017) Geomagnetometry for Archaeology in Sensing the Past, Masini N, Soldovieri F (eds). Springer, Berlin/Heidelberg, Germany, pp 203–230

    Google Scholar 

  • Gasparini G, Margolies L (1980) Inca Architecture. Indiana University Press

    Google Scholar 

  • Goodman D (2017) GPR-SLICE v7.0 Ground Penetrating Radar Imaging Software

    Google Scholar 

  • Henderson KK (2004) Ground-Penetrating Radar at Tiwanaku, Bolivia. Unpublished Master’s thesis. Department of Anthropology, University of Denver, Denver

    Google Scholar 

  • Hyslop J (1990) Inka settlement planning. University of Texas Press, Austin, TX

    Google Scholar 

  • Keay SJ, Parcak SH, Strutt KD (2014) High resolution space and ground-based remote sensing and implications for landscape archaeology: the case from Portus, Italy. J Archaeol Sci 52:277–292. https://doi.org/10.1016/j.jas.2014.08.010

    Article  Google Scholar 

  • Larson DO, Lipo CP, Ambos EL (2003) Application of advanced geophysical methods and engineering principles in an emerging scientific archaeology. First Break 21:51–62

    Google Scholar 

  • Lasaponara R, Leucci G, Masini N, Persico R (2014) Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru. J Archaeol Sci 42:216–230. https://doi.org/10.1016/j.jas.2013.10.032

    Article  Google Scholar 

  • Lasaponara R, Masini N, Pecci A, Perciante A, Pozzi Escot D, Rizzo E, Scavone M, Sileo M (2017) Qualitative evaluation of COSMO SkyMed in the detection of earthen archaeological remains: the case of Pachamacac (Peru). J Cult Herit. https://doi.org/10.1016/j.culher.2015.12.010

    Article  Google Scholar 

  • Lascano E, Osella A, de la Vega M, Buscaglia S, Senatore X, Lanata JL (2003) Geophysical prospection at Florida Blanca archaeological site, San Julián Bay, Argentina. Archaeol Prospect 10:175–192

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loke M, Chambers J, Rucker D, Kuras O, Wilkinson P (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Google Scholar 

  • Ludeno G, Capozzoli L, Rizzo E, Soldovieri F, Catapano I (2018) A microwave tomography strategy for underwater imaging via Ground Penetrating Radar. Remote Sens. https://doi.org/10.3390/rs10091410

    Article  Google Scholar 

  • Margottini C, Spizzichino D (2014) How Geology Shapes Human Settlements. In: Bandarin F, van Oers R (eds) Reconnecting the city. The historic urban landscape approach and the future of urban heritage. Wiley Blackwell, Chichester, vol 95, pp 135–156

    Google Scholar 

  • Masini N, Capozzoli L, Chen P, Chen F, Romano G, Lu P, Tang P, Sileo M, Ge Q, Lasaponara R (2017) Towards an operational use of Remote Sensing in Archaeology in Henan (China): Archaeogeophysical investigations, approach and results in Kaifeng. Remote Sens 9:809. https://doi.org/10.3390/rs9080809

    Article  Google Scholar 

  • Masini N, Capozzoli L, Romano G, Sieczkowska D, Sileo M, Bastante J, Astete VF, Ziolkowski M, Lasaponara R (2018) Archaeogeophysical based approach for Inca archaeology: overview and one operational application. Surv Geophys. https://doi.org/10.1007/s10712-018-9502-2

    Article  Google Scholar 

  • Mazzoli S, Vitale S, Delmonaco G, Guerriero V, Margottini C, Spizzichino D (2009) Diffuse faulting in the Machu Picchu granitoid pluton, Eastern Cordillera, Perù. J Struct Geol 31:1395–1408. https://doi.org/10.1016/j.jsg.2009.08.010

    Article  Google Scholar 

  • Moseley ME (1992) The Incas and their ancestors: the archaeology of Peru. Thames and Hudson, New York

    Google Scholar 

  • Piro S, Goodman D, Nishimura Y (2003) The study and characterization of Emperor Traiano’s Villa (Altopiani di Arcinazzo, Roma) using high-resolution integrated geophysical surveys. Archaeol Prospect 10:1–25

    Article  Google Scholar 

  • Piro S, Sambuelli L, Godio A, Taormina R (2007) Beyond image analysis in processing archaeomagnetic geophysical data: case studies of chamber tombs with dromos. Near Surface Geophysics 5(6):405–414

    Google Scholar 

  • Pozzi-Escot D, Oshiro MDJ, Romano G, Lasaponara R, Capozzoli L, Masini N (2018) Traces in the desert: use of new technologies for conservation and study of the Pachacamac sanctuary—Lima, Peru, Heritage Science, https://doi.org/10.1186/s40494-018-0230-1

  • Prümers H (2006) Improntas de esteras en ceramica prehispanica del sitio Bella Vista (Depto. Beni, Bolivia) Actas III Jornadas Internacionales sobre Textiles Precolombinos. In: Solanilla Demestre V (ed) Departament d’Art de la Universitat Autonoma de Barcelona—Institut Catala Iberoamericana, Barcelona, pp 207–212

    Google Scholar 

  • Reinhard J (1991) Machu Piccu. El Centro Sagrado, Instituto Machu Picchu, Cimagraf, Lima

    Google Scholar 

  • Revil A, Karaoulis M, Johnson T, Kemna A (2012) Review: Some low-frequency electrical methods for subsurface characterization and monitoring in hydrogeology. Hydrogeol J 20

    Google Scholar 

  • Rizzo E, Capozzoli L (2019) Integrated Geophysical Techniques for Archaeological Remains: Real Cases and Full Scale Laboratory Example, Chapter 13 in El-Qady G, Metwaly M (eds) Archaeogeophysics. Springer International Publishing AG, part of Springer Nature. https://doi.org/10.1007/978-3-319-78861-6_13

  • Spizzichino D (2012) Landslide risk assessment and management in the archaeological site of Machu Picchu Inca citadel (Peru). PhD thesis in Earth System Sciences: Environment, Resources and Cultural Heritage at University of Modena and Reggio Emilia (XXIII Cycle)

    Google Scholar 

  • Spizzichino D, Margottini C, Puzzilli L (2013) Landslide risk assessment and management in the archaeological site of Machu Picchu (Peru). In: (a cura di): Bilotta E, Flora A, Lirer S, Viggiani C, Geotechnical Engineering for the Preservation of Monuments and Historic Sites. Taylor & Francis Group, London, ISBN: 978-1-138-00055-1, Napoli, 30–31 May 2013

    Google Scholar 

  • Telford W, Geldart L, Sheriff R (1990) Applied Geophysics (2nd ed.). Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139167932

  • Wright KR, Kelly JM, Valencia Zegarra A (1997) Machu Picchu: ancient hydraulic engineering. J Hydr Engrg, ASCE 123(10):838

    Google Scholar 

  • Ziółkowski M, Abuhadba JB, Hogg A, Sieczkowska D, Rakowski A, Pawlyta J, Manning SW (2020) When did the Incas build Machu Picchu and its satellite sites? New approaches based on radiocarbon dating. Radiocarbon 1–15. https://doi.org/10.1017/RDC.2020.79

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Science Centre of Poland (grant OPUS nr UMO-2015/19/B/HS3/03557), the Italian National Research Council , and Italian Ministry of Foreign Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Capozzoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capozzoli, L. et al. (2022). New Results from Archaeogeophysical Investigations in Machu Picchu. In: Ziółkowski, M., Masini, N., Bastante, J.M. (eds) Machu Picchu in Context. Springer, Cham. https://doi.org/10.1007/978-3-030-92766-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92766-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92765-3

  • Online ISBN: 978-3-030-92766-0

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics