Skip to main content

Nanocomposites Materials and Their Applications: Current and Future Trends

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Different nanostructures responsiveness and processability in exact shapes or dimensions are becoming increasingly important in a variety of applications, including environmental remediation (e.g., wastewater treatment), energy generation, and storage (e.g., biomedicine).

Nanotechnology and nanoscience have risen to the top of the list of the most intriguing fields of research being conducted today. By providing regulated functional building blocks into the nanomaterial society, graphene, an incomparable morphological 2-D carbon material, has sparked a gold rush in the nanomaterial society. Furthermore, the mechanical, electrical, and optical properties of graphene make it a promising candidate for use in solar energy conversion and electrochemical energy devices, among other uses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdel Maksoud, M.I.A., Fahim, R.A., Shalan, A.E., et al.: Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ. Chem. Lett. 19, 375–439 (2021)

    Article  CAS  Google Scholar 

  2. Abdel Messih, M.F., Shalan, A.E., Sanad, M.F., Ahmed, M.A.: Facile approach to prepare ZnO@SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models. J. Mater. Sci: Mater. Electron. 30, 14291–14299 (2019)

    CAS  Google Scholar 

  3. Abdelbasir, S.M., Shalan, A.E.: An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 36, 1209–1225 (2019)

    Article  CAS  Google Scholar 

  4. Batool, M., Nazar, M.F., Awan, A., et al.: Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. Nano-struct. Nano-obj. 27, 10072 (2021)

    Google Scholar 

  5. El-Shazly, A.N., Shalan, A.E., Rashad, M.M., et al.: Solid-state dye-sensitized solar cells based on Zn1−xSnxO nanocomposite photoanodes. RSC Adv. 8, 24059–24067 (2018)

    Article  CAS  Google Scholar 

  6. Tang, L., et al.: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chem. Eng. J. 239, 114–122 (2014)

    Article  CAS  Google Scholar 

  7. Khezri, K., Mahdavi, H.: Polystyrene-silica aerogel nanocomposites by in situ simultaneous reverse and normal initiation technique for ATRP. Microporous Mesoporous Mater. 228, 132–140 (2016)

    Article  CAS  Google Scholar 

  8. Sanad, M.F., Shalan, A.E., Bazid, S.M., Abdelbasir, S.M.: Pollutant degradation of different organic dyes using the photocatalytic activity of ZnO@ZnS nanocomposite materials. J. Environ. Chem. Eng. 6, 3981–3990 (2018)

    Article  CAS  Google Scholar 

  9. Sanad, M.F., Shalan, A.E., Abdellatif, S.O., et al.: Thermoelectric energy harvesters: a review of recent developments in materials and devices for different potential applications. Top Curr. Chem. 378, 48 (2020)

    Article  CAS  Google Scholar 

  10. Reddy, B., Dadigala, R., Bandi, R., et al.: Microwave-assisted preparation of a silver nanoparticles/N-doped carbon dots nanocomposite and its application for catalytic reduction of rhodamine B, methyl red and 4-nitrophenol dyes. RSC Adv. 11, 5139–5148 (2021)

    Article  Google Scholar 

  11. Sanad, M.M.S., Shalan, A.E., Rashad, M.M., Mahmoud, M.H.H.: Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs). Appl. Surf. Sci. 359, 315–322 (2015)

    Article  CAS  Google Scholar 

  12. Hamdy, A.S., Shoeib, M., Butt, D.: A novel approach in designing environmentally compliant sol-gel based ceramic coatings and nanocomposite coatings for industrial applications. In: Malik, A., Rawat, R.J. (eds.) New Nanotechniques, chap. 20, pp. 649–659. Nova Science Publishers, USA (2009). ISBN: 978-1-60692-516-4.

    Google Scholar 

  13. Hamdy, A.S., Soliman, H.: Effect of nano-additives (Al2O3 and NaF) on the performance of ceramic coatings formed by microarc oxidation on magnesium alloys. In: Makhlouf, A.S.H., Scharnweber, D. (eds.) Handbook of Nanoceramic and Nanocomposite coatings and materials, chap. 18, pp. 383–395. Elsevier, USA (2015). https://doi.org/10.1016/B978-0-12-799947-0.00018-3

  14. Abu-Thabit, N.Y., Hamdy, A.S.: Recent advances in nanocomposite coatings for corrosion protection applications. In: Makhlouf, A.S.H., Scharnweber, D. (eds.) Handbook of Nanoceramic and Nanocomposite Coatings and Materials, chap. 24, pp. 509–543. Elsevier, USA (2015). https://doi.org/10.1016/B978-0-12-799947-0.00024-9

  15. Hamdy, A.S.: Novel approaches in designing high performance nano and nano-composite coatings for industrial applications. Int. J. Nanomanuf. 4(1/2/3/4), 235–241 (2009). https://doi.org/10.1504/IJNM.2009.028130

    Article  CAS  Google Scholar 

  16. Hamdy, A.S., Shoeib, M.A., Hady, H.: The effect of grain refining and phosphides formation on the performance of advanced nanocomposite and ternary alloy coatings on steel. Mater. Lett. 80, 191–194 (2012). https://doi.org/10.1016/j.matlet.2012.04.085

    Article  CAS  Google Scholar 

  17. Abdal-hay, A., Hamdy, A.S., Khalil, K.A.: Novel, facile, single-step technique of polymer/TiO2 nanofiber composites membrane for photodegradation of methylene blue. ACS Appl. Mater. Interf. 7(24), 13329–13341 (2015). https://doi.org/10.1021/acsami.5b01418

    Article  CAS  Google Scholar 

  18. Abdal-hay, A., Hamdy, A.S., Abdel-Jaber, G.T., Barakat, N., Ebnalwaled, A.A., Khalil, K.A.: A facile manufacturing of Ag/SiO2 nanofibers and nanoparticles composites via a simple hydrothermal plasma method. Ceram. Int. 41, 12447–12452 (2015). https://doi.org/10.1016/j.ceramint.2015.06.082

    Article  CAS  Google Scholar 

  19. Abdal-hay, A., Hasan, A., Yu-Kyoung, M.-H.L., Hamdy, A.S., Khalil, K.A.: Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Mater. Sci. Eng. C 58, 1232–1241 (2016). https://doi.org/10.1016/j.msec.2015.09.065

    Article  CAS  Google Scholar 

  20. Abdal-hay, A., Khalil, K.A., Hamdy, A.S., Al-Jassir, F.F.: Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold. Arab. J. Chem. 10(2), 240–252 (2017). https://doi.org/10.1016/j.arabjc.2016.09.021

    Article  CAS  Google Scholar 

  21. Gupta, V.K., Agarwal, S., Sadegh, H., Ali, G.A.M., Bharti, A.K., Hamdy, A.S.: Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J. Mol. Liq. 237, 466–472 (2017). https://doi.org/10.1016/j.molliq.2017.04.113

    Article  CAS  Google Scholar 

  22. Sadegh, H., Ali, G.A.M., Makhlouf, A.S.H., Chong, K.F., Alharbi, N.S., Agarwal, S., Gupta, V.K.: MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J. Mol. Liq. 258, 345–353 (2018). https://doi.org/10.1016/j.molliq.2018.03.012

    Article  CAS  Google Scholar 

  23. Soliman, H., et al.: Hydroxyquinoline/nano-graphene oxide composite coating of self-healing functionality on treated Mg alloys AZ31. Surf. Coat. Tech. 1, 125395 (2020). https://doi.org/10.1016/j.surfcoat.2020.125395

    Article  CAS  Google Scholar 

  24. Farag, M.M., Liu, H.H., Makhlouf, A.H.: New nano-bioactive glass/magnesium phosphate composites by sol-gel route for bone defect treatment. Silicon 13(3), 857–865 (2020). https://doi.org/10.1007/s12633-020-00485-3

    Article  CAS  Google Scholar 

  25. Hamdy, A.S., Hady, H., Shoeib, M., Abdel Salam, O.: Electrochemical impedance studies on Ni-P-W and Ni-P-Al2O3 nano-composite alloy coatings in 3.5% NaCl. In: Proceedings of European Corrosion Congress, Germany (2007)

    Google Scholar 

  26. Hamdy, A.S., Shoeib, M., Hady, H., Abdel Salam, O.F.: Effect of the experimental parameters on the coating performance of Ni-P nano-composite alloy coatings. In: Processing and Product Manufacturing: Innovative Processing and Synthesis of Ceramics, Glasses and Composites Symposium, Proceedings of MS&T ‘07, Michigan, 16–20 September 2007 (2007)

    Google Scholar 

  27. Hamdy, A.S., Hady, H., Shoeib, M.A., Abdel Salam, O.F.: Newly developed corrosion resistant nano-composite alloy coatings for steels. In: Symposium “Corrosion and Coatings Challenges in Industry”, AAAS Pacific Division 88th Annual Meeting, Boise, ID (2007)

    Google Scholar 

  28. Hamdy, A.S., Shoeib, M.A., Hady, H.: Nano-composite and ternary-alloy protective coatings for steel. In: Proceedings of 14th NACE Middle East Corrosion Conference & Exhibition, Bahrain, 12–15 February 2012, Paper: 75-CR-12 (2012)

    Google Scholar 

  29. Hamdy, A.S.: Smart self-healing eco-friendly nano and nano-composite protective coatings. In: Invited Speaker at the Plenary Session of the International Conference on Nanotechnologies and Biomedical Engineering (ICNBE), Chisinau, Moldova, 6–9 July 2011 (2011)

    Google Scholar 

  30. Hamdy, A.S.: Nano-composites and nano-ceramic protective coatings for steel and aluminum alloys. In: Invited talk at UNESCO Workshop on “Awareness of Nanotechnology”, Cairo, Egypt, 27–29 November 2011 (2011)

    Google Scholar 

  31. Hamdy, A.S.: A novel composite nanofibres-based biomaterials for biomedical applications. In: Invited speaker, the Latin America IdEA Partnership “La Idea” Incubator Program, 2–13 February 2015, Advanced Manufacturing Session at the Coastal Bend Business Innovation Center hosted by Texas A&M University in Corpus Cristi, Texas. USA, Sponsored by the U.S. Department of State (2015)

    Google Scholar 

  32. Hamdy, A.S., Shoeib, M., Butt, D.: Challenges in designing high performance anti-corrosion nano-sized thin films and nano-composite coatings for industrial applications. In: International Conference of Nanoscience, King Abdul Aziz University, Saudi Arabia, 17–19 June 2008 (2008)

    Google Scholar 

  33. Makhlouf, A.S.H., Scharnweber, D. (eds.): Handbook of nanoceramic and nanocomposite coatings and materials, p. 688. Butterworth-Heinemann, Elsevier (2015). https://doi.org/10.1016/C2013-0-13073-5

  34. Zheng, L., Teng, F., Ye, X., Zheng, H., Fang, X.: Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 10(1), 1902355 (2020)

    Article  CAS  Google Scholar 

  35. Dunst, S., Rath, T., Reichmann, A., Chien, H.-T., Friedel, B., Trimmel, G.: A comparison of copper indium sulfide-polymer nanocomposite solar cells in inverted and regular device architecture. Synth. Met. 222, 115–123 (2016)

    Article  CAS  Google Scholar 

  36. Fradler, C., et al.: Flexible polymer/copper indium sulfide hybrid solar cells and modules based on the metal xanthate route and low temperature annealing. Sol. Energy Mater. Sol. Cells 124, 117–125 (2014)

    Article  CAS  Google Scholar 

  37. Yang, H., Jauregui, L.A., Zhang, G., Chen, Y.P., Wu, Y.: Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett. 12(2), 540–545 (2012)

    Article  CAS  Google Scholar 

  38. Krylova, V., Baltrusaitis, J.: Synthesis and properties of polyamide–Ag2S composite based solar energy absorber surfaces. Appl. Surf. Sci. 282, 552–560 (2013)

    Article  CAS  Google Scholar 

  39. Ke, F., Wang, L., Zhu, J.: Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 8(6), 1834–1846 (2015)

    Article  CAS  Google Scholar 

  40. Luo, Y., Que, W., Yang, C., Tian, Y., Yin, X.: Hydrothermal synthesis of transition metal sulfides/MWCNT nanocomposites for high-performance asymmetric electrochemical capacitors. Electrochimica Acta 322, 134738 (2019)

    Article  CAS  Google Scholar 

  41. Ren, Y., Zeng, D., Ong, W.-J.: Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chin. J. Catal. 40(3), 289–319 (2019)

    Article  CAS  Google Scholar 

  42. Wang, J., Guan, Z., Huang, J., Li, Q., Yang, J.: Enhanced photocatalytic mechanism for the hybrid gC3N4/MoS2 nanocomposite. J. Mater. Chem. A 2(21), 7960–7966 (2014)

    Article  CAS  Google Scholar 

  43. Ran, J., Gao, G., Li, F., Ma, T., Du, A., Qiao, S.: Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production (2017)

    Google Scholar 

  44. Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012)

    Article  CAS  Google Scholar 

  45. McCrory, C.C., Jung, S., Ferrer, I.M., Chatman, S.M., Peters, J.C., Jaramillo, T.F.: Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137(13), 4347–4357 (2015)

    Article  CAS  Google Scholar 

  46. Yang, Y., Fei, H., Ruan, G., Tour, J.M.: Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 27(20), 3175–3180 (2015)

    Article  CAS  Google Scholar 

  47. Wang, X., Kolen, K., Bao, Y.V., Kovnir, X.-Q., Liu, L.K.: One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chem. Int. Ed. 54(28), 8188–8192 (2015)

    Article  CAS  Google Scholar 

  48. Fahmy, H.M., Mosleh, A.M., Elghany, A.A., et al.: Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 9, 20118–20136 (2019)

    Article  CAS  Google Scholar 

  49. Abu Elella, M.H., Goda, E.S., Abdallah, H.M., et al.: Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int. J. Biol. Macromol. 167, 1113–1125 (2021)

    Article  CAS  Google Scholar 

  50. Akman, E., Shalan, A.E., Sadegh, F., Akin, S.: Moisture-resistant FAPbI3 perovskite solar cell with 22.25 % power conversion efficiency through pentafluorobenzyl phosphonic acid passivation. Chemsuschem 14, 1176–1183 (2021)

    Article  CAS  Google Scholar 

  51. Abdellatif Soliman, S.M., Sanad, M.F., Shalan, A.E.: Synthesis, characterization and antimicrobial activity applications of grafted copolymer alginate-g-poly(N-vinyl imidazole). RSC Adv. 11, 11541–11548 (2021)

    Article  CAS  Google Scholar 

  52. Elseman, A.M., Zaki, A.H., Shalan, A.E., et al.: TiO2 nanotubes: An advanced electron transport material for enhancing the efficiency and stability of perovskite solar cells. Ind. Eng. Chem. Res. 59, 18459–18557 (2020). https://doi.org/10.1021/acs.iecr.0c03415

    Article  CAS  Google Scholar 

  53. Eivazzadeh-Keihan, R., Taheri-Ledari, R., Mehrabad, M.S., et al.: Effective combination of rGO and CuO nanomaterials through poly(p-phenylenediamine) texture: utilizing it as an excellent supercapacitor. Energy Fuels 34, 8316–8324 (2021). https://doi.org/10.1021/acs.energyfuels.1c01132

    Article  CAS  Google Scholar 

  54. Gong, H., Li, Z., Chen, Z., Liu, Q., Song, M., Huang, C.: NiSe/Cd0.5Zn0.5S composite nanoparticles for use in p–n heterojunction-based photocatalysts for solar energy harvesting. ACS Appl. Nano Mater. 3(4), 3665–3674 (2020)

    Article  CAS  Google Scholar 

  55. Jaque, D., et al.: Nanoparticles for photothermal therapies. Nanoscale 6(16), 9494–9530 (2014)

    Article  CAS  Google Scholar 

  56. Zhang, J., Yu, J., Jaroniec, M., Gong, J.R.: Noble metal-free reduced graphene oxide-Znx Cd1–xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 12(9), 4584–4589 (2012)

    Article  CAS  Google Scholar 

  57. Guo, Q., et al.: Fabrication of 72% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132(49), 17384–17386 (2010)

    Article  CAS  Google Scholar 

  58. Chen, M.-L., Park, C.-Y., Choi, J.-G., Oh, W.-C.: Synthesis and characterization of metal (Pt, Pd and Fe)-graphene composites. J. Korean Ceram. Soc. 48(2), 147 (2011)

    Article  CAS  Google Scholar 

  59. Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J.R.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10884 (2011)

    Article  CAS  Google Scholar 

  60. Xiang, Q., Yu, J., Jaroniec, M.: Enhanced photocatalytic H 2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9), 3670–3678 (2011)

    Article  CAS  Google Scholar 

  61. Kumar, N.A., Baek, J.-B.: Doped graphene supercapacitors. Nanotechnology 26(49), 492001 (2015)

    Article  Google Scholar 

  62. Lightcap, I.V., Kamat, P.V.: Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc. Chem. Res. 46(10), 2235–2243 (2013)

    Article  CAS  Google Scholar 

  63. Terrones, M., et al.: Interphases in graphene polymer-based nanocomposites: achievements and challenges. Adv. Mater. 23(44), 5302–5310 (2011)

    Article  CAS  Google Scholar 

  64. Chen, S., Zhu, J., Wang, X.: One-step synthesis of graphene− cobalt hydroxide nanocomposites and their electrochemical properties. J. Phys. Chem. C 114(27), 11829–11834 (2010)

    Article  CAS  Google Scholar 

  65. Zhou, M., et al.: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Func. Mater. 23(18), 2263–2269 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors 1 & 3 gratefully acknowledge the support from BCMaterials to pursue that work. Furthermore, Author 1 thanks the National Research grants from MINECO, Spain, “Juan de la Cierva” [FJCI-2018-037717] and he is currently on leave from CMRDI. The authors 1&3 acknowledge funding by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/https://doi.org/10.13039/501100011033 and from the Basque Government Industry and Education Department under the ELKARTEK and PIBA (PIBA-2018-06) programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Esmail Shalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shalan, A.E., Makhlouf, A.S.H., Lanceros-Méndez, S. (2022). Nanocomposites Materials and Their Applications: Current and Future Trends. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_1

Download citation

Publish with us

Policies and ethics