Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1193 Accesses

Abstract

Energy storage devices are essential to meet the energy demands of humanity without relying on fossil fuels, the advances provided by nanotechnology supporting the development of advanced materials to ensure energy and environmental sustainability for the future. The electrochemical energy storage devices that currently stand out the most are lithium-ion batteries and supercapacitors. Furthermore, the demand on higher performance devices and more efficient technologies has led to growing attention in advanced functional nanosized materials. In this chapter, the most relevant nanocomposite materials for lithium-ion batteries and supercapacitors are presented, together with the recent advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[DEME][TFSA]:

(N,N-Diethyl-N-methyl-N-(2-methoxy-ethyl) ammonium bis (trifluoromethyl -sulfonyl)amide

2D:

2-Dimensional

3D:

3-Dimensional

AC:

Activated carbon

CNF:

Carbon nanofibers

CNS:

Carbon nanospheres

CNT:

Carbon nanotubes

COF:

Covalent organic frameworks

EDLC:

Electric double layer capacitor

EIS:

Electrochemical impedance spectroscopy

EMIMBF4:

1-ethyl-3-methylimidazolium tetrafluoroborate

ESS:

Energy storage systems

FAU:

Faujasite

FG/ANA:

Zeolitic analcime/functionalized spongy graphene

GA:

Glutaraldehyde

Gly:

Glycerol

GN:

Graphite nanosheet

GPE:

Gel polymer electrolyte

HPE:

Hydrogel polymer electrolyte

IL:

Ionic liquids

LCO:

Lithium cobalt oxide (LiCoO2)

LFP:

Lithium iron phosphate (LiFePO4)

LIB:

Lithium-ion battery

LiTFSI:

Lithium bis(trifluoromethylsulphonyl)imide

LLZO:

Lithium lanthanum zirconium oxide

LLZTO:

Tantalum doped lithium lanthanum zirconate

LMB:

Lithium-metal battery

LMO:

Lithium manganese oxide (LiMnO2)

LOB:

Lithium-oxygen battery

MOF:

Metal-organic framework

NCM:

Lithium nickel cobalt manganese oxide (LiNi CoMnO2)

NIB:

Sodium ion battery

NMR:

Nuclear magnetic resonance

OMC:

Organometallic complex

P(VDF-co-CTFE)-g-POEM):

Poly(vinylidene fluoride-co-chlorotri fluoroethy lene)-g-poly (oxyethylene methacrylate)

PAA:

Polyacrylic acid

PAN:

Polyacrylonitrile

PANI:

Polyaniline

PANI-NTs:

Polyaniline nanotubes

PEDOT:PSS:

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate

PEG:

Polyethylene glycol

PEO:

Polyethylene oxide

PP:

Polypropylene

PPENK:

Phthalazione ether nitril ketone

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

PVDF-HFP:

Polyvinylidene fluoride-co-hexafluoropropylene

PVP:

Polyvinyl pyrrolidone

Rct:

Charge-transfer resistance

rGO:

Reduced graphene oxide

Rs:

Surface resistance

SCE:

Solid composite electrolyte

SEI:

Solid electrolyte interface

SEM:

Scanning electron microscopy

SPE:

Solid polymer electrolyte

SWCNTs:

Single-walled carbon nanotubes

TEM:

Transmission electron microscopy

TMDC:

Transition metal dichalcogenides

TNT:

Titania nanotube

WIS:

Water-in-salt

XPS:

X-ray photoelectron spectroscopy

ZIF:

Zeolite imidazolate framework

ZTC:

Zeolite-templated carbon

References

  1. Xu, M., David, J.M., Kim, S.H.: The fourth industrial revolution: Opportunities and challenges. Int. J. Financ. Res. 9(2), 90–95 (2018)

    Article  Google Scholar 

  2. Abdelkareem, M.A., Elsaid, K., Wilberforce, T., Kamil, M., Sayed, E.T., Olabi, A.: Environmental aspects of fuel cells: a review. Sci. Total Environ. 752, 141803 (2021)

    Google Scholar 

  3. Kaltschmitt, M., Streicher, W., Wiese, A.: Renewable Energy: Technology, Economics and Environment. Springer Science & Business Media (2007)

    Google Scholar 

  4. Scrosati, B., Hassoun, J., Sun, Y.-K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295

    Google Scholar 

  5. Hunt, J.D., Byers, E., Riahi, K., Langan, S.: Comparison between seasonal pumped-storage and conventional reservoir dams from the water, energy and land nexus perspective. Energy Convers. Manage. 166, 385–401 (2018)

    Article  Google Scholar 

  6. Laing, D., Bahl, C., Bauer, T., Fiss, M., Breidenbach, N., Hempel, M.: High-temperature solid-media thermal energy storage for solar thermal power plants. Proc. IEEE 100(2), 516–524 (2012)

    Article  Google Scholar 

  7. Kirubakaran, A., Jain, S., Nema, R.K.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2019)

    Article  CAS  Google Scholar 

  8. Volta, A.X.V.I.I.: On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S. Philos. Trans. R. Soc. Lond. 90, 403–431 (1800)

    Google Scholar 

  9. Spencer, J.N., Bodner, G.M., Rickard, L.H.: Chemistry: Structure and Dynamics. Wiley (2010)

    Google Scholar 

  10. Mertens P (1999) The theoretical batteries of Georges Leclanché.

    Google Scholar 

  11. Pavlov, D.: Lead-Acid Batteries: Science and Technology. Elsevier, Amsterdam (2011)

    Google Scholar 

  12. Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126 (1976)

    Article  CAS  Google Scholar 

  13. Mizushima, K., Jones, P.C., Wiseman, P.J., Goodenough, J.B.: LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15(6), 783–789 (1980)

    Article  CAS  Google Scholar 

  14. Thackeray, M.M., David, W.I.F., Bruce, P.G., Goodenough, J.B.: Lithium insertion into manganese spinels. Mater. Res. Bull. 18(4), 461–472 (1983)

    Article  CAS  Google Scholar 

  15. Padhi, A., Nanjundaswamy, K.S., Goodenough, J.: Phospho-Olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    Article  CAS  Google Scholar 

  16. Nishi, Y.: The development of lithium ion secondary batteries. Chem. Rec. 1(5), 406–413 (2001)

    Article  CAS  Google Scholar 

  17. Väyrynen, A., Salminen, J.: Lithium ion battery production. J. Chem. Thermodyn. 46, 80–85 (2012)

    Google Scholar 

  18. Liu, C., Neale, Z.G., Cao, G.: Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016)

    Article  CAS  Google Scholar 

  19. Winter, M., Besenhard, J.O., Spahr, M.E., Novák, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998)

    Article  CAS  Google Scholar 

  20. Deng, W., Zhu, W., Zhou, X., Liu, Z.: Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 15, 266–273 (2018)

    Article  Google Scholar 

  21. Miranda, D., Gören, A., Costa, C.M., Silva, M.M., Almeida, A.M., Lanceros-Méndez, S.: Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes. Energy 172, 68–78 (2019)

    Article  CAS  Google Scholar 

  22. Abraham, K.M.: Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 6(5), 830–844 (2015)

    Google Scholar 

  23. Jiang, F., Peng, P.: Elucidating the performance limitations of lithium-ion batteries due to species and charge transport through five characteristic parameters. Sci. Rep. 6(1), 32639 (2016)

    Article  CAS  Google Scholar 

  24. Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., et al.: A critical review of li/air batteries. J. Electrochem. Soc. 159(2), R1–R30 (2011)

    Article  CAS  Google Scholar 

  25. Li, T., Bai, X., Gulzar, U., Bai, Y.-J., Capiglia, C., Deng, W., et al.: A Comprehensive understanding of lithium-sulfur battery technology. Adv. Func. Mater. 29(32), 1901730 (2019)

    Article  CAS  Google Scholar 

  26. Slater, M.D., Kim, D., Lee, E., Johnson, C.S.: Sodium-Ion batteries. Adv. Func. Mater. 23(8), 947–958 (2013)

    Article  CAS  Google Scholar 

  27. Hosaka, T., Kubota, K., Hameed, A.S., Komaba, S.: Research development on K-Ion batteries. Chem. Rev. 120(14), 6358–6466 (2020)

    Article  CAS  Google Scholar 

  28. Nunes-Pereira, J., Costa, C.M., Lanceros-Méndez, S.: Polymer composites and blends for battery separators: state of the art, challenges and future trends. J. Power Sources 281, 378–398 (2015)

    Article  CAS  Google Scholar 

  29. Imanishi, N., Yamamoto, O.: Rechargeable lithium–air batteries: characteristics and prospects. Mater. Today 17(1), 24–30 (2014)

    Article  CAS  Google Scholar 

  30. Zhang, W., Liu, Y., Guo, Z.: Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 5(5), eaav7412 (2019)

    Google Scholar 

  31. Canepa, P., Sai Gautam, G., Hannah, D.C., Malik, R., Liu, M., Gallagher, K.G., et al.: Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117(5), 4287–4341 (2017)

    Article  CAS  Google Scholar 

  32. Pandolfo, A.G., Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006)

    Article  CAS  Google Scholar 

  33. González, A., Goikolea, E., Barrena, J.A., Mysyk, R.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  CAS  Google Scholar 

  34. Conway, B.E., Pell, W.G.: Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7(9), 637–644 (2003)

    Article  CAS  Google Scholar 

  35. Lu, Z., Chang, Z., Zhu, W., Sun, X.: Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 47(34), 9651–9653 (2011)

    Article  CAS  Google Scholar 

  36. Xie, J., Sun, X., Zhang, N., Xu, K., Zhou, M., Xie, Y.: Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2(1), 65–74 (2013)

    Article  CAS  Google Scholar 

  37. Heilbron, J.L.: Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics. Univ of California Press, Berkeley (1979)

    Google Scholar 

  38. Becker, H.I.: Low voltage electrolytic capacitor. Google Patents (1957)

    Google Scholar 

  39. Conway, B.E.: Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J. Electrochem. Soc. 138(6), 1539–1548 (1991)

    Article  CAS  Google Scholar 

  40. Muzaffar, A., Ahamed, M.B., Deshmukh, K., Thirumalai, J.: A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145 (2019)

    Article  CAS  Google Scholar 

  41. Gulzar, U., Goriparti, S., Miele, E., Li, T., Maidecchi, G., Toma, A., et al.: Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J. Mater. Chem. A 4(43), 16771–16800 (2016)

    Article  CAS  Google Scholar 

  42. Mezzomo, L., Ferrara, C., Brugnetti, G., Callegari, D., Quartarone, E., Mustarelli, P., et al.: Exploiting Self-Healing in Lithium Batteries: Strategies for Next-Generation Energy Storage Devices 10(46), 2002815 (2020)

    CAS  Google Scholar 

  43. Chombo, P.V., Laoonual, Y.: A review of safety strategies of a Li-ion battery. J. Power Sources 478, 228649 (2020)

    Google Scholar 

  44. Lopez, J., Gonzalez, M., Viera, J.C., Blanco, C.: Fast-charge in lithium-ion batteries for portable applications. In: INTELEC 2004 26th Annual International Telecommunications Energy Conference 2004, pp. 19–24 (2004)

    Google Scholar 

  45. Duan, J., Tang, X., Dai, H., Yang, Y., Wu, W., Wei, X., et al.: Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energy Rev. 3(1), 1–42 (2020)

    Article  CAS  Google Scholar 

  46. He, J., Manthiram, A.: A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 20, 55–70 (2019)

    Article  Google Scholar 

  47. Bhatt, M.D., Lee, J.Y.: High capacity conversion anodes in Li-ion batteries: a review. Int. J. Hydrogen Energy 44(21), 10852–10905 (2019)

    Article  CAS  Google Scholar 

  48. Birkl, C.R., Roberts, M.R., McTurk, E., Bruce, P.G., Howey, D.A.: Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017)

    Article  CAS  Google Scholar 

  49. Nitta, N., Wu, F., Lee, J.T., Yushin, G.: Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015)

    Article  CAS  Google Scholar 

  50. Wang, R., Chen, C., Zheng, Y., Wang, H., Liu, J.-W., Yu, S.-H.: Structure–property relationship of assembled nanowire materials. Mater. Chem. Front. 4(10), 2881–2903 (2020)

    Article  CAS  Google Scholar 

  51. Ladpli, P., Nardari, R., Kopsaftopoulos, F., Chang, F.-K.: Multifunctional energy storage composite structures with embedded lithium-ion batteries. J. Power Sources 414, 517–529 (2019)

    Article  CAS  Google Scholar 

  52. Gu, M., Kim, B.-S.: Electrochemistry of multilayer electrodes: from the basics to energy applications. Acc. Chem. Res. 54(1), 57–69 (2021)

    Article  CAS  Google Scholar 

  53. Asp, L.E., Greenhalgh, E.S.: Structural power composites. Compos. Sci. Technol. 101, 41–61 (2014)

    Article  CAS  Google Scholar 

  54. Kalimuldina, G., Nurpeissova, A., Adylkhanova, A., Adair, D., Taniguchi, I.: Bakenov Z. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: a review. ACS Appl. Energy Mater. 3(12), 11480–11499 (2020)

    Article  CAS  Google Scholar 

  55. Valverde, A., Gonçalves, R., Silva, M.M., Wuttke, S., Fidalgo-Marijuan, A., Costa, C.M., et al.: Metal-organic framework based PVDF separators for high rate cycling lithium-ion batteries. ACS Appl. Energy Mater. 3(12), 11907–11919 (2020)

    Article  CAS  Google Scholar 

  56. Xu, J., Xiao, X., Zeng, S., Cai, M., Verbrugge, M.W.: Multifunctional lithium-ion-xchanged zeolite-coated separator for lithium-ion batteries. ACS Appl. Energy Mater. 1(12), 7237–7243 (2018)

    Article  CAS  Google Scholar 

  57. Rafiz, K., Lin, J.Y.S.: Safe Li-ion batteries enabled by completely inorganic electrode-coated silicalite separators. Sustainable Energy Fuels 4(11), 5783–5794 (2020)

    Article  CAS  Google Scholar 

  58. Liu, X., Chen, Q., Li, Y., Chen, C., Xing, X., Huang, B., et al.: LiMn2O4 Cathode materials with excellent performances by synergistic enhancement of double-cation (Na+, Mg2+) doping and 3DG coating for power lithium-ion batteries. J. Phys. Chem. C 124(48), 26106–26116 (2020)

    Article  CAS  Google Scholar 

  59. Brutti, S., Simonetti, E., De Francesco, M., Sarra, A., Paolone, A., Palumbo, O., et al.: Ionic liquid electrolytes for high-voltage, lithium-ion batteries. J. Power Sources 479, 228791 (2020)

    Google Scholar 

  60. Jónsson, E.: Ionic liquids as electrolytes for energy storage applications – a modelling perspective. Energy Storage Mater. 25, 827–835 (2020)

    Article  Google Scholar 

  61. Karuppasamy, K., Theerthagiri, J., Vikraman, D., Yim, C.-J., Hussain, S., Sharma, R., et al.: Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications. Polymers 12(4), 918 (2020)

    Article  CAS  Google Scholar 

  62. Sebastian, J., Samuel, J.M.: Recent advances in the applications of substituted polyanilines and their blends and composites. Polym. Bull. 77(12), 6641–6669 (2020)

    Article  CAS  Google Scholar 

  63. Gonçalves, R., Dias, P., Hilliou, L., Costa, P., Silva, M.M., Costa, C.M., et al.: Optimized printed cathode electrodes for high performance batteries. Energy Technol. 9(1), 2000805 (2021)

    Article  CAS  Google Scholar 

  64. Wang, Y., Niu, P., Li, J., Wang, S., Li, L.: Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Mater. 34, 436–460 (2021)

    Article  Google Scholar 

  65. Shi, Q., Zhou, J., Ullah, S., Yang, X., Tokarska, K., Trzebicka, B., et al.: A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 34, 735–754 (2021)

    Article  Google Scholar 

  66. Hong, Y.J., Lee, J.-K., Chan Kang, Y.: Yolk–shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li–S batteries. J. Mater. Chem. A. 5(3), 988–995 (2017)

    Article  CAS  Google Scholar 

  67. Feng, S., Song, J., Fu, S., Zhu, C., Shi, Q., Song, M.-K., et al.: One-step synthesis of carbon nanosheet-decorated carbon nanofibers as a 3D interconnected porous carbon scaffold for lithium–sulfur batteries. J. Mater. Chem. A 5(45), 23737–23743 (2017)

    Article  CAS  Google Scholar 

  68. Zhang, K., Xiong, F., Zhou, J., Mai, L., Zhang, L.: Universal construction of ultrafine metal oxides coupled in N-enriched 3D carbon nanofibers for high-performance lithium/sodium storage. Nano Energy 67, 104222 (2020)

    Google Scholar 

  69. Tiwari, A.P., Chae, S.-H., Ojha, G.P., Dahal, B., Mukhiya, T., Lee, M., et al.: Three-dimensional porous carbonaceous network with in-situ entrapped metallic cobalt for supercapacitor application. J. Colloid Interface Sci. 553, 622–630 (2019)

    Article  CAS  Google Scholar 

  70. Hu, F., Peng, H., Zhang, T., Shao, W., Liu, S., Wang, J., et al.: A lightweight nitrogen/oxygen dual-doping carbon nanofiber interlayer with meso-/micropores for high-performance lithium-sulfur batteries. J. Energy Chem. 58, 115–128 (2021)

    Article  Google Scholar 

  71. Cui, R., Xu, D., Xie, X., Yi, Y., Quan, Y., Zhou, M., et al.: Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chem. 221, 457–463 (2017)

    Article  CAS  Google Scholar 

  72. Zeng, Y., Huang, Y., Liu, N., Wang, X., Zhang, Y., Guo, Y., et al.: N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries. J. Energy Chem. 54, 727–735 (2021)

    Article  Google Scholar 

  73. Tang, T., Zhang, T., Zhao, L., Zhang, B., Li, W., Xu, J., et al.: Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries. Mater. Chem. Front. 4(5), 1483–1491 (2020)

    Article  CAS  Google Scholar 

  74. Zaidi, S.D.A., Wang, C., Jin, Y., Zhu, S., Yuan, H., Yang, Y., et al.: Single-nozzle electrospun core-shell MoS2@FexOy@CNF anodes for lithium and potassium-ion batteries. J. Alloys Comp. 848, 156531 (2020)

    Google Scholar 

  75. Wang, H., Wei, D., Zheng, J., Zhang, B., Ling, M., Hou, Y., et al.: Electrospinning MoS2-decorated porous carbon nanofibers for high-performance lithium-sulfur batteries. ACS Appl. Energy Mater. 3(12), 11893–11899 (2020)

    Article  CAS  Google Scholar 

  76. Zhou, X., Liu, B., Chen, Y., Guo, L., Wei, G.: Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications. Mater. Adv. 1(7), 2163–2181 (2020)

    Article  CAS  Google Scholar 

  77. Liu, C., Bai, Y., Zhao, Y., Yao, H., Pang, H.: MoS2/graphene composites: fabrication and electrochemical energy storage. Energy Storage Mater. 33, 470–502 (2020)

    Article  Google Scholar 

  78. Kong, X., Zheng, Y., Wang, Y., Liang, S., Cao, G., Pan, A.: Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries. Sci. Bull. 64(4), 261–269 (2019)

    Article  CAS  Google Scholar 

  79. Wang, W., Kumta, P.N.: Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. ACS Nano 4(4), 2233–2241 (2010)

    Article  CAS  Google Scholar 

  80. Shi, L., Pang, C., Chen, S., Wang, M., Wang, K., Tan, Z., et al.: Vertical graphene growth on sio microparticles for stable lithium ion battery anodes. Nano Lett. 17(6), 3681–3687 (2017)

    Article  CAS  Google Scholar 

  81. Li, J.-Y., Li, G., Zhang, J., Yin, Y.-X., Yue, F.-S., Xu, Q., et al.: Rational design of robust Si/C microspheres for high-tap-density anode materials. ACS Appl. Mater. Interfaces 11(4), 4057–4064 (2019)

    Article  CAS  Google Scholar 

  82. Feng, Y., Wu, K., Deng, X., Ke, J., Yang, B., Dong, H., et al.: Exfoliated graphite nanosheets coating on nano-grained SnO2/Li4Ti5O12 as a high-performance anode material for lithium-ion batteries. Langmuir 36(48), 14666–14675 (2020)

    Article  CAS  Google Scholar 

  83. Ju, Z., Zhang, X., King, S.T., Quilty, C.D., Zhu, Y., Takeuchi, K.J., et al.: Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems 7(4), 041405 (2020)

    Google Scholar 

  84. Mishra, K., Yadav, N., Hashmi, S.A.: Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. J. Mater. Chem. A 8(43), 22507–22543 (2020)

    Article  CAS  Google Scholar 

  85. Yaghi, O.M., Li, G., Li, H.: Selective binding and removal of guests in a microporous metal–organic framework. Nature 378(6558), 703–706 (1995)

    Article  CAS  Google Scholar 

  86. Wang, H., Zhu, Q.-L., Zou, R., Xu, Q.: Metal-organic frameworks for energy applications. Chem 2(1), 52–80 (2017)

    CAS  Google Scholar 

  87. Meng, X., Liao, K., Dai, J., Zou, X., She, S., Zhou, W., et al.: Ultralong cycle life Li–O2 battery enabled by a MOF-derived ruthenium-carbon composite catalyst with a durable regenerative surface. ACS Appl. Mater. Interfaces 11(22), 20091–20097 (2019)

    Article  CAS  Google Scholar 

  88. Huang, Q., Wei, T., Zhang, M., Dong, L.-Z., Zhang, A.M., Li, S.-L., et al.: A highly stable polyoxometalate-based metal–organic framework with π–π stacking for enhancing lithium ion battery performance. J. Mater. Chem. A 5(18), 8477–8483 (2017)

    Article  CAS  Google Scholar 

  89. Peng, Z., Yi, X., Liu, Z., Shang, J., Wang, D.: Triphenylamine-based metal-organic frameworks as cathode materials in lithium-ion batteries with coexistence of redox active sites, high working voltage, and high rate stability. ACS Appl. Mater. Interfaces 8(23), 14578–14585 (2016)

    Article  CAS  Google Scholar 

  90. Jin, Y., Zhao, C., Sun, Z., Lin, Y., Chen, L., Wang, D., et al.: Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Advances 6(36), 30763–30768 (2016)

    Article  CAS  Google Scholar 

  91. Wang, D.-Y., Liu, R., Guo, W., Li, G., Fu, Y.: Recent advances of organometallic complexes for rechargeable batteries. Coordination Chemistry Rev. 429, 213650 (2020)

    Google Scholar 

  92. Baumann, A.E., Burns, D.A., Liu, B., Thoi, V.S.: Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2(1), 86 (2019)

    Article  Google Scholar 

  93. Stadie, N.P., Wang, S., Kravchyk, K.V., Kovalenko, M.V.: Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano 11(2), 1911–1919 (2017)

    Article  CAS  Google Scholar 

  94. Noh, H., Choi, S., Kim, H.G., Choi, M., Kim, H.-T.: Size Tunable Zeolite-Templated Carbon as Microporous Sulfur Host for Lithium-Sulfur Batteries 6(2), 558–565 (2019)

    CAS  Google Scholar 

  95. Chen, L.-H., Sun, M.-H., Wang, Z., Yang, W., Xie, Z., Su, B.-L.: Hierarchically structured zeolites: from design to application. Chem. Rev. 120(20), 11194–11294 (2020)

    Article  CAS  Google Scholar 

  96. Chin, L.-C., Yi, Y.-H., Chang, W.-C., Tuan, H.-Y.: Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron. Electrochim. Acta 266, 178–184 (2018)

    Article  CAS  Google Scholar 

  97. Wan, F., Guo, J.-Z., Zhang, X.-H., Zhang, J.-P., Sun, H.-Z., Yan, Q., et al.: In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl. Mater. Interfaces. 8(12), 7790–7799 (2016)

    Article  CAS  Google Scholar 

  98. Zheng, X.-M., You, J.-H., Fan, J.-J., Tu, G.-P., Rong, W.-Q., Li, W.-J., et al.: Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy 77, 105123 (2020)

    Google Scholar 

  99. Dashairya, L., Das, D., Saha, P.: Binder-free electrophoretic deposition of Sb/rGO on Cu foil for superior electrochemical performance in Li-ion and Na-ion batteries. Electrochimica Acta 358, 136948 (2020)

    Google Scholar 

  100. Boukhvalov, D.W., Paolucci, V., D’Olimpio, G., Cantalini, C., Politano, A.: Chemical reactions on surfaces for applications in catalysis, gas sensing, adsorption-assisted desalination and Li-ion batteries: opportunities and challenges for surface science. Physical Chemistry Chemical Physics (2021)

    Google Scholar 

  101. Gunnarsdóttir, A.B., Amanchukwu, C.V., Menkin, S., Grey, C.P.: Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142(49), 20814–20827 (2020)

    Article  CAS  Google Scholar 

  102. Woods, J., Bhattarai, N., Chapagain, P., Yang, Y., Neupane, S.: In situ transmission electron microscopy observations of rechargeable lithium ion batteries. Nano Energy 56, 619–640 (2019)

    Article  CAS  Google Scholar 

  103. Wu, X., Li, S., Yang, B., Wang, C.: In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries. Electrochem. Energy Rev. 2(3), 467–491 (2019)

    Article  CAS  Google Scholar 

  104. Sanchez, A.J., Kazyak, E., Chen, Y., Chen, K.-H., Pattison, E.R., Dasgupta, N.P.: Plan-view operando video microscopy of li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Lett. 5(3), 994–1004 (2020)

    Article  CAS  Google Scholar 

  105. Pang, Q., Liang, X., Shyamsunder, A., Nazar, L.F.: An in vivo formed solid electrolyte surface layer enables stable plating of li metal. Joule 1(4), 871–886 (2017)

    Article  CAS  Google Scholar 

  106. Liu, W., Liu, P., Mitlin, D.: Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 10(43), 2002297 (2020)

    Article  CAS  Google Scholar 

  107. Fang, C., Li, J., Zhang, M., Zhang, Y., Yang, F., Lee, J.Z., et al.: Quantifying inactive lithium in lithium metal batteries. Nature 572(7770), 511–515 (2019)

    Article  CAS  Google Scholar 

  108. Zhang, S., Liu, Y., Liu, H.: Understanding lithium transport in SEI films: a nonequilibrium molecular dynamics simulation. Mol. Simul. 46(7), 573–580 (2020)

    Article  CAS  Google Scholar 

  109. Franco, A.A., Rucci, A., Brandell, D., Frayret, C., Gaberscek, M., Jankowski, P., et al.: Boosting rechargeable batteries R&D by multiscale modeling: myth or reality? Chem. Rev. 119(7), 4569–4627 (2019)

    Article  CAS  Google Scholar 

  110. Lagadec, M.F., Zahn, R., Wood, V.: Characterization and performance evaluation of lithium-ion battery separators. Nature Energy 4(1), 16–25 (2019)

    Article  CAS  Google Scholar 

  111. Croce, F., Focarete, M.L., Hassoun, J., Meschini, I., Scrosati, B.: A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning. Energy Environ. Sci. 4(3), 921–927 (2011)

    Article  CAS  Google Scholar 

  112. Man, C., Jiang, P., Wong, K.-w, Zhao, Y., Tang, C., Fan, M., et al.: Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide). J. Mater. Chem. A 2(30), 11980–11986 (2014)

    Article  CAS  Google Scholar 

  113. Dai, J., Shi, C., Li, C., Shen, X., Peng, L., Wu, D., et al.: A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ. Sci. 9(10), 3252–3261 (2016)

    Article  CAS  Google Scholar 

  114. Costa, C.M., Lizundia, E., Lanceros-Méndez, S.: Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components. Progress Energy Combustion Sci. 79, 100846 (2020)

    Google Scholar 

  115. Heidari, A.A., Mahdavi, H.: Recent development of polyolefin-based microporous separators for li-ion batteries: a review. Chem. Rec. 20(6), 570–595 (2020)

    Article  CAS  Google Scholar 

  116. Nestler, T., Schmid, R., Münchgesang, W., Bazhenov, V., Schilm, J., Leisegang, T., et al.: Separators - Technology review: Ceramic based separators for secondary batteries. AIP Conf. Proc. 1597(1), 155–184 (2014)

    Article  CAS  Google Scholar 

  117. Huang, X.: Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 15(4), 649–662 (2011)

    Article  CAS  Google Scholar 

  118. Zhang, H., Zhou, M.-Y., Lin, C.-E., Zhu, B.-K.: Progress in polymeric separators for lithium ion batteries. RSC Adv. 5(109), 89848–89860 (2015)

    Article  CAS  Google Scholar 

  119. Dou, H., Xu, M., Wang, B., Zhang, Z., Wen, G., Zheng, Y., et al.: Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 50, 986–1029 (2021)

    Article  CAS  Google Scholar 

  120. Barbosa, J.C., Dias, J.P., Lanceros-Méndez, S., Costa, C.M.: Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8(3), 45 (2018)

    Article  CAS  Google Scholar 

  121. Lu, J., Zhang, H., Hou, J., Li, X., Hu, X., Hu, Y., et al.: Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19(7), 767–774 (2020)

    Article  CAS  Google Scholar 

  122. Li, R., Lu, B., Xie, Z., Zhai, J.: The Confinement Effect of Angstrom-Sized Pores in Asymmetrical Membrane Constructed by Zeolitic Imidazolate Frameworks: Partially Dehydrated Ion Transport Performance. 15(52), 1904866 (2019)

    CAS  Google Scholar 

  123. Shekarian, E., Jafari Nasr, M.R., Mohammadi, T., Bakhtiari, O., Javanbakht, M.: Preparation of 4A zeolite coated polypropylene membrane for lithium-ion batteries separator 136(32), 47841 (2019)

    Google Scholar 

  124. Li, W., Li, X., Yuan, A., Xie, X., Xia, B.: Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries. Ionics 22(11), 2143–2149 (2016)

    Article  CAS  Google Scholar 

  125. Xu, Q., Wei, C., Fan, L., Peng, S., Xu, W., Xu, J.: A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24(4), 1889–1899 (2017)

    Article  CAS  Google Scholar 

  126. Liu, H., Xu, J., Guo, B., He, X.: Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries. Ceramics Int. 40(9, Part A), 14105–14110 (2014)

    Google Scholar 

  127. Liu, H., Xu, J., Guo, B., He, X.: Effect of SiO2 content on performance of polypropylene separator for lithium-ion batteries 131(23) (2014)

    Google Scholar 

  128. Khassi, K., Youssefi, M., Semnani, D.: PVDF/TiO2/graphene oxide composite nanofiber membranes serving as separators in lithium-ion batteries. J. Appl. Polym. Sci. 137(23), 48775 (2020)

    Article  CAS  Google Scholar 

  129. Cao, J., Shang, Y., Wang, L., He, X., Deng, L., Chen, H.: Composite electrospun membranes containing a monodispersed nano-sized TiO2@Li+ single ionic conductor for Li-ion batteries. RSC Advances 5(11), 8258–8262 (2015)

    Article  CAS  Google Scholar 

  130. Li, Y., Yu, L., Hu, W., Hu, X.: Thermotolerant separators for safe lithium-ion batteries under extreme conditions. J. Mater. Chem. A 8(39), 20294–20317 (2020)

    Article  CAS  Google Scholar 

  131. Salikolimi, K., Sudhakar, A.A., Ishida, Y.: Functional Ionic Liquid Crystals. Langmuir 36(40), 11702–11731 (2020)

    Article  CAS  Google Scholar 

  132. Huang, J., Huang, Y., Zhang, Z., Gao, H., Li, C.: Li6.7La3Zr1.7Ta0.3O12 Reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery. Energy Fuels 34(11), 15011–15018 (2020)

    Google Scholar 

  133. Wei, T., Zhang, Z.-H., Wang, Z.-M., Zhang, Q., Ye, Y.-S., Lu, J.-H., et al.: Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl. Energy Mater. 3(9), 9428–9435 (2020)

    Google Scholar 

  134. Yang, T., Zheng, J., Cheng, Q., Hu, Y.-Y., Chan, C.K.: Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 9(26), 21773–21780 (2017)

    Article  CAS  Google Scholar 

  135. Angulakshmi, N., Zhou, Y., Suriyakumar, S., Dhanalakshmi, R.B., Satishrajan, M., Alwarappan, S., et al.: Microporous Metal-Organic Framework (MOF)-Based Composite Polymer Electrolyte (CPE) mitigating lithium dendrite formation in all-solid-state-lithium batteries. ACS Omega 5(14), 7885–7894 (2020)

    Article  CAS  Google Scholar 

  136. Tong, Z., Wang, S.-B., Liao, Y.-K., Hu, S.-F., Liu, R.-S.: Interface between solid-state electrolytes and li-metal anodes: issues, materials, and processing routes. ACS Appl. Mater. Interfaces 12(42), 47181–47196 (2020)

    Article  CAS  Google Scholar 

  137. Pervez, S.A., Cambaz, M.A., Thangadurai, V., Fichtner, M.: Interface in solid-state lithium battery: challenges, progress, and outlook. ACS Appl. Mater. Interfaces 11(25), 22029–22050 (2019)

    Article  CAS  Google Scholar 

  138. Li, S., Zhang, S.-Q., Shen, L., Liu, Q., Ma, J.-B., Lv, W., et al.: Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7(5), 1903088 (2020)

    Google Scholar 

  139. Li, L., Deng, Y., Chen, G.: Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries. J. Energy Chem. 50, 154–177 (2020)

    Article  CAS  Google Scholar 

  140. Chen, X., Vereecken, P.M.: Solid and solid-like composite electrolyte for lithium ion batteries: engineering the ion conductivity at. Interfaces 6(1), 1800899 (2019)

    Google Scholar 

  141. Yu, X., Manthiram, A.: A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 34, 282–300 (2021)

    Article  Google Scholar 

  142. Chun, S.-J., Choi, E.-S., Lee, E.-H., Kim, J.H., Lee, S.-Y., Lee, S.-Y.: Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J. Mater. Chem. 22(32), 16618–16626 (2012)

    Article  CAS  Google Scholar 

  143. Lv, D., Chai, J., Wang, P., Zhu, L., Liu, C., Nie, S., et al.: Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils. Carbohydrate Polymers 251, 116975 (2021)

    Google Scholar 

  144. Liu, J., Qin, J., Mo, Y., Wang, S., Han, D., Xiao, M., et al.: Polyphenylene sulfide separator for high safety lithium-ion batteries. J. Electrochem. Soc. 166(8), A1644–A1652 (2019)

    Article  CAS  Google Scholar 

  145. Ren, W., Zheng, Y., Cui, Z., Tao, Y., Li, B., Wang, W.: Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 35, 157–168 (2021)

    Article  Google Scholar 

  146. Hao, Z., Zhao, Q., Tang, J., Zhang, Q., Liu, J., Jin, Y., et al.: Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Mater. Horizons 8, 12–32 (2021)

    Article  CAS  Google Scholar 

  147. Zhang, T., Yang, J., Xu, Z., Li, H., Guo, Y., Liang, C., et al.: Suppressing dendrite growth of a lithium metal anode by modifying conventional polypropylene separators with a composite layer. ACS Appl. Energy Mater. 3(1), 506–513 (2020)

    Article  CAS  Google Scholar 

  148. Liang, J., Chen, Q., Liao, X., Yao, P., Zhu, B., Lv, G., et al.: A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem. Int. Ed. Engl. 59(16), 6561–6566 (2020)

    Article  CAS  Google Scholar 

  149. Wu, H., Zhuo, D., Kong, D., Cui, Y.: Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Commun. 5(1), 5193 (2014)

    Article  CAS  Google Scholar 

  150. Yan, J., Wang, Q., Wei, T., Fan, Z.: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4(4), 1300816 (2014)

    Article  CAS  Google Scholar 

  151. Chen, T., Dai, L.: Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16(7–8), 272–280 (2013)

    Article  CAS  Google Scholar 

  152. Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer, US (1999)

    Book  Google Scholar 

  153. Zhang, L.L., Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  Google Scholar 

  154. Bose, S., Kuila, T., Mishra, A.K., Rajasekar, R., Kim, N.H., Lee, J.H.: Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 22(3), 767–784 (2012)

    Article  CAS  Google Scholar 

  155. Yan, J., Wang, Q., Lin, C., Wei, T., Fan, Z.: Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 4(13):n/a (2014)

    Google Scholar 

  156. Lu, P., Xue, D., Yang, H., Liu, Y.: Supercapacitor and nanoscale research towards electrochemical energy storage. Int. J. Smart Nano Mater. 4(1), 2–26 (2012)

    Article  CAS  Google Scholar 

  157. Paliwal, M.K., Meher, S.K.: 3D-heterostructured NiO nanofibers/ultrathin g-C3N4 holey nanosheets: An advanced electrode material for all-solid-state asymmetric supercapacitors with multi-fold enhanced energy density. Electrochimica Acta. 358, 136871 (2020)

    Google Scholar 

  158. Yang, Z., Liu, Q., Zhang, L., Dai, J., Shen, Z.: Green one-pot synthesis of binder-free porous edge-functionalized graphitic carbon nitride/iron oxide nanoparticles nanocomposite as an outstanding electrode for supercapacitors. J. Energy Storage 32, 101909 (2020)

    Google Scholar 

  159. Zhang, X., Yang, W., Liu, A., Guo, Z., Mu, J., Hou, J., et al.: Anchoring mesoporous Fe3O4 nanospheres onto N-doped carbon nanotubes toward high-performance composite electrodes for supercapacitors. Ceram. Int. 46(14), 22373–22382 (2020)

    Article  CAS  Google Scholar 

  160. Sathish Kumar, P., Prakash, P., Srinivasan, A., Karuppiah, C.: A new highly powered supercapacitor electrode of advantageously united ferrous tungstate and functionalized multiwalled carbon nanotubes. J. Power Sources 482, 228892 (2021)

    Google Scholar 

  161. Wu, X., Zheng, S., Huang, Y., Xu, Z., Liu, Z., Yang, W., et al.: Electrolyte permeation and ion diffusion enhanced architectures for high performance all-solid-state flexible supercapacitors. J. Power Sources 482, 228996 (2021)

    Google Scholar 

  162. Avasthi, P., Arya, N., Singh, M., Balakrishnan, V.: Fabrication of iron oxide-CNT based flexible asymmetric solid state supercapacitor device with high cyclic stability. Nanotechnology 31(43), 435402 (2020)

    Google Scholar 

  163. Iqbal, M.Z., Haider, S.S., Zakar, S., Alzaid, M., Afzal, A.M., Aftab, S.: Cobalt-oxide/carbon composites for asymmetric solid-state supercapacitors. Mater. Res. Bull. 131, 110974 (2020)

    Google Scholar 

  164. Zhang, L., Li, G., Jing, L., Li, Z., Li, Z., Yao, H., et al.: Controllable and fast growth of ultrathin α-Ni(OH)2 nanosheets on polydopamine based N-doped carbon spheres for supercapacitors application. Synthetic Metals 270, 116580 (2020)

    Google Scholar 

  165. Mei, H., Zhang, L., Zhang, K., Gao, J., Zhang, H., Huang, Z., et al.: Conversion of MOF into carbon-coated NiSe2 yolk-shell microspheres as advanced battery-type electrodes. Electrochimica Acta 357, 136866 (2020)

    Google Scholar 

  166. Zhang, L., Guo, H., Xue, R., Yue, L., Li, Q., Liu, H., et al.: In-situ facile synthesis of flower shaped NiS2@regenerative graphene oxide derived from waste dry battery nano-composites for high-performance supercapacitors. J. Energy Storage 31, 101630 (2020)

    Google Scholar 

  167. Van Toan, N., Kim Tuoi, T.T., Li, J., Inomata, N., Ono, T.: Liquid and solid states on-chip micro-supercapacitors using silicon nanowire-graphene nanowall-pani electrode based on microfabrication technology. Mater. Res. Bull. 131, 110977 (2020)

    Google Scholar 

  168. Sethi, M., Shenoy, U.S., Bhat, D.K.: Simple solvothermal synthesis of porous graphene-NiO nanocomposites with high cyclic stability for supercapacitor application. J. Alloys Comp. 854, 157190 (2021)

    Google Scholar 

  169. Golkhatmi, S.Z., Sedghi, A., Miankushki, H.N., Khalaj, M.: Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy 214, 118950 (2021)

    Google Scholar 

  170. Wang, C., Liu, F., Chen, J., Yuan, Z., Liu, C., Zhang, X., et al.: A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 32, 448–457 (2020)

    Article  Google Scholar 

  171. Naderi, L., Shahrokhian, S., Soavi, F.: Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO2/PEDOT:PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode. J. Mater. Chem. A 8(37), 19588–602 (2020)

    Google Scholar 

  172. Wang, X., Li, X., Huang, C., Hao, C., Ge, C., Guo, Y.: Fabrication of NiCoAl-layered double hydroxide/N-GO for high energy all-solid-state asymmetric supercapacitors. Appl. Surf. Sci. 527, 146891 (2020)

    Google Scholar 

  173. Khanam, Z., Liu, J., Song, S.: Flexible graphene paper electrode prepared via polyvinyl alcohol-assisted shear-exfoliation for all-solid-state polymer supercapacitor application. Electrochimica Acta 363, 137208 (2020)

    Google Scholar 

  174. Hong, Y., Xu, J., Chung, J.S., Choi, W.M.: Graphene quantum dots/Ni(OH)2 nanocomposites on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. Sci. Technol. 58, 73–79 (2020)

    Article  Google Scholar 

  175. Zhou, Y., Cheng, X., Huang, F., Sha, Z., Han, Z., Chen, J., et al.: Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon 172, 272–282 (2021)

    Article  CAS  Google Scholar 

  176. El-Gendy, D.M., Wahab, R.M.A.E., Selim, M.M., Allam, N.K.: A facile synthesis of zeolitic analcime/spongy graphene nanocomposites as novel hybrid electrodes for symmetric supercapacitors. J. Energy Storage 32, 101953 (2020)

    Google Scholar 

  177. You, Y., Qu, K., Shi, C., Sun, Z., Huang, Z., Li, J., et al.: Binder-free CuS/ZnS/sodium alginate/rGO nanocomposite hydrogel electrodes for enhanced performance supercapacitors. Int. J. Biol. Macromol. 162, 310–319 (2020)

    Article  CAS  Google Scholar 

  178. Thulasi, K.M., Manikkoth, S.T., Paravannoor, A., Palantavida, S., Bhagiyalakshmi, M., Vijayan, B.K.: Facile synthesis of TNT-VO2(M) nanocomposites for high performance supercapacitors. J. Electroanal. Chem. 878, 114644 (2020)

    Google Scholar 

  179. Garg, R., Agarwal, A., Agarwal, M.: A review on MXene for energy storage application: effect of interlayer distance. Mater. Res. Express 7(2), 022001 (2020)

    Google Scholar 

  180. Luo, Y., Tian, Y., Tang, Y., Yin, X., Que, W.: 2D hierarchical nickel cobalt sulfides coupled with ultrathin titanium carbide (MXene) nanosheets for hybrid supercapacitors. J. Power Sources 482, 228961 (2021)

    Google Scholar 

  181. Wei D, Wu W, Zhu J, Wang C, Zhao C, Wang L (2020) A facile strategy of polypyrrole nanospheres grown on Ti3C2-MXene nanosheets as advanced supercapacitor electrodes. J. Electroanal. Chem. 877, 114538 (2020)

    Google Scholar 

  182. Xue, J., Yang, Q., Guan, R., Shen, Q., Liu, X., Jia, H., et al.: High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Mater. Chem. Phys. 256, 123591 (2020)

    Google Scholar 

  183. Krishnaiah, P., et al.: Fabrication of anode material for asymmetric supercapacitor device using polyaniline wrapped boroncarbonitride nanocomposite with enhanced capacitance. J.Alloys Comp. 848, 156602 (2020)

    Google Scholar 

  184. Huang, Y., Bao, S., Lu, J.: Flower-like MnO2/polyaniline/hollow mesoporous silica as electrode for high-performance all-solid-state supercapacitors. J. Alloys Comp. 845, 156192 (2020)

    Google Scholar 

  185. Singh, G., Kumar, Y., Husain, S.: High charge retention and optimization of polyaniline–titanium dioxide nanoparticles composite nanostructures for dominantly stable pseudocapacitive nature. J. Energy Storage 31, 101660 (2020)

    Google Scholar 

  186. Abuali, M., Arsalani, N., Ahadzadeh, I.: Investigation of electrochemical performance of a new nanocomposite: CuCo2S4/Polyaniline on carbon cloth. J. Energy Storage 32, 101694 (2020)

    Google Scholar 

  187. Wang, L., Wang, X., Kannan, P., Ji, S., Wang, Z.: A highly-stable flexible electrode based on Co(OH)2@NiSe2 electroplated on metals co-coated textiles. Mater. Lett. 279, 128492 (2020)

    Google Scholar 

  188. Butenko, D.S., Zhang, X., Zatovsky, I.V., Fesych, I.V., Li, S., Chen, R., et al.: Bi(nanoparticles)/CNx(nanosheets) nanocomposites as high capacity and stable electrode materials for supercapacitors: the role of urea. Dalton Trans. 49(35), 12197–12209 (2020)

    Article  CAS  Google Scholar 

  189. Raju, T.D., Gopalakrishnan, A., Badhulika, S.: Facile synthesis of 3D/2D Cu2Se cauliflower/CuS nanosheets composite as a binder-free electrode for high-performance asymmetric solid-state supercapacitors. J. Alloys Comp. 845, 156241 (2020)

    Google Scholar 

  190. Wang, Q., Tian, X., Zhang, D.: Flexible asymmetric supercapacitors and electrocatalytic water splitting based on CoNiSe2/CoNiSe2 nanoflowers. Mater. Lett. 276, 128245 (2020)

    Google Scholar 

  191. Manuraj, M., Chacko, J., Narayanan Unni, K.N., Rakhi, R.B.: Heterostructured MoS2-RuO2 nanocomposite: a promising electrode material for supercapacitors. J. Alloys Comp. 836, 155420 (2020)

    Google Scholar 

  192. Guo, L., Ma, W.-B., Wang, Y., Song, X.-Z., Ma, J., Han, X.-D., et al.: A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J. Alloys Comp. 843, 155895 (2020)

    Google Scholar 

  193. Bhat, M.Y., Yadav, N., Hashmi, S.A.: A high performance flexible gel polymer electrolyte incorporated with suberonitrile as additive for quasi-solid carbon supercapacitor. Mater. Sci. Eng. B 262, 114721 (2020)

    Google Scholar 

  194. Poochai, C., Sriprachuabwong, C., Sodtipinta, J., Lohitkarn, J., Pasakon, P., Primpray, V., et al.: Alpha-MnO2 nanofibers/nitrogen and sulfur-co-doped reduced graphene oxide for 4.5 V quasi-solid state supercapacitors using ionic liquid-based polymer electrolyte. J. Colloid Interface Sci. 583, 734–745 (2021)

    Article  CAS  Google Scholar 

  195. Song, Z., Duan, H., Miao, L., Ruhlmann, L., Lv, Y., Xiong, W., et al.: Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon 168, 499–507 (2020)

    Article  CAS  Google Scholar 

  196. Zhao, J., Gong, J., Wang, G., Zhu, K., Ye, K., Yan, J., et al.: A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chem. Eng. J. 401, 125456 (2020)

    Google Scholar 

  197. Cevik, E., Gunday, S.T., Bozkurt, A., Amine, R., Amine, K.: Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. J. Power Sources 474, 228544 (2020)

    Google Scholar 

  198. Demirel, S., Akgun, M.R., Topkaya, R., Kocyigit, A., Cicek, K.: Fabrication and electrochemical properties of flexible ZnO doped PVA-Borax based solid-gel electrolytes. Inorganic Chem. Commun. 122, 108268 (2020)

    Google Scholar 

  199. Fan, L.-Q., Geng, C.-L., Wang, Y.-L., Sun, S.-J., Huang, Y.-F., Wu, J.-H.: Design of a redox-active “water-in-salt” hydrogel polymer electrolyte for superior-performance quasi-solid-state supercapacitors. New J. Chem. 44(39), 17070–17078 (2020)

    Article  CAS  Google Scholar 

  200. Lee, C.S., Ahn, S.H., Kim, D.J., Lee, J.H., Manthiram, A., Kim, J.H.: Flexible, all-solid-state 1.4 V symmetric supercapacitors with high energy density based on comb polymer electrolyte and 1D hierarchical carbon nanotube electrode. J. Power Sources 474, 228477 (2020)

    Google Scholar 

Download references

Acknowledgements

Work supported by the Portuguese Foundation for Science and Technology (FCT): projects UID/FIS/04650/2020, UID/QUI/0686/2020, UID/CTM/50025/2020, UID/QUI/50006/2020, PTDC/FIS-MAC/28157/2017, and Grants SFRH/BD/140842/2018 (J.C.B.), CEECIND/00833/2017 (R.G.) and SFRH/BPD/112547/2015 (C.M.C.). Financial support from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbosa, J., Gonçalves, R., Costa, C.M., Lanceros-Mendez, S. (2022). Nanocomposites for Energy Storage Applications. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_18

Download citation

Publish with us

Policies and ethics