Skip to main content

Advanced Neutron and Synchrotron Characterization Techniques for Nanocomposite Perovskite Materials Toward Solar Cells Applications

  • Chapter
  • First Online:
Book cover Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications

Abstract

Solar energy conversion represents one of the better options to replace carbon-based technology. Among a wide variety of available technologies, well stablished silicon solar cells entails almost 90% of the up-scale installed technology. Nevertheless, from a decade ago perovskite solar cells interrupted abruptly in the research community as an impressive material that triggers the power energy conversion from 3.9 to 20% in just five years, being currently above 25.5% and very close to silicon efficiencies. Its easy and cost-effective fabrication process as well as its tuneable opto-electronic properties make perovskite material very suitable to solar energy conversion. Although it presents an amphiphilic character and long carrier transport, usually two selective layers (hole and electron) are deposited to assist charge extraction. Therefore, the proper selection of those selective contacts contributes not only to the improvement of the final performance of the solar cells, but also to the intrinsic stability of the device. In addition, the layered structure nature of the perovskite devices requires a good connection and a perfect energy level alignment between layers. However, the lack of a deep understanding of the charge recombination process and some instability issues limit its implementation to industrial scale. This chapter gives a critical discussion about the materials and device design to improve opto-electronic properties and interfaces in different perovskites composition based solar cells. A discussion about the synthesis of perovskite solar cell devices is followed by a comprehensive dissertation on advanced neutron and synchrotron-based characterization techniques, which offer the possibility to disentangle the charge transport and degradation mechanism in perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(Spiro-OMeTAD):

2,2’,7,7’-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9’spirobifluorene

(t-BP):

4-Tert-butylpiridine

(AFM):

Atomic force microscopy

(ALD):

Atomic layer deposition

(LiTFSI):

Bis-(trifluoromethanesulfonyl)imide lithium salt

(CMRR):

China Miyang Research Reactor

(DOS):

Density of states simulations

(DMF):

Dimethyl formamide

(DMSO):

Dimethyl sulfoxide

(DSSC):

Dye Sensitized Solar Cell

(ETM):

Electron Transport Material

(ETA):

Ethylammonium

(ESRF):

European Synchrotron Radiation Facility

(EXAFS):

Extended X-Ray absorption fine structure spectroscopy

FTO:

Fluoro tin oxide

(FA+):

Formamidinium

(GISANS):

Grazing-incidence SANS

(GISAXS):

Grazing-incidence small angle X-Ray scattering

(GIWAXS):

Grazing-incidence wide-angle X-Ray scattering

(GIXRD):

Grazing-incidence X-Ray diffraction

(GUA):

Guanidinium

(HNEXAFS):

Hard near-edge X-Ray absorption fine structure spectroscopy

(HXMCD):

Hard X-Ray magnetic circular dichroism

(HAXPES):

Hard X-Ray photoelectron spectroscopy

(HOMO):

Highest occupied molecular orbital

(HFBS):

High-flux backscattering spectrometer

(HTM):

Hole Transport Material Impedance spectroscopy

(IPCE):

Incident Photon-to-electron Conversion Efficiency

ITO:

Indium tin oxide

(INS):

Inelastic neutron scattering

(ICP):

Intrinsic Conducting polymers

(LUMO):

Lowest unoccupied molecular orbital

(MBCP):

Mesoporous block-copolymer

(MA+):

Methylammonioum

(NSRRC):

National Synchrotron Radiation Research Center

(NEXAFS):

Near-edge X-Ray absorption fine structure spectroscopy

(NR):

Neutron reflectometry

(NMR):

Nuclear magnetic resonance

(NQR):

Nuclear quadrupole resonance

(OPV):

Organic photovoltaic

(OLEDs):

Organic solar cells

(PSC):

Perovskite Solar cell

(PEA+):

Phenylethlylammonium

(PL):

Photoluminescence

(PEDOT):

Poly(3,4 ethylene dioxythiophene)

(P3HT):

Poly(3-hexylthiophene-2,5-diyl)

PET:

Poly(ethylene terephthalate)

(PTAA):

Poly(triarylamine)

(PCEs):

Power Conversion Efficiencies

(PCE):

Power conversion efficiency

(QENS):

Quasi-elastic neutron scattering Raman spectroscopy

RH:

Relative humidity

(RIXS):

Resonant inelastic X-Ray scattering

(R2R):

Roll-to-roll

(SEM):

Scanning electron microscopy

(STEM):

Scanning transmission electron microscope

(SSRF):

Shanghai Synchrotron Radiation Facility

(SANS):

Small angle neutron scattering

(SAXS):

Small angle X-Ray scattering

(SXES):

Soft X-Ray emission spectroscopy

(TPNR):

Time-of-flight polarized neutron reflectometer

(TRS):

Time-resolved spectroscopy

(FK209):

Tris[2-(1H-pyrazol-1-yl)-4-tert-butylpyridine]cobalt(III)tris [bis(trifluoromethylsulfonyl) imide]

(TEM):

Tunneling electron microscopy

(WAXS):

Wide-angle X-Ray scattering

(XANES):

X-Ray absorption near-edge structure spectroscopy

(XRD):

X-Ray diffraction

(XMCD):

X-Ray magnetic circular dichroism

(XPS):

X-Ray photoemission spectroscopy

(GBL):

γ-Butyrolactone

References

  1. Snaith, H.J.: Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018)

    Article  CAS  Google Scholar 

  2. Jena, A.K., Kulkarni, A., Miyasaka, T.: Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019). https://doi.org/10.1021/acs.chemrev.8b00539

    Article  CAS  Google Scholar 

  3. NREL efficiency chart - https://www.nrel.gov/pv/cell-efficiency.html

  4. (2020) Perovskites take steps to industrialization. Nat. Energy 5

    Google Scholar 

  5. Valadi, K., Gharibi, S., Taheri-Ledari, R., et al.: Metal oxide electron transport materials for perovskite solar cells: a review. Environ. Chem. Lett. 19, 2185–2207 (2021)

    Article  CAS  Google Scholar 

  6. Shalan, A.E., Sharmoukh, W., Elshazly, A.N., et al.: Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells. Sustain. Mater. Technol. 26, e00226 (2020)

    Google Scholar 

  7. Shalan, A.E., Mohammed, M.K.A., Govindan, N.: Graphene assisted crystallization and charge extraction for efficient and stable perovskite solar cells free of a hole-transport layer. RSC Adv. 11, 4417–4424 (2021)

    Article  CAS  Google Scholar 

  8. Petrus, M.L., Schlipf, J., Li, C., et al.: Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater. 7 (2017)

    Google Scholar 

  9. Shalan, A.E., El-Shazly, A.N., Rashad, M.M., Allam, N.K.: Tin–zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv. 1, 2654–2662 (2019)

    Article  CAS  Google Scholar 

  10. Cheol, K.M., Ham, S.Y., Cheng, D., et al.: Advanced characterization techniques for overcoming challenges of perovskite solar cell materials. Adv. Energy Mater. 2001753,1–26. Doi: https://doi.org/10.1002/aenm.202001753

  11. Wang, R., Mujahid, M., Duan, Y., et al.: A Review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 29 (2019)

    Google Scholar 

  12. Shalan, A.E., Akman, E., Sadegh, F., Akin, S.: Efficient and stable perovskite solar cells enabled by dicarboxylic acid-supported perovskite crystallization. J. Phys. Chem. Lett. 12, 997–1004 (2021)

    Article  CAS  Google Scholar 

  13. Djurišić, A.B., Liu, F.Z., Tam, H.W., et al.: Perovskite solar cells - an overview of critical issues. Prog. Quantum Electron. 53, 1–37 (2017)

    Article  Google Scholar 

  14. Johnsson, M., Lemmens, P.: Crystallography and Chemistry of Perovskites. In: Handbook of Magnetism and Advanced Magnetic Materials (2007)

    Google Scholar 

  15. Goldschmidt, S.A.: Cover Page. J. Am. Chem. Soc. 1, 311–312 (1879). https://doi.org/10.1021/ja02148a600

    Article  Google Scholar 

  16. Li, C., Lu, X., Ding, W., et al.: Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. Sect. B Struct. Sci. 64, 702–707 (2008). https://doi.org/10.1107/S0108768108032734

    Article  CAS  Google Scholar 

  17. Weller, M.T., Weber, O.J., Henry, P.F., et al.: Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015). https://doi.org/10.1039/c4cc09944c

    Article  CAS  Google Scholar 

  18. Petrov, A.A., Fateev, S.A., Khrustalev, V.N., et al.: Formamidinium haloplumbate intermediates: the missing link in a chain of hybrid perovskites crystallization. Chem. Mater. 32, 7739–7745 (2020). https://doi.org/10.1021/acs.chemmater.0c02156

    Article  CAS  Google Scholar 

  19. Fu, Y., Rea, M.T., Chen, J., et al.: Selective stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in Thin Films. Chem. Mater. 29, 8385–8394 (2017). https://doi.org/10.1021/acs.chemmater.7b02948

    Article  CAS  Google Scholar 

  20. Fu, Y., Wu, T., Wang, J., et al.: Stabilization of the metastable lead iodide perovskite phase via surface functionalization. Nano Lett. 17, 4405–4414 (2017). https://doi.org/10.1021/acs.nanolett.7b01500

    Article  CAS  Google Scholar 

  21. Pellet, N., Gao, P., Gregori, G., et al.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chemie – Int. Ed. 53, 3151–3157 (2014). https://doi.org/10.1002/anie.201309361

    Article  CAS  Google Scholar 

  22. Zhang, Y., Grancini, G., Feng, Y., et al.: Optimization of stable quasi-cubic FAxMA1-xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Lett. 2, 802–806 (2017). https://doi.org/10.1021/acsenergylett.7b00112

    Article  CAS  Google Scholar 

  23. Saliba, M., Matsui, T., Domanski, K., et al.: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science (80- ) 354, 206–209 (2016). https://doi.org/10.1126/science.aah5557

  24. Abdi-Jalebi, M., Andaji-Garmaroudi, Z., Pearson, A.J., et al.: Potassium-and rubidium-passivated alloyed perovskite films: Optoelectronic properties and moisture stability. ACS Energy Lett. 3, 2671–2678 (2018). https://doi.org/10.1021/acsenergylett.8b01504

    Article  CAS  Google Scholar 

  25. Duong, T., Wu, Y.L., Shen, H., et al.: Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency. Adv. Energy Mater. 7 (2017). Doi:https://doi.org/10.1002/aenm.201700228

  26. Saliba, M., Matsui, T., Seo, J.Y., et al.: Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/c5ee03874j

    Article  CAS  Google Scholar 

  27. Zhang, T., Wu, J., Zhang, P., et al.: High speed and stable solution-processed triple cation perovskite photodetectors. Adv. Opt. Mater. 6 (2018). Doi: https://doi.org/10.1002/adom.201701341

  28. Wang, C., Zhang, C., Wang, S., et al.: Low-temperature processed, efficient, and highly reproducible cesium-doped triple cation perovskite planar heterojunction solar cells. Sol. RRL 2 (2018). Doi:https://doi.org/10.1002/solr.201700209

  29. Yang, W.S., Noh, J.H., Jeon, N.J., et al.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 80(348), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272

    Article  CAS  Google Scholar 

  30. Gratia, P., Grancini, G., Audinot, J.N., et al.: Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138, 15821–15824 (2016). https://doi.org/10.1021/jacs.6b10049

    Article  CAS  Google Scholar 

  31. Kubicki, D.J., Prochowicz, D., Hofstetter, A., et al.: Phase segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1-xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017). https://doi.org/10.1021/jacs.7b07223

    Article  CAS  Google Scholar 

  32. Hentz, O., Zhao, Z., Gradečak, S.: Impacts of ion segregation on local optical properties in mixed halide perovskite films. Nano Lett. 16, 1485–1490 (2016). https://doi.org/10.1021/acs.nanolett.5b05181

    Article  CAS  Google Scholar 

  33. Knight, A.J., Wright, A.D., Patel, J.B., et al.: Electronic traps and phase segregation in lead mixed-halide perovskite. ACS Energy Lett 4, 75–84 (2019). https://doi.org/10.1021/acsenergylett.8b02002

    Article  CAS  Google Scholar 

  34. Yan, J., Qiu, W., Wu, G., et al.: Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. J. Mater. Chem. A 6, 11063–11077 (2018)

    Article  CAS  Google Scholar 

  35. De, M.N., Zhou, H., Chen, Q., et al.: Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16, 1009–1016 (2016). https://doi.org/10.1021/acs.nanolett.5b04060

    Article  CAS  Google Scholar 

  36. Jodlowski, A.D., Roldán-Carmona, C., Grancini, G., et al.: Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2, 972–979 (2017). https://doi.org/10.1038/s41560-017-0054-3

    Article  CAS  Google Scholar 

  37. Chen, P., Bai, Y., Wang, S., et al.: In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28 (2018). Doi:https://doi.org/10.1002/adfm.201706923

  38. Wang, Z., Lin, Q., Chmiel, F.P., et al.: Efficient ambient-air-stable solar cells with 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2 (2017). Doi:https://doi.org/10.1038/nenergy.2017.135

  39. Grancini, G., Nazeeruddin, M.K.: Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019)

    Article  CAS  Google Scholar 

  40. Shikoh, A.S., Paek, S., Polyakov, A.Y., et al.: Assessing mobile ions contributions to admittance spectra and current-voltage characteristics of 3D and 2D/3D perovskite solar cells. Sol. Energy Mater Sol. Cells 215 (2020). Doi: https://doi.org/10.1016/j.solmat.2020.110670

  41. Salado, M., Fernández, M.A., Holgado, J.P., et al.: Towards extending solar cell lifetimes: addition of a fluorous cation to triple cation-based perovskite films. Chemsuschem 10, 3846–3853 (2017). https://doi.org/10.1002/cssc.201700797

    Article  CAS  Google Scholar 

  42. Salado, M., Jodlowski, A.D., Roldan-Carmona, C., et al.: Surface passivation of perovskite layers using heterocyclic halides: Improved photovoltaic properties and intrinsic stability. Nano Energy 50, 220–228 (2018). https://doi.org/10.1016/j.nanoen.2018.05.035

    Article  CAS  Google Scholar 

  43. Zhao, P., Kim, B.J., Jung, H.S.: Passivation in perovskite solar cells: a review. Mater. Today Energy 7, 267–286 (2018). https://doi.org/10.1016/j.mtener.2018.01.004

    Article  Google Scholar 

  44. Salado, M., Andresini, M., Huang, P., et al.: Interface engineering by thiazolium iodide passivation towards reduced thermal diffusion and performance improvement in perovskite solar cells. Adv. Funct. Mater. 30, 1–11 (2020). https://doi.org/10.1002/adfm.201910561

    Article  CAS  Google Scholar 

  45. Park B wook, Kedem N, Kulbak M, et al (2018) Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9. Doi: https://doi.org/10.1038/s41467-018-05583-w

  46. Jeon, N.J., Noh, J.H., Kim, Y.C., et al.: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). https://doi.org/10.1038/nmat4014

    Article  CAS  Google Scholar 

  47. Burschka, J., Pellet, N., Moon, S.J., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  Google Scholar 

  48. Li, J., Wang, H., Chin, X.Y., et al.: Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule 4, 1035–1053 (2020). https://doi.org/10.1016/j.joule.2020.03.005

    Article  CAS  Google Scholar 

  49. Zhu, X., Yang, D., Yang, R., et al.: Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale 9, 12316–12323 (2017). https://doi.org/10.1039/c7nr04501h

    Article  CAS  Google Scholar 

  50. Momblona, C., Kanda, H., Sutanto, A.A., et al.: Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Sci. Rep. 10 (2020). Doi: https://doi.org/10.1038/s41598-020-67606-1

  51. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    Article  CAS  Google Scholar 

  52. Lewis, D.J., O’brien, P.: Ambient pressure aerosol-assisted chemical vapour deposition of (CH3NH3)PbBr3, an inorganic-organic perovskite important in photovoltaics. Chem. Commun. 50, 6319–6321 (2014). https://doi.org/10.1039/c4cc02592j

  53. Bhachu, D.S., Scanlon, D.O., Saban, E.J., et al.: Scalable route to CH3NH3PbI3 perovskite thin films by aerosol assisted chemical vapour deposition. J. Mater. Chem. A 3, 9071–9073 (2015). https://doi.org/10.1039/c4ta05522e

    Article  CAS  Google Scholar 

  54. Whitaker, J.B., Kim, D.H., Larson, B.W., et al.: Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels 2, 2442–2449 (2018). https://doi.org/10.1039/c8se00368h

    Article  CAS  Google Scholar 

  55. Kim, J.E., Jung, Y.S., Heo, Y.J., et al.: Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 179, 80–86 (2018). https://doi.org/10.1016/j.solmat.2018.02.003

    Article  CAS  Google Scholar 

  56. Krebs, F.C., Tromholt, T., Jørgensen, M.: Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873–886 (2010). https://doi.org/10.1039/b9nr00430k

    Article  CAS  Google Scholar 

  57. Di Giacomo, F., Shanmugam, S., Fledderus, H., et al.: Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol Energy Mater. Sol. Cells 181, 53–59 (2018). https://doi.org/10.1016/j.solmat.2017.11.010

    Article  CAS  Google Scholar 

  58. Dou, B., Whitaker, J.B., Bruening, K., et al.: Roll-to-roll printing of perovskite solar cells. ACS Energy Lett. 3, 2558–2565 (2018). https://doi.org/10.1021/acsenergylett.8b01556

    Article  CAS  Google Scholar 

  59. Stanne, T.M., Sjögren, L.L.E., Koussevitzky, S., Clarke, A.K.: Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis. Biochem. J. 417, 257–268 (2009). https://doi.org/10.1042/BJ20081146

    Article  CAS  Google Scholar 

  60. Aranda, C., Cristobal, C., Shooshtari, L., et al.: Formation criteria of high efficiency perovskite solar cells under ambient conditions. Sustain. Energy Fuels 1, 540–547 (2017). https://doi.org/10.1039/c6se00077k

    Article  CAS  Google Scholar 

  61. Troughton, J., Hooper, K., Watson, T.M.: Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules. Nano Energy 39, 60–68 (2017). https://doi.org/10.1016/j.nanoen.2017.06.039

    Article  CAS  Google Scholar 

  62. Ma, C., Park, N.G.: A realistic methodology for 30% efficient perovskite solar cells. Chem 6, 1254–1264 (2020)

    Article  CAS  Google Scholar 

  63. Yang, D., Yang, R., Wang, K., et al.: High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9 (2018).doi:https://doi.org/10.1038/s41467-018-05760-x

  64. Zheng, X., Hou, Y., Bao, C., et al.: Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4

    Article  CAS  Google Scholar 

  65. Calió, L., Kazim, S., Grätzel, M., Ahmad, S.: Hole-Transport Materials for Perovskite Solar Cells. Angew. Chemie - Int. Ed. 55, 14522–14545 (2016)

    Article  Google Scholar 

  66. Fabregat-Santiago, F., Bisquert, J., Cevey, L., et al.: Electron transport and recombination in solid-state dye solar cell with spiro-OMeTAD as hole conductor. J. Am. Chem. Soc. 131, 558–562 (2009). https://doi.org/10.1021/ja805850q

    Article  CAS  Google Scholar 

  67. Nguyen, W.H., Bailie, C.D., Unger, E.L., McGehee, M.D.: Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136, 10996–11001 (2014). https://doi.org/10.1021/ja504539w

    Article  CAS  Google Scholar 

  68. Bi, D., Yang, L., Boschloo, G., et al.: Effect of different hole transport materials on recombination in CH 3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013). https://doi.org/10.1021/jz400638x

    Article  CAS  Google Scholar 

  69. Bakr, Z.H., Wali, Q., Fakharuddin, A., et al.: Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017)

    Article  CAS  Google Scholar 

  70. Xu, B., Sheibani, E., Liu, P., et al.: Carbazole-based hole-transport materials for efficient solid-state dye-sensitized solar cells and perovskite solar cells. Adv. Mater. 26, 6629–6634 (2014). https://doi.org/10.1002/adma.201402415

    Article  CAS  Google Scholar 

  71. Jung, E.H., Jeon, N.J., Park, E.Y., et al.: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3

    Article  CAS  Google Scholar 

  72. Ko, Y., Kim, Y., Lee, C., et al.: Investigation of hole-transporting poly(triarylamine) on aggregation and charge transport for hysteresisless scalable planar perovskite solar cells. ACS Appl. Mater. Interfaces 10, 11633–11641 (2018). https://doi.org/10.1021/acsami.7b18745

    Article  CAS  Google Scholar 

  73. Xu, W., Gao, Y., Ming, W., et al.: Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 32 (2020). Doi: https://doi.org/10.1002/adma.202003965

  74. Jeng, J.Y., Chiang, Y.F., Lee, M.H., et al.: CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013). https://doi.org/10.1002/adma.201301327

    Article  CAS  Google Scholar 

  75. Abrusci, A., Stranks, S.D., Docampo, P., et al.: High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013). https://doi.org/10.1021/nl401044q

    Article  CAS  Google Scholar 

  76. Liu, D., Wang, Q., Traverse, C.J., et al.: Impact of ultrathin C60 on perovskite photovoltaic devices. ACS Nano 12, 876–883 (2018). https://doi.org/10.1021/acsnano.7b08561

    Article  CAS  Google Scholar 

  77. Mahmoudi, T., Wang, Y., Hahn, Y.B.: Graphene and its derivatives for solar cells application. Nano Energy 47, 51–65 (2018)

    Article  CAS  Google Scholar 

  78. Grancini, G., Roldán-Carmona, C., Zimmermann, I., et al.: One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms15684

  79. Kim, J., Lee, G., Lee, K., et al.: Fluorine plasma treatment on carbon-based perovskite solar cells for rapid moisture protection layer formation and performance enhancement. Chem. Commun. 56, 535–538 (2020). https://doi.org/10.1039/c9cc07785e

    Article  CAS  Google Scholar 

  80. Qin, P., He, Q., Ouyang, D., et al.: Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells. Sci. China Chem. 60, 472–489 (2017)

    Article  CAS  Google Scholar 

  81. Abzieher, T., Moghadamzadeh, S., Schackmar, F., et al.: Electron-beam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Adv. Energy Mater. 9 (2019). Doi:https://doi.org/10.1002/aenm.201802995

  82. Seo, S., Park, I.J., Kim, M., et al.: An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale 8, 11403–11412 (2016). https://doi.org/10.1039/c6nr01601d

    Article  CAS  Google Scholar 

  83. Sun, W., Li, Y., Ye, S., et al.: High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8, 10806–10813 (2016). https://doi.org/10.1039/c6nr01927g

    Article  CAS  Google Scholar 

  84. Christians, J.A., Fung, R.C.M., Kamat, P.V.: An inorganic hole conductor for Organo-lead halide perovskite solar cells. improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014). https://doi.org/10.1021/ja411014k

    Article  CAS  Google Scholar 

  85. Jung, M., Kim, Y.C., Jeon, N.J., et al.: Thermal stability of CuSCN hole conductor-based perovskite solar cells. Chemsuschem 9, 2592–2596 (2016). https://doi.org/10.1002/cssc.201600957

    Article  CAS  Google Scholar 

  86. Weber, O.J., Ghosh, D., Gaines, S., et al.: Phase behavior and polymorphism of formamidinium lead iodide. Chem. Mater. 30, 3768–3778 (2018). https://doi.org/10.1021/acs.chemmater.8b00862

    Article  CAS  Google Scholar 

  87. Harwell, J.R., Payne, J.L., Sajjad, M.T., et al.: Role of lattice distortion and a site cation in the phase transitions of methylammonium lead halide perovskites. Phys. Rev. Mater. 2, 1–13 (2018). https://doi.org/10.1103/PhysRevMaterials.2.065404

    Article  Google Scholar 

  88. López, C.A., Abia, C., Rodrigues, J.E., et al.: Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci. Rep. 10, 1–11 (2020). https://doi.org/10.1038/s41598-020-68085-0

    Article  CAS  Google Scholar 

  89. Mashiyama, H., Kawamura, Y., Kasano, H., et al.: Disordered configuration of methylammonium of CH3NH 3PbBr 3 determined by single crystal neutron diffractometry. Ferroelectrics 348, 182–186 (2007). https://doi.org/10.1080/00150190701196435

    Article  CAS  Google Scholar 

  90. Ren, Y., Oswald, I.W.H., Wang, X., et al.: Orientation of organic cations in hybrid inorganic-organic perovskite CH3NH3PbI3 from subatomic resolution single crystal neutron diffraction structural studies. Cryst. Growth Des. 16, 2945–2951 (2016). https://doi.org/10.1021/acs.cgd.6b00297

    Article  CAS  Google Scholar 

  91. Yang, B., Ming, W., Du, M.H., et al.: Real-time observation of order-disorder transformation of organic cations induced phase transition and anomalous photoluminescence in hybrid perovskites. Adv. Mater. 30, 1–7 (2018). https://doi.org/10.1002/adma.201705801

    Article  CAS  Google Scholar 

  92. Schlipf, J., Bießmann, L., Oesinghaus, L., et al.: In situ monitoring the uptake of moisture into hybrid perovskite thin films. J. Phys. Chem. Lett. 9, 2015–2021 (2018). https://doi.org/10.1021/acs.jpclett.8b00687

    Article  CAS  Google Scholar 

  93. Schlipf, J., Hu, Y., Pratap, S., et al.: Shedding light on the moisture stability of 3D/2D hybrid perovskite heterojunction thin films. ACS Appl. Energy Mater. 2, 1011–1018 (2019). https://doi.org/10.1021/acsaem.9b00005

    Article  CAS  Google Scholar 

  94. Li, Y., Cui, K., Xu, X., et al.: Understanding the essential role of PbI2 films in a high-performance lead halide perovskite photodetector. J. Phys. Chem. C 124, 15107–15114 (2020). https://doi.org/10.1021/acs.jpcc.0c04488

    Article  CAS  Google Scholar 

  95. Wang, C., Liu, Y., Liu, S.F., et al.: Giant phonon tuning effect via pressure-manipulated polar rotation in perovskite MAPbI3. J. Phys. Chem. Lett. 9, 3029–3034 (2018). https://doi.org/10.1021/acs.jpclett.8b01101

    Article  CAS  Google Scholar 

  96. Ferreira, A.C., Létoublon, A., Paofai, S., et al.: Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 121, 1–6 (2018). https://doi.org/10.1103/PhysRevLett.121.085502

    Article  Google Scholar 

  97. Gold-Parker, A., Gehring, P.M., Skelton, J.M., et al.: Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. Proc. Natl. Acad. Sci. U S A 115, 11905–11910 (2018). https://doi.org/10.1073/pnas.1812227115

    Article  CAS  Google Scholar 

  98. Chen, T., Foley, B.J., Ipek, B., et al.: Rotational dynamics of organic cations in the CH3NH3PbI3 perovskite. Phys. Chem. Chem. Phys. 17, 31278–31286 (2015). https://doi.org/10.1039/c5cp05348j

    Article  CAS  Google Scholar 

  99. Leguy, A.M.A., Frost, J.M., McMahon, A.P., et al.: The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6 (2015). Doi:https://doi.org/10.1038/ncomms8124

  100. Mozur, E.M., Hope, M.A., Trowbridge, J.C., et al.: Cesium substitution disrupts concerted cation dynamics in formamidinium hybrid perovskites. Chem. Mater. 32, 6266–6277 (2020). https://doi.org/10.1021/acs.chemmater.0c01862

    Article  CAS  Google Scholar 

  101. Li, B., Kawakita, Y., Liu, Y., et al.: Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3. Nat. Commun. 8, 1–9 (2017). https://doi.org/10.1038/ncomms16086

    Article  CAS  Google Scholar 

  102. Li, J., Bouchard, M., Reiss, P., et al.: Activation energy of organic cation rotation in CH3NH3PbI3 and CD3NH3PbI3: quasi-elastic neutron scattering measurements and first-principles analysis including nuclear quantum effects. J. Phys. Chem. Lett. 9, 3969–3977 (2018). https://doi.org/10.1021/acs.jpclett.8b01321

    Article  CAS  Google Scholar 

  103. Frost, J.M., Walsh, A.: What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016). https://doi.org/10.1021/acs.accounts.5b00431

    Article  CAS  Google Scholar 

  104. Mozur, E.M., Trowbridge, J.C., Maughan, A.E., et al.: Dynamical phase transitions and cation orientation-dependent photoconductivity in CH(NH2)2PbBr 3. ACS Mater. Lett. 1, 260–264 (2019). https://doi.org/10.1021/acsmaterialslett.9b00209

    Article  CAS  Google Scholar 

  105. Paternò, G.M., Robbiano, V., Santarelli, L., et al.: Perovskite solar cell resilience to fast neutrons. Sustain. Energy Fuels 3, 2561–2566 (2019). https://doi.org/10.1039/c9se00102f

    Article  CAS  Google Scholar 

  106. Lehmann, F., Franz, A., Többens, D.M., et al.: The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction. RSC Adv. 9, 11151–11159 (2019). https://doi.org/10.1039/c8ra09398a

    Article  CAS  Google Scholar 

  107. Tan, K.W., Moore, D.T., Saliba, M., et al.: Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8, 4730–4739 (2014). https://doi.org/10.1021/nn500526t

    Article  CAS  Google Scholar 

  108. Zhao, J., Cai, B., Luo, Z., et al.: Investigation of the hydrolysis of perovskite organometallic halide CH3NH3PbI3 in humidity environment. Sci. Rep. 6, 1–6 (2016). https://doi.org/10.1038/srep21976

    Article  CAS  Google Scholar 

  109. Kuai, L., Li, J., Li, Y., et al.: Revealing crystallization dynamics and the compositional control mechanism of 2D perovskite film growth by in situ synchrotron-based GIXRD. ACS Energy Lett. 5, 8–16 (2020). https://doi.org/10.1021/acsenergylett.9b02366

    Article  CAS  Google Scholar 

  110. Schlipf, J., Müller-Buschbaum, P.: Structure of organometal halide perovskite films as determined with grazing-incidence X-Ray scattering methods. Adv. Energy Mater. 7, 1–10 (2017). https://doi.org/10.1002/aenm.201700131

    Article  CAS  Google Scholar 

  111. Schlipf, J., Docampo, P., Schaffer, C.J., et al.: A closer look into two-step perovskite conversion with X-ray scattering. J. Phys. Chem. Lett. 6, 1265–1269 (2015). https://doi.org/10.1021/acs.jpclett.5b00329

    Article  CAS  Google Scholar 

  112. Oesinghaus, L., Schlipf, J., Giesbrecht, N., et al.: Toward tailored film morphologies: the origin of crystal orientation in hybrid perovskite thin films. Adv. Mater. Interfaces 3, 1–11 (2016). https://doi.org/10.1002/admi.201600403

    Article  CAS  Google Scholar 

  113. Moore, D.T., Sai, H., Tan, K.W., et al.: Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137, 2350–2358 (2015). https://doi.org/10.1021/ja512117e

    Article  CAS  Google Scholar 

  114. Zhang, W., Saliba, M., Moore, D.T., et al.: Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6 (2015). Doi: https://doi.org/10.1038/ncomms7142

  115. Barrows, A.T., Lilliu, S., Pearson, A.J., et al.: Monitoring the formation of a CH3NH3PbI3–xClx perovskite during thermal annealing using x-ray scattering. Adv. Funct. Mater. 26, 4934–4942 (2016). https://doi.org/10.1002/adfm.201601309

    Article  CAS  Google Scholar 

  116. Lindblad, R., Bi, D., Park, B.W., et al.: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014). https://doi.org/10.1021/jz402749f

    Article  CAS  Google Scholar 

  117. Lindblad, R., Jena, N.K., Philippe, B., et al.: Electronic structure of CH3NH3PbX3 perovskites: dependence on the halide moiety. J Phys. Chem. C 119, 1818–1825 (2015). https://doi.org/10.1021/jp509460h

    Article  CAS  Google Scholar 

  118. McLeod, J.A., Wu, Z., Shen, P., et al.: Self-alignment of the methylammonium cations in thin-film organometal perovskites. J Phys. Chem. Lett. 5, 2863–2867 (2014). https://doi.org/10.1021/jz501472d

    Article  CAS  Google Scholar 

  119. Tsai, H., Nie, W., Blancon, J.C., et al.: High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536, 312–317 (2016). https://doi.org/10.1038/nature18306

    Article  CAS  Google Scholar 

  120. Huang, W., Huang, F., Gann, E., et al.: Probing molecular and crystalline orientation in solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 5529–5536 (2015). https://doi.org/10.1002/adfm.201502553

    Article  CAS  Google Scholar 

  121. Kim, N.K., Min, Y.H., Noh, S., et al.: Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/s41598-017-04690-w

    Article  CAS  Google Scholar 

  122. Whitfield, P.S., Herron, N., Guise, W.E., et al.: Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci. Rep. 6, 1–16 (2016). https://doi.org/10.1038/srep35685

    Article  CAS  Google Scholar 

  123. Chen, T., Chen, W.L., Foley, B.J., et al.: Origin of long lifetime of band-edge charge carriers in organic–inorganic lead iodide perovskites. Proc Natl Acad Sci U S A 114, 7519–7524 (2017). https://doi.org/10.1073/pnas.1704421114

    Article  CAS  Google Scholar 

  124. López, C.A., Martínez-Huerta, M.V., Alvarez-Galván, M.C., et al.: Elucidating the Methylammonium (MA) conformation in MAPbBr 3 perovskite with application in solar cells. Inorg. Chem. 56, 14214–14219 (2017). https://doi.org/10.1021/acs.inorgchem.7b02344

    Article  Google Scholar 

  125. Ferdani, D.W., Pering, S.R., Ghosh, D., et al.: Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12, 2264–2272 (2019). https://doi.org/10.1039/c9ee00476a

    Article  CAS  Google Scholar 

  126. García-Rodríguez, R., Ferdani, D., Pering, S., et al.: Influence of bromide content on iodide migration in inverted MAPb(I1-: XBrx)3 perovskite solar cells. J. Mater Chem. A 7, 22604–22614 (2019). https://doi.org/10.1039/c9ta08848b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Salado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porro, J.M., Shalan, A.E., Salado, M. (2022). Advanced Neutron and Synchrotron Characterization Techniques for Nanocomposite Perovskite Materials Toward Solar Cells Applications. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_20

Download citation

Publish with us

Policies and ethics