Skip to main content

Polymeric Nanocomposite Membranes for Water Remediation: From Classic Approaches to 3D Printing

  • Chapter
  • First Online:
Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications

Abstract

Limited water resources are one of the most important global issues. Among the possible techniques devoted to water purification, polymeric membranes are of particular interest to the industry due to their versatility and cost-effectiveness. Among them, nanocomposite-based membranes have been successfully developed for many applications, such as seawater desalination, water softening or pollutant removal. There are several methodologies described for the membrane fabrication from more classical approaches such as solvent evaporation or precipitation to more advanced techniques such as electrospinning or 3D printing. In addition, hybrid nanocomposites that include inorganic nanocompounds such as titanium or aluminium oxides or more recently metal-organic frameworks (MOFs) present great applicability due to their capacity for pollutant capture and degradation. This chapter reviews the most recent advances in nanocomposite based membranes, the new materials developed, the fabrication methods and their application for the improvement of water resources and water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3DP:

Liquid binding jetting

6FDA-DAM:

4,4′-(Hexafluoroisopropylidene)diphthalic anhydride

ABS:

Acrylonitrile butadiene styrene

AIBN:

2,2-Azobisisobutyronitrile

AM:

Advanced manufacturing

BSA:

Bovine serum albumin

CLIP:

Continuous liquid interface production

CMC:

Carboxymethylcellulose

CNC:

Cellulose nanocrystals

CNT:

Carbon nanotube

DC:

Direct current

DMF:

N,N-dimethylformamide

DWA:

Direct writing assembly

EC:

Emerging contaminant

ENM:

Electrospun nanofibrous membrane

FDM:

Fused deposition modelling

FTIR:

Fourier transform infrared

G:

α-L-guluronic acid

GO:

Graphene oxide

HFP:

Hexafluoropropylene

HKUST-1:

Hong Kong University of Science and Technology

LOM:

Laminated object manufacturing

M:

β-D- mannuronic acid

MIL-100:

Materials Institute Lavoisier

MMM:

Mixed matrix membranes

MMT:

Montmorillonite

MOF:

Metal-organic framework

MWCNT:

Multi-walled carbon nanotube

NIPS:

Non-solvent induced phase inversion

NP:

Nanoparticles

PA:

Polyamide

PA6:

Polyamide-6

PAA:

Polyacrylic acid

PAN:

Polyacrylonitrile

PANI:

Polyaniline

PC:

Polycarbonate

PCL:

Polycaprolactone

PDA:

Polydiacetylene

PDMS:

Poly(dimethylsiloxane)

PEG:

Poly(ethylene glycol)

PEI:

Poly(ether imide)

PES:

Polyethersulfone

PHB:

Poly(hydroxybutyrate)

PLA:

Polylactic acid

PLGA:

Poly(lactic-co-glycolic acid)

PNC:

Polymer nanocomposites

POPs:

Persistent organic pollutants

PP:

Polypropylene

PPG:

Poly(propylene glycol)

PS:

Polystyrene

PSF:

Polysulfone

PSS:

Polystyrene sulfonate

PTFE:

Polytetraflurourethylene

PTMSP:

Poly(1-trimethylsilyl-1-propyne)

PU:

Polyurethane

PVA:

Polyvinylalcohol

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinylpyrrolidone

rGO:

Reduced graphene oxide

SLM:

Selective laser melting

SLS:

Selective laser sintering

SPS:

Sulfonated polystyrene

St:

Starch

SWNT:

Single walled nanotubes

TEOS:

Tetraethoxysilane

TFC:

Thin film nanocomposite

T g :

Glass transition temperature

TIPS:

Thermally induced phase inversion

TTP:

Two-photon polymerization

UiO-66:

Universitetet i Oslo

UV:

Ultraviolet

XPS:

X-ray photoelectron spectroscopy

ZIF:

Zeolitic imidazole framework

References

  1. United Nations Development Programme: Human development report 2019: beyond income, beyond averages, beyond today. United Nations Development Programme (2019)

    Google Scholar 

  2. World Health Organization: Drinking-water (2018). https://www.who.int/news-room/fact-sheets/detail/drinking-water. Accessed 18 Jul 2020

  3. Rijsberman, F.R.: Water scarcity: fact or fiction? Agric. Water Manag. 80(1–3), 5–22 (2006). https://doi.org/10.1016/j.agwat.2005.07.001

    Article  Google Scholar 

  4. United Nations: The sustainable development goals report 2016. United Nations (2016)

    Google Scholar 

  5. Sadhu, S.D., Garg, M., Kumar, A.: Major environmental issues and new materials. In: New Polymer Nanocomposites for Environmental Remediation, pp 77–97. Elsevier Inc. (2018)

    Google Scholar 

  6. Jones, K.C., de Voogt, P.: Persistent organic pollutants (POPs): state of the science. Environ. Pollut. 100(1–3), 209–221 (1999). https://doi.org/10.1016/S0269-7491(99)00098-6

    Article  CAS  Google Scholar 

  7. Varjani, S.J., Chaithanya, S.M.: Treatment Technologies for Emerging Organic Contaminants Removal from Wastewater, pp. 91–115 (2018)

    Google Scholar 

  8. Deblonde, T., Cossu-Leguille, C., Hartemann, P.: Emerging pollutants in wastewater: a review of the literature. Int. J. Hygiene Environ. Health 214(6), 442–448 (2011). https://doi.org/10.1016/j.ijheh.2011.08.002

    Article  CAS  Google Scholar 

  9. Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R.: Pharmaceuticals as emerging contaminants and their removal from water. a review. Chemosphere 93(7), 1268–1287 (2013). https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  CAS  Google Scholar 

  10. Abdelbasir, S.M., Shalan, A.E.: An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 36(8), 1209–1225 (2019). https://doi.org/10.1007/s11814-019-0306-y

    Article  CAS  Google Scholar 

  11. Abu Elella, M.H., Goda, E.S., Abdallah, H.M., et al.: Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment. Int. J. Biol. Macromol. 167, 1113–1125 (2021)

    Article  CAS  Google Scholar 

  12. Batool, M., Nazar, M.F., Awan, A., et al.: Bismuth-based heterojunction nanocomposites for photocatalysis and heavy metal detection applications. Nano-struct. Nano-objects 27, 100762 (2021)

    Article  CAS  Google Scholar 

  13. Bassyouni, M., Abdel-Aziz, M.H., Zoromba, M.S., Abdel-Hamid, S.M.S., Drioli, E.: A review of polymeric nanocomposite membranes for water purification. J. Ind. Eng. Chem. 73, 19–46 (2019). https://doi.org/10.1016/j.jiec.2019.01.045

    Article  CAS  Google Scholar 

  14. Ucankus, G., Ercan, M., Uzunoglu, D., Culha, M.: Methods for Preparation of Nanocomposites in Environmental Remediation. Elsevier Inc. (2018)

    Google Scholar 

  15. Jhaveri, J.H., Murthy, Z.V.P.: Nanocomposite membranes. Desalin. Water Treat. 57(55), 26803–26819 (2016). https://doi.org/10.1080/19443994.2015.1120687

    Article  CAS  Google Scholar 

  16. Aburabie, J.H., Puspasari, T., Peinemann, K.-V.: Alginate-based membranes: paving the way for green organic solvent nanofiltration. J. Membr. Sci. 596, 117615 (2020). https://doi.org/10.1016/j.memsci.2019.117615

    Article  CAS  Google Scholar 

  17. Chang, C., Duan, B., Cai, J., Zhang, L.: Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 46(1), 92–100 (2010). https://doi.org/10.1016/j.eurpolymj.2009.04.033

    Article  CAS  Google Scholar 

  18. Cui, L., et al.: Preparation and characterization of chitosan membranes. RSC Adv. 8(50), 28433–28439 (2018). https://doi.org/10.1039/C8RA05526B

    Article  CAS  Google Scholar 

  19. Villegas, M., Castro Vidaurre, E.F., Gottifredi, J.C.: Sorption and pervaporation of methanol/water mixtures with poly(3-hydroxybutyrate) membranes. Chem. Eng. Res. Des. 94, 254–265 (2015). https://doi.org/10.1016/j.cherd.2014.07.030

    Article  CAS  Google Scholar 

  20. Kang, G.-D., Cao, Y.-M.: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review. J. Membr. Sci. 463, 145–165 (2014). https://doi.org/10.1016/j.memsci.2014.03.055

    Article  CAS  Google Scholar 

  21. Tan, R.: A review on porous polymeric membrane preparation. Part II: production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers 11(8), 1310 (2019). https://doi.org/10.3390/polym11081310

    Article  CAS  Google Scholar 

  22. Zhao, C., Xue, J., Ran, F., Sun, S.: Modification of polyethersulfone membranes - a review of methods. Prog. Mater. Sci. 58(1), 76–150 (2013). https://doi.org/10.1016/j.pmatsci.2012.07.002

    Article  CAS  Google Scholar 

  23. Razmjou, A., Mansouri, J., Chen, V.: The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J. Memb. Sci. 378(1–2), 73–84 (2011). https://doi.org/10.1016/j.memsci.2010.10.019

    Article  CAS  Google Scholar 

  24. Rahimpour, A., Madaeni, S.S., Taheri, A.H., Mansourpanah, Y.: Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Membr. Sci. 313(1–2), 158–169 (2008). https://doi.org/10.1016/j.memsci.2007.12.075

    Article  CAS  Google Scholar 

  25. Wu, G., Gan, S., Cui, L., Xu, Y.: Preparation and characterization of PES/TiO2 composite membranes. Appl. Surf. Sci. 254(21), 7080–7086 (2008). https://doi.org/10.1016/j.apsusc.2008.05.221

    Article  CAS  Google Scholar 

  26. Ehsani, M., Aroujalian, A.: Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO2) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. Polym. Adv. Technol. 31(4), 772–785 (2020). https://doi.org/10.1002/pat.4813

    Article  CAS  Google Scholar 

  27. Parvizian, F., Ansari, F., Bandehali, S.: Oleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranes. Chem. Eng. Res. Des. 156, 433–441 (2020). https://doi.org/10.1016/j.cherd.2020.02.019

    Article  CAS  Google Scholar 

  28. Shen, J., Ruan, H., Wu, L., Gao, C.: Preparation and characterization of PES–SiO2 organic–inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 168(3), 1272–1278 (2011). https://doi.org/10.1016/j.cej.2011.02.039

    Article  CAS  Google Scholar 

  29. Yu, H., Zhang, X., Zhang, Y., Liu, J., Zhang, H.: Development of a hydrophilic PES ultrafiltration membrane containing SiO2@N-Halamine nanoparticles with both organic antifouling and antibacterial properties. Desalination 326, 69–76 (2013). https://doi.org/10.1016/j.desal.2013.07.018

    Article  CAS  Google Scholar 

  30. Kusworo, T.D., Qudratun, U.D.P.: Performance evaluation of double stage process using nano hybrid PES/SiO2-PES membrane and PES/ZnO-PES membranes for oily waste water treatment to clean water. J. Environ. Chem. Eng. 5(6), 6077–6086 (2017). https://doi.org/10.1016/j.jece.2017.11.044

    Article  CAS  Google Scholar 

  31. Lin, J., Ye, W., Zhong, K., Shen, J., Jullok, N., Sotto, A., Van der Bruggen, B.: Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chem. Eng. Process. Process Intensif. 107, 194–205 (2016). https://doi.org/10.1016/j.cep.2015.03.011

    Article  CAS  Google Scholar 

  32. Ghandashtani, M.B., Zokaee Ashtiani, F., Karimi, M., Fouladitajar, A.: A novel approach to fabricate high performance nano-SiO2 embedded PES membranes for microfiltration of oil-in-water emulsion. Appl. Surf. Sci. 349, 393–402 (2015). https://doi.org/10.1016/j.apsusc.2015.05.037

    Article  CAS  Google Scholar 

  33. Shen, L., et al.: Polymeric membranes incorporated with ZnO nanoparticles for membrane fouling mitigation: a brief review. Front. Chem. 8, 224 (2020). https://doi.org/10.3389/fchem.2020.00224

    Article  CAS  Google Scholar 

  34. Shen, L., et al.: Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 293, 21–29 (2012). https://doi.org/10.1016/j.desal.2012.02.019

    Article  CAS  Google Scholar 

  35. Balta, S., Sotto, A., Luis, P., Benea, L., Van der Bruggen, B., Kim, J.: A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J. Membr. Sci. 389, 155–161 (2012). https://doi.org/10.1016/j.memsci.2011.10.025

    Article  CAS  Google Scholar 

  36. Ghaemi, N., et al.: Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem. Eng. J. 263, 101–112 (2015). https://doi.org/10.1016/j.cej.2014.10.103

    Article  CAS  Google Scholar 

  37. Bavasso, I., et al.: Effect of pretreatment of nanocomposite PES-Fe3O4 separator on microbial fuel cells performance. Polym. Eng. Sci. 60(2), 371–379 (2020). https://doi.org/10.1002/pen.25292

    Article  CAS  Google Scholar 

  38. Ouda, M., Ibrahim, Y., Banat, F., Hasan, S.W.: Oily wastewater treatment via phase-inverted polyethersulfone-maghemite (PES/γ-Fe2O3) composite membranes. J. Water Process. Eng. 37, 101545 (2020). https://doi.org/10.1016/j.jwpe.2020.101545

    Article  Google Scholar 

  39. Mukherjee, M., Bandyopadhyaya, R.: Silver nanoparticle impregnated polyethersulfone ultrafiltration membrane: optimization of degree of grafting of acrylic acid for biofouling prevention and improved water permeability. J. Environ. Chem. Eng. 8(2), 103711 (2020). https://doi.org/10.1016/j.jece.2020.103711

    Article  CAS  Google Scholar 

  40. Lee, S.Y., Kim, H.J., Patel, R., Im, S.J., Kim, J.H., Min, B.R.: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym. Adv. Technol. 18(7), 562–568 (2007). https://doi.org/10.1002/pat.918

    Article  CAS  Google Scholar 

  41. Mohammadnezhad, F., Feyzi, M., Zinadini, S.: A novel Ce-MOF/PES mixed matrix membrane; synthesis, characterization and antifouling evaluation. J. Ind. Eng. Chem. 71, 99–111 (2019). https://doi.org/10.1016/j.jiec.2018.09.032

    Article  CAS  Google Scholar 

  42. Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., Astinchap, B.: Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 375(1–2), 284–294 (2011). https://doi.org/10.1016/j.memsci.2011.03.055

    Article  CAS  Google Scholar 

  43. Son, M., Choi, H., Liu, L., Celik, E., Park, H., Choi, H.: Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem. Eng. J. 266, 376–384 (2015). https://doi.org/10.1016/j.cej.2014.12.108

    Article  CAS  Google Scholar 

  44. Nikita, K., Karkare, P., Ray, D., Aswal, V.K., Singh, P.S., Murthy, C.N.: Understanding the morphology of MWCNT/PES mixed-matrix membranes using SANS: interpretation and rejection performance. Appl. Water Sci. 9(7), 154 (2019). https://doi.org/10.1007/s13201-019-1035-4

    Article  CAS  Google Scholar 

  45. Marjani, A., Nakhjiri, A.T., Adimi, M., Jirandehi, H.F., Shirazian, S.: Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Rep. 10(1), 2049 (2020). https://doi.org/10.1038/s41598-020-58472-y

    Article  CAS  Google Scholar 

  46. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H.: Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Memb. Sci. 453, 292–301 (2014). https://doi.org/10.1016/j.memsci.2013.10.070

    Article  CAS  Google Scholar 

  47. Razmjou, A., Arifin, E., Dong, G., Mansouri, J., Chen, V.: Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 415–416, 850–863 (2012). https://doi.org/10.1016/j.memsci.2012.06.004

    Article  CAS  Google Scholar 

  48. Safarpour, M., Khataee, A., Vatanpour, V.: Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind. Eng. Chem. Res. 53(34), 13370–13382 (2014). https://doi.org/10.1021/ie502407g

    Article  CAS  Google Scholar 

  49. Zhang, F., Zhang, W., Yu, Y., Deng, B., Li, J., Jin, J.: Sol-gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. J. Membr. Sci. 432, 25–32 (2013). https://doi.org/10.1016/j.memsci.2012.12.041

    Article  CAS  Google Scholar 

  50. Bae, T.-H., Tak, T.-M.: Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 249(1–2), 1–8 (2005). https://doi.org/10.1016/j.memsci.2004.09.008

    Article  CAS  Google Scholar 

  51. Yu, S., Zuo, X., Bao, R., Xu, X., Wang, J., Xu, J.: Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer (Guildf) 50(2), 553–559 (2009). https://doi.org/10.1016/j.polymer.2008.11.012

    Article  CAS  Google Scholar 

  52. Liao, C., Zhao, J., Yu, P., Tong, H., Luo, Y.: Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes. Desalination 285, 117–122 (2012). https://doi.org/10.1016/j.desal.2011.09.042

    Article  CAS  Google Scholar 

  53. Li, Li., et al.: Preparation and electrochemical characterization of organic–inorganic hybrid poly(vinylidene fluoride)-SiO2 cation-exchange membranes by the sol-gel method using 3-mercapto-propyl-triethoxyl-silane. Materials 12(19), 3265 (2019). https://doi.org/10.3390/ma12193265

    Article  CAS  Google Scholar 

  54. Roshani, R., Ardeshiri, F., Peyravi, M., Jahanshahi, M.: Highly permeable PVDF membrane with PS/ZnO nanocomposite incorporated for distillation process. RSC Adv. 8(42), 23499–23515 (2018). https://doi.org/10.1039/C8RA02908C

    Article  CAS  Google Scholar 

  55. Radwan, A.B., Mohamed, A.M.A., Abdullah, A.M., Al-Maadeed, M.A.: Corrosion protection of electrospun PVDF–ZnO superhydrophobic coating. Surf. Coat. Technol. 289, 136–143 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.087

    Article  CAS  Google Scholar 

  56. Ayyaru, S., Dinh, T.T.L., Ahn, Y.-H.: Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle. Chemosphere 241, 125068 (2020). https://doi.org/10.1016/j.chemosphere.2019.125068

    Article  CAS  Google Scholar 

  57. Rahimi, Z., Zinatizadeh, A.A., Zinadini, S.: Milk processing wastewater treatment in a bioreactor followed by an antifouling O-carboxymethyl chitosan modified Fe3O4/PVDF ultrafiltration membrane. J. Ind. Eng. Chem. 38, 103–112 (2016). https://doi.org/10.1016/j.jiec.2016.04.011

    Article  CAS  Google Scholar 

  58. Huang, Z.-Q., Zheng, F., Zhang, Z., Xu, H.-T., Zhou, K.-M.: The performance of the PVDF-Fe3O4 ultrafiltration membrane and the effect of a parallel magnetic field used during the membrane formation. Desalination 292(15), 64–72 (2012). https://doi.org/10.1016/j.desal.2012.02.010

    Article  CAS  Google Scholar 

  59. Huang, Y., Xiao, C., Huang, Q., Liu, H., Hao, J., Song, L.: Magnetic field induced orderly arrangement of Fe3O4/GO composite particles for preparation of Fe3O4/GO/PVDF membrane. J. Membr. Sci. 548, 184–193 (2018). https://doi.org/10.1016/j.memsci.2017.11.027

    Article  CAS  Google Scholar 

  60. Park, S.Y., Chung, J.W., Chae, Y.K., Kwak, S.-Y.: Amphiphilic thiol functional linker mediated sustainable anti-biofouling ultrafiltration nanocomposite comprising a silver nanoparticles and poly(vinylidene fluoride) membrane. ACS Appl. Mater. Interfaces 5(21), 10705–10714 (2013). https://doi.org/10.1021/am402855v

    Article  CAS  Google Scholar 

  61. Ma, J., et al.: Role of oxygen-containing groups on MWCNTs in enhanced separation and permeability performance for PVDF hybrid ultrafiltration membranes. Desalination 320, 1–9 (2013). https://doi.org/10.1016/j.desal.2013.04.012

    Article  CAS  Google Scholar 

  62. Sun, H., et al.: PEG@ZIF-8/PVDF nanocomposite membrane for efficient pervaporation desulfurization via a layer-by-layer technology. ACS Appl. Mater. Interfaces 12(18), 20664–20671 (2020). https://doi.org/10.1021/acsami.0c02513

    Article  CAS  Google Scholar 

  63. Sabarish, R., Unnikrishnan, G.: Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr. Polym. 199, 129–140 (2018). https://doi.org/10.1016/j.carbpol.2018.06.123

    Article  CAS  Google Scholar 

  64. Gong, G., Zhang, F., Cheng, Z., Zhou, L.: Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal. Int. J. Biol. Macromol. 81, 205–211 (2015). https://doi.org/10.1016/j.ijbiomac.2015.07.061

    Article  CAS  Google Scholar 

  65. Abedini, R., Mousavi, S.M., Aminzadeh, R.: A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: preparation, characterization and permeation study. Desalination 277(1–3), 40–45 (2011). https://doi.org/10.1016/j.desal.2011.03.089

    Article  CAS  Google Scholar 

  66. Gebru, K.A., Das, C.: Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes. Chemosphere 191, 673–684 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.107

    Article  CAS  Google Scholar 

  67. Liu, T., An, Q.-F., Wang, X.-S., Zhao, Q., Zhu, B.-K., Gao, C.-J.: Preparation and properties of PEC nanocomposite membranes with carboxymethyl cellulose and modified silica. Carbohydr. Polym. 106, 403–409 (2014). https://doi.org/10.1016/j.carbpol.2014.01.040

    Article  CAS  Google Scholar 

  68. Rakhshan, N., Pakizeh, M.: The effect of functionalized SiO2 nanoparticles on the morphology and triazines separation properties of cellulose acetate membranes. J. Ind. Eng. Chem. 34, 51–60 (2016). https://doi.org/10.1016/j.jiec.2015.10.031

    Article  CAS  Google Scholar 

  69. Cai, Y., Hou, X., Wang, W., Liu, M., Zhang, J., Qiao, H., Huang, F., Wei, Q.: Effects of SiO2 nanoparticles on structure and property of form-stable phase change materials made of cellulose acetate phase inversion membrane absorbed with capric-myristic-stearic acid ternary eutectic mixture. Thermochim. Acta 653, 49–58 (2017). https://doi.org/10.1016/j.tca.2017.03.027

    Article  CAS  Google Scholar 

  70. Anitha, S., Brabu, B., Thiruvadigal, D.J., Gopalakrishnan, C., Natarajan, T.S.: Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr. Polym. 87(2), 1065–1072 (2012). https://doi.org/10.1016/j.carbpol.2011.08.030

    Article  CAS  Google Scholar 

  71. Kendouli, S., et al.: Modification of cellulose acetate nanofibers with PVP/Ag addition. Mater. Sci. Semicond. Process. 28, 13–19 (2014). https://doi.org/10.1016/j.mssp.2014.03.010

    Article  CAS  Google Scholar 

  72. El Badawi, N., Ramadan, A.R., Esawi, A.M.K., El-Morsi, M.: Novel carbon nanotube–cellulose acetate nanocomposite membranes for water filtration applications. Desalination 344, 79–85 (2014). https://doi.org/10.1016/j.desal.2014.03.005

    Article  CAS  Google Scholar 

  73. Moghadassi, A.R., Rajabi, Z., Hosseini, S.M., Mohammadi, M.: Fabrication and modification of cellulose acetate based mixed matrix membrane: gas separation and physical properties. J. Ind. Eng. Chem. 20(3), 1050–1060 (2014). https://doi.org/10.1016/j.jiec.2013.06.042

    Article  CAS  Google Scholar 

  74. Ahmad, A.L., Jawad, Z.A., Low, S.C., Zein, S.H.S.: A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation. J. Membr. Sci. 451, 55–66 (2014). https://doi.org/10.1016/j.memsci.2013.09.043

    Article  CAS  Google Scholar 

  75. Ghaseminezhad, S.M., Barikani, M., Salehirad, M.: Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Compos. Part B Eng. 161, 320–327 (2019). https://doi.org/10.1016/j.compositesb.2018.10.079

    Article  CAS  Google Scholar 

  76. Shi, Y., Li, C., He, D., Shen, L., Bao, N.: Preparation of graphene oxide–cellulose acetate nanocomposite membrane for high-flux desalination. J. Mater. Sci. 52(22), 13296–13306 (2017). https://doi.org/10.1007/s10853-017-1403-0

    Article  CAS  Google Scholar 

  77. Su, Z., Zhang, M., Lu, Z., Song, S., Zhao, Y., Hao, Y.: Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose 25(3), 1997–2008 (2018). https://doi.org/10.1007/s10570-018-1696-4

    Article  CAS  Google Scholar 

  78. Zhao, X., et al.: Porous cellulose nanofiber stringed HKUST-1 polyhedron membrane for air purification. Appl. Mater. Today 14, 96–101 (2019). https://doi.org/10.1016/j.apmt.2018.11.012

    Article  Google Scholar 

  79. Yang, D., Li, J., Jiang, Z., Lu, L., Chen, X.: Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem. Eng. Sci. 64(13), 3130–3137 (2009). https://doi.org/10.1016/j.ces.2009.03.042

    Article  CAS  Google Scholar 

  80. Bui, Vu., Park, D., Lee, Y.-C.: Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9(12), 21 (2017). https://doi.org/10.3390/polym9010021

    Article  CAS  Google Scholar 

  81. Dorraji, M.S.S., et al.: Fenton-like catalytic activity of wet-spun chitosan hollow fibers loaded with Fe3O4 nanoparticles: batch and continuous flow investigations. J. Mol. Catal. A Chem. 398, 353–357 (2015). https://doi.org/10.1016/j.molcata.2015.01.003

    Article  CAS  Google Scholar 

  82. Xu, R., Tang, R., Zhou, Q., Li, F., Zhang, B.: Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes. Chem. Eng. J. 262, 88–95 (2015). https://doi.org/10.1016/j.cej.2014.09.072

    Article  CAS  Google Scholar 

  83. Bagheripour, E., Moghadassi, A.R., Hosseini, S.M., Van der Bruggen, B., Parvizian, F.: Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: chromium removal and antifouling enhancement. J. Ind. Eng. Chem. 62, 311–320 (2018). https://doi.org/10.1016/j.jiec.2018.01.009

    Article  CAS  Google Scholar 

  84. Casado-Coterillo, C., Fernández-Barquín, A., Zornoza, B., Téllez, C., Coronas, J., Irabien, Á.: Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation. RSC Adv. 5(124), 102350–102361 (2015). https://doi.org/10.1039/C5RA19331A

    Article  CAS  Google Scholar 

  85. Li, D., Yan, Y., Wang, H.: Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 61, 104–155 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.003

    Article  CAS  Google Scholar 

  86. Madaeni, S.S., Ghaemi, N.: Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci. 303(1–2), 221–233 (2007). https://doi.org/10.1016/j.memsci.2007.07.017

    Article  CAS  Google Scholar 

  87. Vatanpour, V., Madaeni, S.S., Khataee, A.R., Salehi, E., Zinadini, S., Monfared, H.A.: TiO2 embedded mixed matrix PES nanocomposite membranes: influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292, 19–29 (2012). https://doi.org/10.1016/j.desal.2012.02.006

    Article  CAS  Google Scholar 

  88. Teow, Y.H., Ooi, B.S., Ahmad, A.L.: Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. J. Water Process. Eng. 15, 89–98 (2017). https://doi.org/10.1016/j.jwpe.2016.03.005

    Article  Google Scholar 

  89. Damodar, R.A., You, S.-J., Chou, H.-H.: Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard Mater. 172(2–3), 1321–1328 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.139

    Article  CAS  Google Scholar 

  90. Al-Ghafri, B., Lau, W.-J., Al-Abri, M., Goh, P.-S., Ismail, A.F.: Titanium dioxide-modified polyetherimide nanofiber membrane for water treatment. J. Water Process. Eng. 32, 100970 (2019). https://doi.org/10.1016/j.jwpe.2019.100970

    Article  Google Scholar 

  91. Zhou, A., et al.: Abatement of sulfadiazine in water under a modified ultrafiltration membrane (PVDF-PVP-TiO2-dopamine) filtration-photocatalysis system. Sep. Purif. Technol. 234, 116099 (2020). https://doi.org/10.1016/j.seppur.2019.116099

    Article  CAS  Google Scholar 

  92. Madaeni, S.S.S., Ghaemi, N., Rajabi, H.: Advances in polymeric membranes for water treatment. In: Advances in Membrane Technologies for Water Treatment, pp. 3–41. Elsevier (2015)

    Google Scholar 

  93. Yan, L., Li, Y.S., Xiang, C.B.: Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer (Guildf) 46(18), 7701–7706 (2005). https://doi.org/10.1016/j.polymer.2005.05.155

    Article  CAS  Google Scholar 

  94. Maximous, N., Nakhla, G., Wong, K., Wan, W.: Optimization of Al2O3/PES membranes for wastewater filtration. Sep. Purif. Technol. 73(2), 294–301 (2010). https://doi.org/10.1016/j.seppur.2010.04.016

    Article  CAS  Google Scholar 

  95. Rajeswari, A., Christy, E.J.S., Mary, G.I.C., Jayaraj, K., Pius, A.: Cellulose acetate based biopolymeric mixed matrix membranes with various nanoparticles for environmental remediation-a comparative study. J. Environ. Chem. Eng. 7(4), 103278 (2019). https://doi.org/10.1016/j.jece.2019.103278

    Article  CAS  Google Scholar 

  96. Rothon, R. (ed.): Fillers for Polymer Applications. Polymers and Polymeric Composites: A Reference Series, Springer, Cham (2017). https://doi.org/10.1007/978-3-319-28117-9

    Book  Google Scholar 

  97. Rallini, M., Kenny, J.M.: Nanofillers in polymers. In: Modification of Polymer Properties, pp. 47–86. Elsevier (2017)

    Google Scholar 

  98. Advances in Membrane Technologies for Water Treatment. Elsevier (2015)

    Google Scholar 

  99. Danilczuk, M., Lund, A., Sadlo, J., Yamada, H., Michalik, J.: Conduction electron spin resonance of small silver particles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 63(1), 189–191 (2006). https://doi.org/10.1016/j.saa.2005.05.002

    Article  CAS  Google Scholar 

  100. Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q., Alvarez, P.J.J.: Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 43(3), 715–723 (2009). https://doi.org/10.1016/j.watres.2008.11.014

    Article  CAS  Google Scholar 

  101. Chamakura, K., Perez-Ballestero, R., Luo, Z., Bashir, S., Liu, J.: Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf. B Biointerfaces 84(1), 88–96 (2011). https://doi.org/10.1016/j.colsurfb.2010.12.020

    Article  CAS  Google Scholar 

  102. Koseoglu-Imer, D.Y., Kose, B., Altinbas, M., Koyuncu, I.: The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): physical properties, filtration performances, and biofouling resistances of membranes. J. Memb. Sci. 428, 620–628 (2013). https://doi.org/10.1016/j.memsci.2012.10.046

    Article  CAS  Google Scholar 

  103. Li, J.-H., Shao, X.-S., Zhou, Q., Li, M.-Z., Zhang, Q.-Q.: The double effects of silver nanoparticles on the PVDF membrane: surface hydrophilicity and antifouling performance. Appl. Surf. Sci. 265, 663–670 (2013). https://doi.org/10.1016/j.apsusc.2012.11.072

    Article  CAS  Google Scholar 

  104. Dudek, G., Turczyn, R., Strzelewicz, A., Rybak, A., Krasowska, M., Grzywna, Z.J.: Preparation and characterization of iron oxides – polymer composite membranes. Sep. Sci. Technol. 47(9), 1390–1394 (2012). https://doi.org/10.1080/01496395.2012.672519

    Article  CAS  Google Scholar 

  105. Wei, Y., Han, B., Hu, X., Lin, Y., Wang, X., Deng, X.: Synthesis of Fe3O4 nanoparticles and their magnetic properties. Procedia Eng. 27, 632–637 (2012). https://doi.org/10.1016/j.proeng.2011.12.498

    Article  Google Scholar 

  106. Dutta, S., Manna, K., Srivastava, S.K., Gupta, A.K., Yadav, M.K.: Hollow polyaniline microsphere/Fe3O4 nanocomposite as an effective adsorbent for removal of arsenic from water. Sci. Rep. 10(1), 4982 (2020). https://doi.org/10.1038/s41598-020-61763-z

    Article  CAS  Google Scholar 

  107. Badruddoza, A.Z.M., Shawon, Z.B.Z., Tay, W.J.D., Hidajat, K., Uddin, M.S.: Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 91(1), 322–332 (2013). https://doi.org/10.1016/j.carbpol.2012.08.030

    Article  CAS  Google Scholar 

  108. Sun, J., Li, S., Ran, Z., Xiang, Y.: Preparation of Fe3O4@TiO2 blended PVDF membrane by magnetic coagulation bath and its permeability and pollution resistance. J. Mater. Res. Technol. 9(3), 4951–4967 (2020). https://doi.org/10.1016/j.jmrt.2020.03.014

    Article  CAS  Google Scholar 

  109. Hong, J., He, Y.: Polyvinylidene fluoride ultrafiltration membrane blended with nano-ZnO particle for photo-catalysis self-cleaning. Desalination 332(1), 67–75 (2014). https://doi.org/10.1016/j.desal.2013.10.026

    Article  CAS  Google Scholar 

  110. Davood Abadi Farahani, M.H., Vatanpour, V.: Polymer/carbon nanotubes mixed matrix membranes for water purification, pp 87–110. In: Nanoscale Materials in Water Purification. Elsevier (2019)

    Google Scholar 

  111. Rao, G., Lu, C., Su, F.: Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007). https://doi.org/10.1016/j.seppur.2006.12.006

    Article  CAS  Google Scholar 

  112. Yang, K., Zhu, L., Xing, B.: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol. 40(6), 1855–1861 (2006). https://doi.org/10.1021/es052208w

    Article  CAS  Google Scholar 

  113. Savage, N., Diallo, M.S.: Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 7(4–5), 331–342 (2005). https://doi.org/10.1007/s11051-005-7523-5

    Article  CAS  Google Scholar 

  114. Rowsell, J.L.C., Yaghi, O.M.: Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73(1–2), 3–14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  115. Jiao, L., Seow, J.Y.R., Skinner, W.S., Wang, Z.U., Jiang, H.-L.: Metal–organic frameworks: structures and functional applications. Mater. Today 27, 43–68 (2019). https://doi.org/10.1016/j.mattod.2018.10.038

    Article  CAS  Google Scholar 

  116. Chen, Y., et al.: Shaping of metal-organic frameworks: from fluid to shaped bodies and robust foams. J. Am. Chem. Soc. 138(34), 10810–10813 (2016). https://doi.org/10.1021/jacs.6b06959

    Article  CAS  Google Scholar 

  117. Li, S., Huo, F.: Metal–organic framework composites: from fundamentals to applications. Nanoscale 7(17), 7482–7501 (2015). https://doi.org/10.1039/C5NR00518C

    Article  CAS  Google Scholar 

  118. Nadar, S.S., Vaidya, L., Maurya, S., Rathod, V.K.: Polysaccharide based metal organic frameworks (polysaccharide–MOF): a review. Coord. Chem. Rev. 396, 1–21 (2019). https://doi.org/10.1016/j.ccr.2019.05.011

    Article  CAS  Google Scholar 

  119. Zhu, H., Yang, X., Cranston, E.D., Zhu, S.: Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 28(35), 7652–7657 (2016). https://doi.org/10.1002/adma.201601351

    Article  CAS  Google Scholar 

  120. Ma, S., Zhang, M., Nie, J., Tan, J., Song, S., Luo, Y.: Lightweight and porous cellulose-based foams with high loadings of zeolitic imidazolate frameworks-8 for adsorption applications. Carbohydr. Polym. 208, 328–335 (2019). https://doi.org/10.1016/j.carbpol.2018.12.081

    Article  CAS  Google Scholar 

  121. Rickhoff, T.A., Sullivan, E., Werth, L.K., Kissel, D.S., Keleher, J.J.: A biomimetic cellulose-based composite material that incorporates the antimicrobial metal-organic framework HKUST-1. J. Appl. Polym. Sci. 136(3), 46978 (2019). https://doi.org/10.1002/app.46978

    Article  CAS  Google Scholar 

  122. Cong, H., Radosz, M., Towler, B., Shen, Y.: Polymer–inorganic nanocomposite membranes for gas separation. Sep. Purif. Technol. 55(3), 281–291 (2007). https://doi.org/10.1016/j.seppur.2006.12.017

    Article  CAS  Google Scholar 

  123. Pourzare, K., Mansourpanah, Y., Farhadi, S.: Advanced nanocomposite membranes for fuel cell applications: a comprehensive review. Biofuel Res. J. 3(4), 496–513 (2016). https://doi.org/10.18331/BRJ2016.3.4.4

    Article  CAS  Google Scholar 

  124. Bee, S.-L., Abdullah, M.A.A., Bee, S.-T., Sin, L.T., Rahmat, A.R.: Polymer nanocomposites based on silylated-montmorillonite: a review. Prog. Polym. Sci. 85, 57–82 (2018). https://doi.org/10.1016/j.progpolymsci.2018.07.003

    Article  CAS  Google Scholar 

  125. Anado, P.: Clay-containing polysulfone nanocomposites. In: Advances in Nanocomposite Technology. InTech (2011)

    Google Scholar 

  126. Alateyah, A.I., Dhakal, H.N., Zhang, Z.Y.: Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Adv. Polym. Technol. 32(4), 21368 (2013). https://doi.org/10.1002/adv.21368

    Article  CAS  Google Scholar 

  127. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: nanocomposites. Polymer (Guildf) 49(15), 3187–3204 (2008). https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  128. Sheikholeslami, S.N., Rafizadeh, M., Taromi, F.A., Bouhendi, H.: Synthesis and characterization of poly(trimethylene terephthalate)/organoclay nanocomposite via in situ polymerization. J. Thermoplast. Compos. Mater. 27(11), 1530–1552 (2014). https://doi.org/10.1177/0892705712475000

    Article  CAS  Google Scholar 

  129. Alexandre, M., Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 28(1–2), 1–63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  130. Pavlidou, S., Papaspyrides, C.D.: A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.008

    Article  CAS  Google Scholar 

  131. VanderHart, D.L., Asano, A., Gilman, J.W.: Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiers. Chem. Mater. 13(10), 3796–3809 (2001). https://doi.org/10.1021/cm011078x

    Article  CAS  Google Scholar 

  132. Gao, F.: Clay/polymer composites: the story. Mater. Today 7(11), 50–55 (2004). https://doi.org/10.1016/S1369-7021(04)00509-7

    Article  CAS  Google Scholar 

  133. Panwar, A., Choudhary, V., Sharma, D.K.: Review: a review: polystyrene/clay nanocomposites. J. Reinf. Plast. Compos. 30(5), 446–459 (2011). https://doi.org/10.1177/0731684411399132

    Article  CAS  Google Scholar 

  134. Usuki, A., et al.: Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8(5), 1179–1184 (1993). https://doi.org/10.1557/JMR.1993.1179

    Article  CAS  Google Scholar 

  135. Doucouré, A., Guizard, C., Durand, J., Berjoan, R., Cot, L.: Plasma polymerization of fluorinated monomers on mesoporous silica membranes and application to gas permeation. J. Membr. Sci. 117(1–2), 143–150 (1996). https://doi.org/10.1016/0376-7388(96)00052-X

    Article  Google Scholar 

  136. Patel, N.P., Miller, A.C., Spontak, R.J.: Highly CO2-permeable and selective polymer nanocomposite membranes. Adv. Mater. 15(9), 729–733 (2003). https://doi.org/10.1002/adma.200304712

    Article  CAS  Google Scholar 

  137. Patel, N.P., Aberg, C.M., Sanchez, A.M., Capracotta, M.D., Martin, J.D., Spontak, R.J.: Morphological, mechanical and gas-transport characteristics of crosslinked poly(propylene glycol): homopolymers, nanocomposites and blends. Polymer (Guildf) 45(17), 5941–5950 (2004). https://doi.org/10.1016/j.polymer.2004.06.024

    Article  CAS  Google Scholar 

  138. Nunes, S., Peinemann, K., Ohlrogge, K., Alpers, A., Keller, M., Pires, A.T.: Membranes of poly(ether imide) and nanodispersed silica. J. Membr. Sci. 157(2), 219–226 (1999). https://doi.org/10.1016/S0376-7388(98)00379-2

    Article  CAS  Google Scholar 

  139. Bounor-Legaré, V., Cassagnau, P.: In situ synthesis of organic-inorganic hybrids or nanocomposites from sol-gel chemistry in molten polymers. Prog. Polym. Sci. 39(8), 1473–1497 (2014). https://doi.org/10.1016/j.progpolymsci.2014.04.003

    Article  CAS  Google Scholar 

  140. Brzesowsky, R., de With, G., van den Cruijsem, S., Snijkers-Hendrickx, I.J., Wolter, W.A., van Lierop, J.: Glass strengthening by silica particle reinforced organic–inorganic coatings. J. Non Cryst. Solids 241(1), 27–37 (1998). https://doi.org/10.1016/S0022-3093(98)00750-9

    Article  CAS  Google Scholar 

  141. Livage, J., Sanchez, C.: Sol-gel chemistry. J. Non Cryst. Solids 145, 11–19 (1992). https://doi.org/10.1016/S0022-3093(05)80422-3

    Article  CAS  Google Scholar 

  142. Kioul, A., Mascia, L.: Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents. J. Non Cryst. Solids 175(2–3), 169–186 (1994). https://doi.org/10.1016/0022-3093(94)90009-4

    Article  CAS  Google Scholar 

  143. Smaïhi, M.: Organic-inorganic gas separation membranes: preparation and characterization. J. Membr. Sci. 116(2), 211–220 (1996). https://doi.org/10.1016/0376-7388(96)00042-7

    Article  Google Scholar 

  144. Pomogailo, A.D.: Polymer sol-gel synthesis of hybrid nanocomposites. Colloid J. 67(6), 658–677 (2005). https://doi.org/10.1007/s10595-005-0148-7

    Article  CAS  Google Scholar 

  145. Day, V.W., Eberspacher, T.A., Chen, Y., Hao, J., Klemperer, W.G.: Low-nuclearity titanium oxoalkoxides: the trititanates [Ti3O](OPri)10 and [Ti3O](OPri)9(OMe). Inorg. Chim. Acta 229(1–2), 391–405 (1995). https://doi.org/10.1016/0020-1693(94)04270-6

    Article  CAS  Google Scholar 

  146. Livage, J.: Basic principles of sol-gel chemistry. In: Aegerter, M.A., Mennig, M. (eds.) Sol-Gel Technologies for Glass Producers and Users, pp. 3–14. Springer, Boston (2004). https://doi.org/10.1007/978-0-387-88953-5_1

    Chapter  Google Scholar 

  147. Iwata, M., Adachi, T., Tomidokoro, M., Ohta, M., Kobayashi, T.: Hybrid sol-gel membranes of polyacrylonitrile-tetraethoxysilane composites for gas permselectivity. J. Appl. Polym. Sci. 88(7), 1752–1759 (2003). https://doi.org/10.1002/app.11895

    Article  CAS  Google Scholar 

  148. Gomes, D., Nunes, S.P., Peinemann, K.-V.: Membranes for gas separation based on poly(1-trimethylsilyl-1-propyne)–silica nanocomposites. J. Memb. Sci. 246(1), 13–25 (2005). https://doi.org/10.1016/j.memsci.2004.05.015

    Article  CAS  Google Scholar 

  149. Guo, Y., Wang, X., Hu, P., Peng, X.: ZIF-8 coated polyvinylidenefluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules. Appl. Mater. Today 5, 103–110 (2016). https://doi.org/10.1016/j.apmt.2016.07.007

    Article  Google Scholar 

  150. Stephen, R., Ranganathaiah, C., Varghese, S., Joseph, K., Thomas, S.: Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer (Guildf) 47(3), 858–870 (2006). https://doi.org/10.1016/j.polymer.2005.12.020

    Article  CAS  Google Scholar 

  151. Mascia, L., Zhang, Z., Shaw, S.J.: Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Compos. Part A Appl. Sci. Manuf. 27(12), 1211–1221 (1996). https://doi.org/10.1016/1359-835X(96)00082-6

    Article  Google Scholar 

  152. Gacitua, W., Ballerini, A., Zhang, J.: Polymer nanocomposites: synthetic and natural fillers a review. Maderas Cienc. y Tecnol. 7(3), 159–178 (2005). https://doi.org/10.4067/S0718-221X2005000300002

    Article  Google Scholar 

  153. Ragab, D., Gomaa, H.G., Sabouni, R., Salem, M., Ren, M., Zhu, J.: Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs). Chem. Eng. J. 300, 273–279 (2016). https://doi.org/10.1016/j.cej.2016.04.033

    Article  CAS  Google Scholar 

  154. Low, Z.-X., Razmjou, A., Wang, K., Gray, S., Duke, M., Wang, H.: Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane. J. Membr. Sci. 460, 9–17 (2014). https://doi.org/10.1016/j.memsci.2014.02.026

    Article  CAS  Google Scholar 

  155. Bhiwankar, N.N., Weiss, R.A.: Melt intercalation/exfoliation of polystyrene–sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers. Polymer (Guildf) 47(19), 6684–6691 (2006). https://doi.org/10.1016/j.polymer.2006.07.017

    Article  CAS  Google Scholar 

  156. Motamedi, P., Bagheri, R.: Investigation of the nanostructure and mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites. Mater. Des. 31(4), 1776–1784 (2010). https://doi.org/10.1016/j.matdes.2009.11.013

    Article  CAS  Google Scholar 

  157. Yoon, J., Jo, W., Lee, M., Ko, M.: Effects of comonomers and shear on the melt intercalation of styrenics/clay nanocomposites. Polymer (Guildf) 42(1), 329–336 (2001). https://doi.org/10.1016/S0032-3861(00)00333-5

    Article  CAS  Google Scholar 

  158. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  159. Xue, J., Wu, T., Dai, Y., Xia, Y.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019). https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  160. Wang, Z., Crandall, C., Sahadevan, R., Menkhaus, T.J., Fong, H.: Microfiltration performance of electrospun nanofiber membranes with varied fiber diameters and different membrane porosities and thicknesses. Polymer (Guildf) 114, 64–72 (2017). https://doi.org/10.1016/j.polymer.2017.02.084

    Article  CAS  Google Scholar 

  161. Dolina, J., Jiříček, T., Lederer, T.: Biocide modification of ultrafiltration membranes using nanofiber structures. Desalin. Water Treat. 56(12), 3252–3258 (2015). https://doi.org/10.1080/19443994.2014.981923

    Article  CAS  Google Scholar 

  162. Wang, X., Fang, D., Hsiao, B.S., Chu, B.: Nanofiltration membranes based on thin-film nanofibrous composites. J. Membr. Sci. 469, 188–197 (2014). https://doi.org/10.1016/j.memsci.2014.06.049

    Article  CAS  Google Scholar 

  163. Wang, X., Ma, H., Chu, B., Hsiao, B.S.: Thin-film nanofibrous composite reverse osmosis membranes for desalination. Desalination 420, 91–98 (2017). https://doi.org/10.1016/j.desal.2017.06.029

    Article  CAS  Google Scholar 

  164. Li, J.J., Zhu, L.T., Luo, Z.H.: Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem. Eng. J. 287, 474–481 (2016). https://doi.org/10.1016/j.cej.2015.11.057

    Article  CAS  Google Scholar 

  165. Tijing, L.D., Choi, J.S., Lee, S., Kim, S.H., Shon, H.K.: Recent progress of membrane distillation using electrospun nanofibrous membrane. J. Membr. Sci. 453, 435–462 (2014). https://doi.org/10.1016/j.memsci.2013.11.022

    Article  CAS  Google Scholar 

  166. Najafi, M., Frey, M.W.: Electrospun nanofibers for chemical separation. Nanomaterials 10(5), 982 (2020). https://doi.org/10.3390/nano10050982

    Article  CAS  Google Scholar 

  167. Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  Google Scholar 

  168. Hou, D., Lin, D., Ding, C., Wang, D., Wang, J.: Fabrication and characterization of electrospun superhydrophobic PVDF-HFP/SiNPs hybrid membrane for membrane distillation. Sep. Purif. Technol. 189, 82–89 (2017). https://doi.org/10.1016/j.seppur.2017.07.082

    Article  CAS  Google Scholar 

  169. Yar, A., et al.: Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Adv. 7(47), 29806–29814 (2017). https://doi.org/10.1039/c7ra03699j

    Article  CAS  Google Scholar 

  170. Essalhi, M., Khayet, M.: Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: effects of polymer concentration and desalination by direct contact membrane distillation. J. Membr. Sci. 454, 133–143 (2014). https://doi.org/10.1016/j.memsci.2013.11.056

    Article  CAS  Google Scholar 

  171. Soares, R.M.D., Siqueira, N.M., Prabhakaram, M.P., Ramakrishna, S.: Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater. Sci. Eng. C 92, 969–982 (2018). https://doi.org/10.1016/j.msec.2018.08.004

    Article  CAS  Google Scholar 

  172. Ziabari, M., Mottaghitalab, V., Haghi, A.K.: Application of direct tracking method for measuring electrospun nanofiber diameter. Braz. J. Chem. Eng. 26(1), 53–62 (2009). https://doi.org/10.1590/S0104-66322009000100006

    Article  Google Scholar 

  173. Biswas, P., Bandyopadhyaya, R.: Biofouling prevention using silver nanoparticle impregnated polyethersulfone (PES) membrane: E. coli cell-killing in a continuous cross-flow membrane module. J. Colloid Interface Sci. 491, 13–26 (2017). https://doi.org/10.1016/j.jcis.2016.11.060

    Article  CAS  Google Scholar 

  174. Zheng, Y., Gong, R.H., Zeng, Y.: Multijet motion and deviation in electrospinning. RSC Adv. 5(60), 48533–48540 (2015). https://doi.org/10.1039/c5ra06049d

    Article  CAS  Google Scholar 

  175. Li, D., Xia, Y.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933–938 (2004). https://doi.org/10.1021/nl049590f

    Article  CAS  Google Scholar 

  176. Lee, G.H., Song, J.C., Yoon, K.B.: Controlled wall thickness and porosity of polymeric hollow nanofibers by coaxial electrospinning. Macromol. Res. 18(6), 571–576 (2010). https://doi.org/10.1007/s13233-010-0607-9

    Article  CAS  Google Scholar 

  177. Li, D., Xia, Y.: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3(4), 555–560 (2003). https://doi.org/10.1021/nl034039o

    Article  CAS  Google Scholar 

  178. Malwal, D., Gopinath, P.: Fabrication and characterization of poly(ethylene oxide) templated nickel oxide nanofibers for dye degradation. Environ. Sci. Nano J. 2(1), 78–85 (2015). https://doi.org/10.1039/c4en00107a

    Article  CAS  Google Scholar 

  179. Rezaei, M., Samhaber, W.: Wetting behaviour of superhydrophobic membranes coated with nanoparticles in membrane distillation. Chem. Eng. Trans. 47, 373–378 (2016). https://doi.org/10.3303/CET1647063

    Article  Google Scholar 

  180. Ray, S.S., Chen, S.S., Li, C.W., Nguyen, N.C., Nguyen, H.T.: A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv. 6(88), 85495–85514 (2016). https://doi.org/10.1039/c6ra14952a

    Article  CAS  Google Scholar 

  181. Lee, C.G., et al.: Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52(7), 4285–4293 (2018). https://doi.org/10.1021/acs.est.7b06508

    Article  CAS  Google Scholar 

  182. Ognibene, G., Gangemi, C.M.A., D’Urso, A., Purrello, R., Cicala, G., Fragalà, M.E.: Combined approach to remove and fast detect heavy metals in water based on PES-TiO2 electrospun mats and porphyrin chemosensors. ACS Omega 3(7), 7182–7190 (2018). https://doi.org/10.1021/acsomega.8b00284

    Article  CAS  Google Scholar 

  183. Mohamed, A., et al.: Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers. J. Mol. Catal. A Chem. 424(Vi), 45–53 (2016). https://doi.org/10.1016/j.molcata.2016.08.010

    Article  CAS  Google Scholar 

  184. Schiffman, J.D., Elimelech, M.: Antibacterial activity of electrospun polymer mats with incorporated narrow diameter single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 3(2), 462–468 (2011). https://doi.org/10.1021/am101043y

    Article  CAS  Google Scholar 

  185. Ford, E.N.J., Suthiwangcharoen, N., D’Angelo, P.A., Nagarajan, R.: Role of single-walled carbon nanotubes on ester hydrolysis and topography of electrospun bovine serum albumin/poly(vinyl alcohol) membranes. ACS Appl. Mater. Interfaces 6(14), 11741–11748 (2014). https://doi.org/10.1021/am502495e

    Article  CAS  Google Scholar 

  186. Liao, Y., Loh, C.H., Wang, R., Fane, A.G.: Electrospun superhydrophobic membranes with unique structures for membrane distillation. ACS Appl. Mater. Interfaces 6(18), 16035–16048 (2014). https://doi.org/10.1021/am503968n

    Article  CAS  Google Scholar 

  187. Obaid, M., Ghouri, Z.K., Fadali, O.A., Khalil, K.A., Almajid, A.A., Barakat, N.A.M.: Amorphous SiO2 NP-incorporated poly(vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination. ACS Appl. Mater. Interfaces 8(7), 4561–4574 (2016). https://doi.org/10.1021/acsami.5b09945

    Article  CAS  Google Scholar 

  188. Li, X., Yu, X., Cheng, C., Deng, L., Wang, M., Wang, X.: Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation. ACS Appl. Mater. Interfaces 7(39), 21919–21930 (2015). https://doi.org/10.1021/acsami.5b06509

    Article  CAS  Google Scholar 

  189. Son, W.K., Youk, J.H., Park, W.H.: Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr. Polym. 65(4), 430–434 (2006). https://doi.org/10.1016/j.carbpol.2006.01.037

    Article  CAS  Google Scholar 

  190. De Faria, A.F., Perreault, F., Shaulsky, E., Chavez, L.H.A., Elimelech, M.: Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl. Mater. Interfaces 7(23), 12751–12759 (2015). https://doi.org/10.1021/acsami.5b01639

    Article  CAS  Google Scholar 

  191. Karagoz, N.S., et al.: Synthesis of Ag and TiO2 modified polycaprolactone electrospun nanofibers (PCL/TiO2-Ag NFs) as a multifunctional material for SERS, photocatalysis and antibacterial applications. Ecotoxicol. Environ. Saf. 188, 109856 (2020). https://doi.org/10.1016/j.ecoenv.2019.109856

    Article  CAS  Google Scholar 

  192. Kayaci, F., Ozgit-Akgun, C., Donmez, I., Biyikli, N., Uyar, T.: Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS Appl. Mater. Interfaces 4(11), 6185–6194 (2012). https://doi.org/10.1021/am3017976

    Article  CAS  Google Scholar 

  193. Kim, J.H., Joshi, M.K., Lee, J., Park, C.H., Kim, C.S.: Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 513, 566–574 (2018). https://doi.org/10.1016/j.jcis.2017.11.061

    Article  CAS  Google Scholar 

  194. Barhoum, A., Bechelany, M., Makhlouf, A.S.H. (eds.): Handbook of Nanofibers. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-53655-2

    Book  Google Scholar 

  195. Xiao, S., Shen, M., Guo, R., Wang, S., Shi, X.: Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J. Phys. Chem. C 113(42), 18062–18068 (2009). https://doi.org/10.1021/jp905542g

    Article  CAS  Google Scholar 

  196. Zhang, D., et al.: Electrospun fibrous membranes with dual-scaled porous structure: super hydrophobicity, super lipophilicity, excellent water adhesion, and anti-icing for highly efficient oil adsorption/separation. ACS Appl. Mater. Interfaces 11(5), 5073–5083 (2019). https://doi.org/10.1021/acsami.8b19523

    Article  CAS  Google Scholar 

  197. Letnik, I., Avrahami, R., Rokem, J.S., Greiner, A., Zussman, E., Greenblatt, C.: Living composites of electrospun yeast cells for bioremediation and ethanol production. Biomacromol 16(10), 3322–3328 (2015). https://doi.org/10.1021/acs.biomac.5b00970

    Article  CAS  Google Scholar 

  198. Yap, C.Y., et al.: Review of selective laser melting: materials and applications. Appl. Phys. Rev. 2(4), 041101 (2015). https://doi.org/10.1063/1.4935926

    Article  CAS  Google Scholar 

  199. Fasel, U., Keidel, D., Baumann, L., Cavolina, G., Eichenhofer, M., Ermanni, P.: Composite additive manufacturing of morphing aerospace structures. Manuf. Lett. 23, 85–88 (2020). https://doi.org/10.1016/j.mfglet.2019.12.004

    Article  Google Scholar 

  200. Lewandowski, J.J., Seifi, M.: Metal additive manufacturing: a review of mechanical properties. Ann. Rev. Mater. Res. 46, 151–186 (2016). https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  CAS  Google Scholar 

  201. Schmitt, M., Mehta, R.M., Kim, I.Y.: Additive manufacturing infill optimization for automotive 3D-printed ABS components. Rapid Prototyp. J. 26(1), 89–99 (2020). https://doi.org/10.1108/RPJ-01-2019-0007

    Article  Google Scholar 

  202. Lim, C.W.J., Le, K.Q., Lu, Q., Wong, C.H.: An overview of 3-D printing in manufacturing, aerospace, and automotive industries. IEEE Potentials 35(4), 18–22 (2016). https://doi.org/10.1109/MPOT.2016.2540098

    Article  Google Scholar 

  203. Tay, Y.W.D., Panda, B., Paul, S.C., Noor Mohamed, N.A., Tan, M.J., Leong, K.F.: 3D printing trends in building and construction industry: a review. Virtual Phys. Prototyp. 12(3), 261–276 (2017). https://doi.org/10.1080/17452759.2017.1326724

    Article  Google Scholar 

  204. Lin, K., Zhang, D., Macedo, M.H., Cui, W., Sarmento, B., Shen, G.: Advanced collagen-based biomaterials for regenerative biomedicine. Adv. Funct. Mater. 29(3), 1–16 (2019). https://doi.org/10.1002/adfm.201804943

    Article  CAS  Google Scholar 

  205. Derakhshanfar, S., Mbeleck, R., Xu, K., Zhang, X., Zhong, W., Xing, M.: 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3(2), 144–156 (2018). https://doi.org/10.1016/j.bioactmat.2017.11.008

    Article  Google Scholar 

  206. Sun, J., Zhou, W., Huang, D., Fuh, J.Y.H., Hong, G.S.: An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol. 8(8), 1605–1615 (2015). https://doi.org/10.1007/s11947-015-1528-6

    Article  CAS  Google Scholar 

  207. Lalia, B.S., Kochkodan, V., Hashaikeh, R., Hilal, N.: A review on membrane fabrication: structure, properties and performance relationship. Desalination 326, 77–95 (2013). https://doi.org/10.1016/j.desal.2013.06.016

    Article  CAS  Google Scholar 

  208. Issac, M.N., Kandasubramanian, B.: Review of manufacturing three-dimensional-printed membranes for water treatment. Environ. Sci. Pollut. Res. 27(29), 36091–36108 (2020). https://doi.org/10.1007/s11356-020-09452-2

    Article  CAS  Google Scholar 

  209. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.Q., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part B Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  210. Low, Z.X., Chua, Y.T., Ray, B.M., Mattia, D., Metcalfe, I.S., Patterson, D.A.: Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 523, 596–613 (2017). https://doi.org/10.1016/j.memsci.2016.10.006

    Article  CAS  Google Scholar 

  211. Yusuf, A., et al.: A review of emerging trends in membrane science and technology for sustainable water treatment. J. Clean. Prod. 266, 121867 (2020). https://doi.org/10.1016/j.jclepro.2020.121867

    Article  CAS  Google Scholar 

  212. Tijing, L.D., Dizon, J.R.C., Ibrahim, I., Nisay, A.R.N., Shon, H.K., Advincula, R.C.: 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today 18, 100486 (2020). https://doi.org/10.1016/j.apmt.2019.100486

    Article  Google Scholar 

  213. Koh, J.J., Lim, G.J.H., Zhou, X., Zhang, X., Ding, J., He, C.: 3D-printed anti-fouling cellulose mesh for highly efficient oil/water separation applications. ACS Appl. Mater. Interfaces 11(14), 13787–13795 (2019). https://doi.org/10.1021/acsami.9b01753

    Article  CAS  Google Scholar 

  214. Sangiorgi, A., et al.: 3D printing of photocatalytic filters using a biopolymer to immobilize TiO2 nanoparticles. J. Electrochem. Soc. 166(5), H3239–H3248 (2019). https://doi.org/10.1149/2.0341905jes

    Article  CAS  Google Scholar 

  215. Singh, N.B., Agarwal, S.: Nanocomposites: an overview. Emerg. Mater. Res. 5(1), 5–43 (2016). https://doi.org/10.1680/jemmr.15.00025

    Article  CAS  Google Scholar 

  216. Ma, H., Hsiao, B.S.: Electrospun Nanofibrous Membranes for Desalination. Elsevier Inc. (2018)

    Google Scholar 

  217. Elimelech, M., Phillip, W.A.: The future of seawater desalination: energy, technology, and the environment. Science 333(6043), 712–717 (2011). https://doi.org/10.1126/science.1200488

    Article  CAS  Google Scholar 

  218. Kebria, M.R.S., Rahimpour, A., Bakeri, G., Abedini, R.: Experimental and theoretical investigation of thin ZIF-8/chitosan coated layer on air gap membrane distillation performance of PVDF membrane. Desalination 450, 21–32 (2019). https://doi.org/10.1016/j.desal.2018.10.023

    Article  CAS  Google Scholar 

  219. Subramanian, S., Seeram, R.: New directions in nanofiltration applications - are nanofibers the right materials as membranes in desalination? Desalination 308, 198–208 (2013). https://doi.org/10.1016/j.desal.2012.08.014

    Article  CAS  Google Scholar 

  220. Wang, Y., et al.: Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv. 9(1), 278–286 (2019). https://doi.org/10.1039/C8RA06493H

    Article  CAS  Google Scholar 

  221. Emadzadeh, D., Lau, W.J., Matsuura, T., Rahbari-Sisakht, M., Ismail, A.F.: A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem. Eng. J. 237, 70–80 (2014). https://doi.org/10.1016/j.cej.2013.09.081

    Article  CAS  Google Scholar 

  222. Zirehpour, A., Rahimpour, A., Khoshhal, S., Firouzjaei, M.D., Ghoreyshi, A.A.: The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Adv. 6(74), 70174–70185 (2016). https://doi.org/10.1039/C6RA14591D

    Article  CAS  Google Scholar 

  223. Khraisheh, M., AlMomani, F., Al-Ghouti, M.: Electrospun Al2O3 hydrophobic functionalized membranes for heavy metal recovery using direct contact membrane distillation. Int. J. Energy Res. 45(6), 8151–8167 (2020). https://doi.org/10.1002/er.5710

    Article  CAS  Google Scholar 

  224. Tijing, L.D., et al.: Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J. Membr. Sci. 502, 158–170 (2016). https://doi.org/10.1016/j.memsci.2015.12.014

    Article  CAS  Google Scholar 

  225. Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B.S., Chu, B.: High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer (Guildf) 47(7), 2434–2441 (2006). https://doi.org/10.1016/j.polymer.2006.01.042

    Article  CAS  Google Scholar 

  226. Tang, Z., et al.: UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. J. Memb. Sci. 328(1–2), 1–5 (2009). https://doi.org/10.1016/j.memsci.2008.11.054

    Article  CAS  Google Scholar 

  227. Tang, X., et al.: In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation. Nanoscale 5, 11657–11664 (2013). https://doi.org/10.1039/c3nr03937d

    Article  CAS  Google Scholar 

  228. Arslan, O., Aytac, Z., Uyar, T.: Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl. Mater. Interfaces 8(30), 19747–19754 (2016). https://doi.org/10.1021/acsami.6b05429

    Article  CAS  Google Scholar 

  229. Lv, J., et al.: 3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation. J. Mater. Chem. A 5(23), 12435–12444 (2017). https://doi.org/10.1039/c7ta02202f

    Article  CAS  Google Scholar 

  230. Tijing, L.D., Woo, Y.C., Yao, M., Ren, J., Shon, H.K.: 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Elsevier Ltd. (2017)

    Google Scholar 

  231. Tran, D.N., Marti, A.M., Balkus, K.J.: Electrospun zeolite/cellulose acetate fibers for ion exchange of Pb2+. Fibers 2(4), 308–317 (2014). https://doi.org/10.3390/fib2040308

    Article  Google Scholar 

  232. Zhao, R., et al.: Surface activated hydrothermal carbon-coated electrospun PAN fiber membrane with enhanced adsorption properties for herbicide. ACS Sustain. Chem. Eng. 4(5), 2584–2592 (2016). https://doi.org/10.1021/acssuschemeng.6b00026

    Article  CAS  Google Scholar 

  233. Habiba, U., Afifi, A.M., Salleh, A., Ang, B.C.: Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 322, 182–194 (2017). https://doi.org/10.1016/j.jhazmat.2016.06.028

    Article  CAS  Google Scholar 

  234. Pandey, N., Shukla, S.K., Singh, N.B.: Water purification by polymer nanocomposites: an overview. Nanocomposites 3(2), 47–66 (2017). https://doi.org/10.1080/20550324.2017.1329983

    Article  CAS  Google Scholar 

  235. Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92(3), 407–418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  236. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211–212, 317–331 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  237. Al-Rashdi, B.A.M., Johnson, D.J., Hilal, N.: Removal of heavy metal ions by nanofiltration. Desalination 315, 2–17 (2013). https://doi.org/10.1016/j.desal.2012.05.022

    Article  CAS  Google Scholar 

  238. Lim, A.P., Aris, A.Z.: A review on economically adsorbents on heavy metals removal in water and wastewater. Rev. Environ. Sci. Bio/Technol. 13(2), 163–181 (2014). https://doi.org/10.1007/s11157-013-9330-2

    Article  CAS  Google Scholar 

  239. Ghaemi, N.: A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl. Surf. Sci. 364, 221–228 (2016). https://doi.org/10.1016/j.apsusc.2015.12.109

    Article  CAS  Google Scholar 

  240. Kim, H.J., Pant, H.R., Kim, J.H., Choi, N.J., Kim, C.S.: Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceram. Int. 40(2), 3023–3029 (2014). https://doi.org/10.1016/j.ceramint.2013.10.005

    Article  CAS  Google Scholar 

  241. Valsala, T.P., Roy, S.C., Shah, J.G., Gabriel, J., Raj, K., Venugopal, V.: Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. J. Hazard. Mater. 166(2–3), 1148–1153 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.019

    Article  CAS  Google Scholar 

  242. El-Magied, M.O.A., Tolba, A.A., El-Gendy, H.S., Zaki, S.A., Atia, A.A.: Studies on the recovery of Th(IV) ions from nitric acid solutions using amino-magnetic glycidyl methacrylate resins and application to granite leach liquors. Hydrometallurgy 169, 89–98 (2017). https://doi.org/10.1016/j.hydromet.2016.12.011

    Article  CAS  Google Scholar 

  243. Zach-Maor, A., Semiat, R., Shemer, H.: Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal. J. Colloid Interface Sci. 357(2), 440–446 (2011). https://doi.org/10.1016/j.jcis.2011.01.021

    Article  CAS  Google Scholar 

  244. Wen, T., et al.: Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Sci. Rep. 6(1), 20920 (2016). https://doi.org/10.1038/srep20920

    Article  CAS  Google Scholar 

  245. Sheha, R.R.: Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions. J. Colloid Interface Sci. 388(1), 21–30 (2012). https://doi.org/10.1016/j.jcis.2012.08.042

    Article  CAS  Google Scholar 

  246. Park, Y., Lee, Y.-C., Shin, W.S., Choi, S.-J.: Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem. Eng. J. 162(2), 685–695 (2010). https://doi.org/10.1016/j.cej.2010.06.026

    Article  CAS  Google Scholar 

  247. Ahmad, A., et al.: Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 5(39), 30801–30818 (2015). https://doi.org/10.1039/C4RA16959J

    Article  CAS  Google Scholar 

  248. Moussavi, G., Mahmoudi, M.: Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 168(2–3), 806–812 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.097

    Article  CAS  Google Scholar 

  249. Yagub, M.T., Sen, T.K., Afroze, S., Ang, H.M.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014). https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  250. Elrasheedy, A., Nady, N., Bassyouni, M., El-Shazly, A.: Metal organic framework based polymer mixed matrix membranes: review on applications in water purification. Membranes (Basel) 9(7), 88 (2019). https://doi.org/10.3390/membranes9070088

    Article  CAS  Google Scholar 

  251. Dulman, V., Cucu-Man, S.-M., Bunia, I., Dumitras, M.: Batch and fixed bed column studies on removal of Orange G acid dye by a weak base functionalized polymer. Desalin. Water Treat. 57(31), 14708–14727 (2016). https://doi.org/10.1080/19443994.2015.1065767

    Article  CAS  Google Scholar 

  252. Chong, M.N., Jin, B., Chow, C.W.K., Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010). https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  Google Scholar 

  253. Striemer, C.C., Gaborski, T.R., McGrath, J.L., Fauchet, P.M.: Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129), 749–753 (2007). https://doi.org/10.1038/nature05532

    Article  CAS  Google Scholar 

  254. Zhang, R., Ji, S., Wang, N., Wang, L., Zhang, G., Li, J.-R.: Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. Angew. Chemie. Int. Ed. Engl. 53(37), 9775–9779 (2014). https://doi.org/10.1002/anie.201403978

    Article  CAS  Google Scholar 

  255. Maroofi, S.M., Mahmoodi, N.M.: Zeolitic imidazolate framework-polyvinylpyrrolidone-polyethersulfone composites membranes: from synthesis to the detailed pollutant removal from wastewater using cross flow system. Colloids Surf. A Physicochem. Eng. Asp. 572, 211–220 (2019). https://doi.org/10.1016/j.colsurfa.2019.03.093

    Article  CAS  Google Scholar 

  256. Wan, Q., et al.: Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. J. Mater. Sci. 52(1), 504–518 (2017). https://doi.org/10.1007/s10853-016-0349-y

    Article  CAS  Google Scholar 

  257. Safarpour, M., Vatanpour, V., Khataee, A.: Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393, 65–78 (2016). https://doi.org/10.1016/j.desal.2015.07.003

    Article  CAS  Google Scholar 

  258. Vakili, M., et al.: Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym. 113, 115–130 (2014). https://doi.org/10.1016/j.carbpol.2014.07.007

    Article  CAS  Google Scholar 

  259. Olad, A., Azhar, F.F.: Eco-friendly biopolymer/clay/conducting polymer nanocomposite: Characterization and its application in reactive dye removal. Fibers Polym. 15(6), 1321–1329 (2014). https://doi.org/10.1007/s12221-014-1321-6

    Article  CAS  Google Scholar 

  260. Figuerola, A., et al.: Metal–organic framework mixed-matrix coatings on 3D printed devices. Appl. Mater. Today 16, 21–27 (2019). https://doi.org/10.1016/j.apmt.2019.04.011

    Article  Google Scholar 

  261. Pei, R., et al.: 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal. J. Hazard. Mater. 384, 121418 (2020). https://doi.org/10.1016/j.jhazmat.2019.121418

    Article  CAS  Google Scholar 

  262. Wang, Z., Wang, J., Li, M., Sun, K., Liu, C.J.: Three-dimensional printed acrylonitrile butadiene styrene framework coated with Cu-BTC metal-organic frameworks for the removal of methylene blue. Sci. Rep. 4, 4–10 (2014). https://doi.org/10.1038/srep05939

    Article  CAS  Google Scholar 

  263. Chen, H., Huang, M., Liu, Y., Meng, L., Ma, M.: Functionalized electrospun nanofiber membranes for water treatment: a review. Sci. Total. Environ. 739, 139944 (2020). https://doi.org/10.1016/j.scitotenv.2020.139944

    Article  CAS  Google Scholar 

  264. Blanco, M., et al.: TiO2-doped electrospun nanofibrous membrane for photocatalytic water treatment. Polymers (Basel) 11(5), 1–11 (2019). https://doi.org/10.3390/polym11050747

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge UPV/EHU and Fundación Vital funding within the project “PROYECTOS DE INVESTIGACIÓN UPV/EHU-FUNDACIÓN VITAL FUNDAZIOA 2020” (VITAL20/26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leire Ruiz Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubio, L.R., Teijido, R., Veloso-Fernández, A., Pérez-Yáñez, S., Vilas-Vilela, J.L. (2022). Polymeric Nanocomposite Membranes for Water Remediation: From Classic Approaches to 3D Printing. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_8

Download citation

Publish with us

Policies and ethics