Skip to main content

Abstract

The future Quantum Internet is expected to be based on a hybrid architecture with core quantum transport capabilities complemented by conventional networking. Practical and foundational considerations indicate the need for conventional control and data planes that (i) utilize extensive existing telecommunications fiber infrastructure, and (ii) provide parallel conventional data channels needed for quantum networking protocols. We propose a quantum-conventional network (QCN) harness to implement a new architecture to meet these requirements. The QCN control plane carries the control and management traffic, whereas its data plane handles the conventional and quantum data communications. We established a local area QCN connecting three quantum laboratories over dedicated fiber and conventional network connections. We describe considerations and tradeoffs for layering QCN functionalities, informed by our recent quantum entanglement distribution experiments conducted over this network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Open Newtorking Foundation. SDN Architecture Overview (2013). https://opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf

  2. IEEE-SA Standards Board. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Std 1588-2008 (2008). https://standards.ieee.org/ieee/1588/4355/

  3. Aguado, A., López, V., Brito, J.P., Pastor, A., López, D.R., Martin, V.: Enabling quantum key distribution networks via software-defined networking. In: 2020 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–5. IEEE (2020). https://doi.org/10.23919/ONDM48393.2020.9133024

  4. Alshowkan, M., Elleithy, K.: Quantum entanglement distribution for secret key establishment in metropolitan optical networks. IEEE International Conference on Networking, Architecture and Storage, pp. 1–8 (2016). https://doi.org/10.1109/NAS.2016.7549416

  5. Alshowkan, M., et al.: Reconfigurable quantum local area network over deployed fiber. PRX Quantum 2, 040304 (2021). https://doi.org/10.1103/PRXQuantum.2.040304

  6. Appas, F., et al.: Flexible entanglement-distribution network with an ALGaAs chip for secure communications. npj Quantum Inf. 7, 118 (2021). https://doi.org/10.1038/s41534-021-00454-7

  7. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335(6066), 303–308 (2012). https://doi.org/10.1126/science.1214707

  8. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

  9. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996). https://doi.org/10.1103/PhysRevA.54.R4649

  10. Braden, R.: Requirements for internet hosts - communication layers. RFC 1122 (1989). https://datatracker.ietf.org/doc/html/rfc1122

  11. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009). https://doi.org/10.1109/focs.2009.36

  12. Cerf, V., Kahn, R.: A protocol for packet network intercommunication. IEEE Trans. Commun. 22(5), 637–648 (1974). https://doi.org/10.1109/TCOM.1974.1092259

    Article  MATH  Google Scholar 

  13. Chapuran, T.E., et al.: Optical networking for quantum key distribution and quantum communications. New J. Phys. 11(10), 105001 (2009). https://doi.org/10.1088/1367-2630/11/10/105001

  14. Chen, T.Y., et al.: Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18(26), 27217–27225 (2010). https://doi.org/10.1364/OE.18.027217

  15. Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999). https://doi.org/10.1103/PhysRevA.59.4249

  16. Ciurana, A., Martin, V., Martinez-Mateo, J., Schrenk, B., Peev, M., Poppe, A.: Entanglement distribution in optical networks. IEEE J. Sel. Top. Quantum Electron. 21(3), 37–48 (2015). https://doi.org/10.1109/JSTQE.2014.2367241

    Article  Google Scholar 

  17. Dynes, J.F., et al.: Cambridge quantum network. npj Quantum Inf. 5(1), 101 (2019). https://doi.org/10.1038/s41534-019-0221-4

  18. Elliott, C.: Building the quantum network. New J. Phys. 4, 46 (2002). https://doi.org/10.1088/1367-2630/4/1/346

    Article  Google Scholar 

  19. Evans, P., et al.: Demonstration of a quantum key distribution trusted node on an electric utility fiber network. In: IEEE Photonics Conference, p. 8908470 (2019). https://doi.org/10.1109/ipcon.2019.8908470

  20. Feamster, N., Rexford, J., Zegura, E.: The road to SDN. ACM SIGCOMM Comp. Commun. Rev. 44(2), 87–98 (2014). https://doi.org/10.1145/2602204.2602219

  21. Giovannetti, V.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004). https://doi.org/10.1126/science.1104149

    Article  Google Scholar 

  22. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5(4), 222–229 (2011). https://doi.org/10.1038/nphoton.2011.35

    Article  Google Scholar 

  23. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1(3), 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22

    Article  Google Scholar 

  24. Hughes, R.J., et al.: A quantum key distribution system for optical fiber networks. Proc. SPIE 5893, 589301 (2005). https://doi.org/10.1117/12.615594

    Article  Google Scholar 

  25. Humble, T.S., Sadlier, R.J., Williams, B.P., Prout, R.C.: Software-defined quantum network switching. Proc. SPIE 10652, 72–79 (2018). https://doi.org/10.1117/12.2303800

    Article  Google Scholar 

  26. Joshi, S.K.: A trusted node–free eight-user metropolitan quantum communication network. Sci. Adv. 6(36), eaba0959 (2020). https://doi.org/10.1126/sciadv.aba0959

  27. Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Optical interferometry with quantum networks. Phys. Rev. Lett. 123(7), 070504 (2019). https://doi.org/10.1103/PhysRevLett.123.070504

  28. Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Quantum-assisted telescope arrays. Phys. Rev. A 100(2), 022316 (2019). https://doi.org/10.1103/PhysRevA.100.022316

  29. Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008). https://doi.org/10.1038/nature07127

  30. Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Zeilinger, A.: Twisted photon entanglement through turbulent air across Vienna. PNAS 112(46), 14197–14201 (2015). https://doi.org/10.1073/pnas.1517574112

  31. Lim, H.C., Yoshizawa, A., Tsuchida, H., Kikuchi, K.: Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber. Opt. Express 16(26), 22099 (2008). https://doi.org/10.1364/oe.16.022099

  32. Lingaraju, N.B., Lu, H.H., Seshadri, S., Leaird, D.E., Weiner, A.M., Lukens, J.M.: Adaptive bandwidth management for entanglement distribution in quantum networks. Optica 8(3), 329–332 (2021). https://doi.org/10.1364/OPTICA.413657

  33. Lipiński, M., Włostowski, T., Serrano, J., Alvarez, P.: White rabbit: a PTP application for robust sub-nanosecond synchronization. In: IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, pp. 25–30 (2011). https://doi.org/10.1109/ISPCS.2011.6070148

  34. Lukens, J.M., Law, K.J.H., Jasra, A., Lougovski, P.: A practical and efficient approach for Bayesian quantum state estimation. New J. Phys. 22(6), 063038 (2020). https://doi.org/10.1088/1367-2630/ab8efa

  35. Mao, Y., et al.: Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26(5), 6010 (2018). https://doi.org/10.1364/oe.26.006010

  36. McKeown, N., et al.: OpenFlow. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008). https://doi.org/10.1145/1355734.1355746

  37. On-demand secure circuits and advance reservation system (OSCARS). http://www.es.net/oscars

  38. Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009). https://doi.org/10.1088/1367-2630/11/7/075001

  39. Peloso, M.P., Gerhardt, I., Ho, C., Lamas-Linares, A., Kurtsiefer, C.: Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11(4), 045007 (2009). https://doi.org/10.1088/1367-2630/11/4/045007

  40. Rao, N.S.V., Humble, T.: Control plane and virtualized development environment for softwarized quantum networks. In: DOE ASCR Quantum Networks for Open Science Workshop (2018). https://www.osti.gov/biblio/1468059

  41. Rao, N., Wing, W., Carter, S., Wu, Q.: Ultrascience net: network testbed for large-scale science applications. IEEE Commun. Mag. 43(11), S12–S17 (2005). https://doi.org/10.1109/MCOM.2005.1541694

    Article  Google Scholar 

  42. Runser, R.J., et al.: Progress toward quantum communications networks: opportunities and challenges. Proc. SPIE 6476, 147–161 (2007). https://doi.org/10.1117/12.708669

    Article  Google Scholar 

  43. Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011). https://doi.org/10.1364/OE.19.010387

  44. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301

  45. Shi, Y., Moe Thar, S., Poh, H.S., Grieve, J.A., Kurtsiefer, C., Ling, A.: Stable polarization entanglement based quantum key distribution over a deployed metropolitan fiber. Appl. Phys. Lett. 117(12), 124002 (2020). https://doi.org/10.1063/5.0021755

  46. Steinlechner, F., et al.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8(1), 15971 (2017). https://doi.org/10.1038/ncomms15971

  47. Stucki, D., et al.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011). https://doi.org/10.1088/1367-2630/13/12/123001

  48. Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385(6611), 47–49 (1997). https://doi.org/10.1038/385047a0

  49. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314

  50. Wang, S., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739–21756 (2014). https://doi.org/10.1364/OE.22.021739

  51. Wengerowsky, S., Joshi, S.K., Steinlechner, F., Hubel, H., Ursin, R.: An entanglement-based wavelength-multiplexed quantum communication network. Nature 564(7735), 225–228 (2018). https://doi.org/10.1038/s41586-018-0766-y

  52. Wengerowsky, S., et al.: Entanglement distribution over a 96-km-long submarine optical fiber. PNAS 116(14), 6684–6688 (2019). https://doi.org/10.1073/pnas.1818752116

  53. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). https://doi.org/10.1038/299802a0

Download references

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, through the Early Career Research Program and Transparent Optical Quantum Networks for Distributed Science Program (Field Work Proposals ERKJ353 and ERKJ355).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muneer Alshowkan or Joseph C. Chapman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshowkan, M. et al. (2022). Lessons Learned on the Interface Between Quantum and Conventional Networking. In: Nichols, J., et al. Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. Communications in Computer and Information Science, vol 1512. Springer, Cham. https://doi.org/10.1007/978-3-030-96498-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96498-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96497-9

  • Online ISBN: 978-3-030-96498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics