Skip to main content

Building an Integrated Ecosystem of Computational and Observational Facilities to Accelerate Scientific Discovery

  • Conference paper
  • First Online:
Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation (SMC 2021)

Abstract

Future scientific discoveries will rely on flexible ecosystems that incorporate modern scientific instruments, high performance computing resources, parallel distributed data storage, and performant networks across multiple, independent facilities. In addition to connecting physical resources, such an ecosystem presents many challenges in logistics and accessibility, especially in orchestrating computations and experiments that span across leadership computing systems and experimental instruments. Past efforts have typically been application-specific or limited to interfaces for computing resources. This paper proposes a general framework for integrating computation resources and instrument operations, addressing challenges in code development/execution, data staging and collection, software stack, control mechanisms, resource authorization and governance, and hardware integration. We also describe a demonstration use case wherein a Bayesian optimization algorithm running on an edge computing resource guides a scanning probe microscope to autonomously and intelligently characterize a material sample. This science edge ecosystem framework will provide a blueprint for federating multi-institutional, disparate resources and orchestrating scientific workflows across them to enable next-generation discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Experimental physics and industrial control system. epics.anl.gov

    Google Scholar 

  2. NERSC Superfacility. https://www.nersc.gov/research-and-development/superfacility/

  3. NVIDIA DGX Systems for Enterprise AI

    Google Scholar 

  4. OneID: modernizing digital identities. https://computing.llnl.gov/newsroom/oneid-modernizing-digital-identities

  5. Spectra logic BlackPearl models

    Google Scholar 

  6. Supercomputing 2016 Data Transfer Demonstrations

    Google Scholar 

  7. Best DPU platform 2021 (2021)

    Google Scholar 

  8. Workshop on Autonomous Discovery in Science and Engineering Report (2021)

    Google Scholar 

  9. Allan, D., Caswell, T., Campbell, S., Rakitin, M.: Bluesky’s ahead: a multi-facility collaboration for an a la carte software project for data acquisition and management. Synchrotron Radiat. News 32(3), 19–22 (2019)

    Article  Google Scholar 

  10. Banks, A., Briggs, E., Borgendale, K., Gupta, R.: MQTT version 5.0 (2019). https://mqtt.org/mqtt-specification/. Accessed 26 May 2021

  11. Bethel, E.W., Greenwald, M. (eds.): Report of the doe workshop on management, analysis, and visualization of experimental and observational data - the convergence of data and computing, May 2016

    Google Scholar 

  12. CERN. Rucio scientific data management (2021). https://rucio.cern.ch. Accessed 26 May 2021

  13. Cruz, F.A., Martinasso, M.: FirecREST: RESTful API on Cray XC systems. CoRR, abs/1911.13160 (2019)

    Google Scholar 

  14. Dart, E., Rotman, L., Tierney, B., Hester, M., Zurawski, J.: The science DMZ: a network design pattern for data-intensive science. Sci. Program. 22(2), 173–185 (2014)

    Google Scholar 

  15. Deelman, E., et al.: Pegasus: a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015)

    Article  Google Scholar 

  16. Egerton, R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-9583-4

    Book  Google Scholar 

  17. Apache Software Foundation. Kafka protocol guide (2017). https://kafka.apache.org/protocol. Accessed 26 May 2021

  18. Galbreath, Z., Major, B., Harris, C.: eSimMon, February 2019

    Google Scholar 

  19. VMWare Inc., RabbitMQ (2021). https://www.rabbitmq.com. Accessed 26 May 2021

  20. iRODS Consortium. Open source data management software (2021). https://irods.org. Accessed 26 May 2021

  21. Jain, A., et al.: Fireworks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput.: Pract. Exp. 27(17), 5037–5059 (2015)

    Article  Google Scholar 

  22. Jesse, S., et al.: Atomic-level sculpting of crystalline oxides: toward bulk nanofabrication with single atomic plane precision. Small 11(44), 5895–5900 (2015)

    Article  Google Scholar 

  23. Lee, W., Kim, S., Kim, T., Kim, H.: Micro-datacenter management architecture for mobile wellness information. In: 2014 International Conference on IT Convergence and Security (ICITCS), pp. 1–4 (2014)

    Google Scholar 

  24. Leighton, J.F. ESnet: the energy sciences network (1996)

    Google Scholar 

  25. Lingerfelt, E.J., et al.: BEAM: a computational workflow system for managing and modeling material characterization data in HPC environments. Proc. Comput. Sci. 80, 2276–2280 (2016). In: International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA

    Google Scholar 

  26. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng.: J. Int. Counc. Syst. Eng. 1(4), 267–284 (1998)

    Article  Google Scholar 

  27. Naughton, T., et al.: Software framework for federated science instruments. In: Nichols, J., Verastegui, B., Maccabe, A.B., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) SMC 2020. CCIS, vol. 1315, pp. 189–203. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63393-6_13

    Chapter  Google Scholar 

  28. University of Chicago. Globus (2021). https://docs.globus.org. Accessed 26 May 2021

  29. Ophus, C., Ercius, P., Sarahan, M., Czarnik, C., Ciston, J.: Recording and using 4D-stem datasets in materials science. Microsc. Microanal. 20(S3), 62–63 (2014)

    Article  Google Scholar 

  30. Podhorszki, N., et al.: The adaptable IO system (ADIOS) (2021). https://www.olcf.ornl.gov/center-projects/adios/. Accessed 26 May 2021

  31. Rao, N.S.V., Al Najjar, A., Foster, I., Kettimuthu, R., Liu, Z.: Virtual framework for science federations with instruments access and control. In: Workshop on Autonomous Discovery in Science and Engineering report (2021)

    Google Scholar 

  32. Shankar, M., Lancon, E.: Background and roadmap for a distributed computing and data ecosystem (2019)

    Google Scholar 

  33. Shankar, M., Somnath, S., Alam, S., Feichtinger, D., Sala, L., Wells, J.: Policy Considerations When Federating Facilities for Experimental and Observational Data Analysis (chap. 18), pp. 387–409. World Scientific (2020)

    Google Scholar 

  34. Shim, S.S.Y., Bhalla, G., Pendyala, V.: Federated identity management. Computer 38(12), 120–122 (2005)

    Article  Google Scholar 

  35. Stansberry, D., Somnath, S., Shutt, G., Shankar, M.: A systemic approach to facilitating reproducibility via federated, end-to-end data management. In: Nichols, J., Verastegui, B., Maccabe, A.B., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) SMC 2020. CCIS, vol. 1315, pp. 83–98. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63393-6_6

    Chapter  Google Scholar 

  36. Steeds J.W.: Convergent beam electron diffraction. In: Hren, J.J., Goldstein, J.I., Joy, D.C. (eds.) Introduction to Analytical Electron Microscopy, pp. 387–422. Springer, Boston (1979). https://doi.org/10.1007/978-1-4757-5581-7_15

  37. Vasudevan, R.K., et al.: Autonomous experiments in scanning probe microscopy and spectroscopy: choosing where to explore polarization dynamics in ferroelectrics. ACS Nano 15(7), 11253–11262 (2021)

    Article  Google Scholar 

  38. Vlcek, L., Maksov, A., Pan, M., Vasudevan, R.K., Kalinin, S.V.: Knowledge extraction from atomically resolved images. ACS Nano 11(10), 10313–10320 (2017)

    Article  Google Scholar 

  39. Vlcek, L., et al.: Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging. NPJ Comput. Mater. 7(1), 1–9 (2021)

    Article  Google Scholar 

  40. Wang, C., et al.: Deploying the big data science center at the shanghai synchrotron radiation facility: the first superfacility platform in China. Mach. Learn.: Sci. Technol. 2(3), 035003 (2021)

    Google Scholar 

  41. Wang, D., Jung, E.-S., Kettimuthu, R., Foster, I., Foran, D.J., Parashar, M.: Supporting real-time jobs on the IBM Blue Gene/Q: simulation-based study. In: Klusáček, D., Cirne, W., Desai, N. (eds.) JSSPP 2017. LNCS, vol. 10773, pp. 83–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77398-8_5

    Chapter  Google Scholar 

  42. Wilkinson, M.D., et al.: Addendum: the FAIR guiding principles for scientific data management and stewardship. Sci. Data 6, 6 (2019)

    Article  Google Scholar 

  43. Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.: Swift/T: large-scale application composition via distributed-memory dataflow processing. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pp. 95–102. IEEE (2013)

    Google Scholar 

Download references

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) and Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory (ORNL), and also supported by Robust Analytic Models for Science at Extreme Scales (RAMSES) project, all supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. It is also supported by Laboratory Directed Research and Development (LDRD) project at ORNL. A portion of this work was conducted at and supported (RKV, SJ, SVK) by the Center for Nanophase Materials Sciences, ORNL, a US DOE Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas Somnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Somnath, S. et al. (2022). Building an Integrated Ecosystem of Computational and Observational Facilities to Accelerate Scientific Discovery. In: Nichols, J., et al. Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. Communications in Computer and Information Science, vol 1512. Springer, Cham. https://doi.org/10.1007/978-3-030-96498-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96498-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96497-9

  • Online ISBN: 978-3-030-96498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics