Skip to main content

Blue Carbon Potential of India: The Present State of the Art

  • Chapter
  • First Online:
The Blue Economy
  • 368 Accesses

Abstract

Blue carbon means the organic form of carbon locked in the marine ecosystems, and the major repositories of such carbon are the mangroves, seagrasses, and salt marshes throughout the world. Pieces of evidence show that these ecosystems can store substantial quantities of carbon and have the potential to offset the anthropogenic carbon emissions. All three conventional blue carbon ecosystems are present in India’s coastal periphery. This chapter collated the observations related to carbon stock in the various compartments of these ecosystems. We discussed the measurement protocols and the present knowledge acquired so far about the carbon sequestration potential of these ecosystems in India. The blue economy is an emerging discipline, and inclusion of the blue carbon ecosystem services within the arena of the blue economy is an essential endeavor that needs special attention from the perspective of India. This chapter also discussed the findings of the very few studies, which dealt with estimating the monetary worth of the carbon locked in some of the blue carbon ecosystems. Scrutinizing all the observations, we have delineated the major lacuna of this domain that needs special attention shortly. The authors intend to make this chapter a thought-provoking piece for other researchers to nurture innovative ideas to link blue carbon science and economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhand, A., Mukhopadhyay, A., Chanda, A., Mukherjee, S., Das, A., Das, S., ... & Rao, K. H. (2017). Potential CO 2 emission due to loss of above ground biomass from the Indian Sundarban mangroves during the last four decades. Journal of the Indian Society of Remote Sensing, 45(1), 147-154.

    Article  Google Scholar 

  • Akhand, A., Watanabe, K., Chanda, A., Tokoro, T., Chakraborty, K., Moki, H., ... & Kuwae, T. (2021). Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of The Total Environment, 752, 142190.

    Article  Google Scholar 

  • Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon management, 3(3), 313-322.

    Article  Google Scholar 

  • Anand, A., Malhi, R. K. M., Pandey, P. C., Petropoulos, G. P., Pavlides, A., Sharma, J. K., & Srivastava, P. K. (2020). Use of Hyperion for Mangrove Forest Carbon Stock Assessment in Bhitarkanika Forest Reserve: A Contribution Towards Blue Carbon Initiative. Remote Sensing, 12(4), 597.

    Article  Google Scholar 

  • Anneboina, L. R., & Kumar, K. K. (2017). Economic analysis of mangrove and marine fishery linkages in India. Ecosystem Services, 24, 114-123.

    Article  Google Scholar 

  • Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., ... & Serrano, O. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523-528.

    Article  Google Scholar 

  • Banerjee, K., Paneerselvam, A., Ramachandran, P., Ganguly, D., Singh, G., & Ramesh, R. (2018). Seagrass and macrophyte mediated CO2 and CH4 dynamics in shallow coastal waters. PloS One, 13(10), e0203922.

    Article  Google Scholar 

  • Banerjee, K., Sahoo, C. K., Bal, G., Mallik, K., Paul, R., & Mitra, A. (2020). High blue carbon stock in mangrove forests of Eastern India. Tropical Ecology, 1-18.

    Google Scholar 

  • Banerjee, K., Sappal, S. M., Ramachandran, P., & Ramesh, R. (2017). Salt Marsh: Ecologically Important, Yet Least Studied Blue Carbon Ecosystems in India. Journal of Climate Change, 3(2), 59-72.

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC et al. (2011) The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  • Bindu, G., Rajan, P., Jishnu, E. S., & Joseph, K. A. (2020). Carbon stock assessment of mangroves using remote sensing and geographic information system. The Egyptian Journal of Remote Sensing and Space Science, 23(1), 1-9.

    Article  Google Scholar 

  • Broderick, A. C., Frauenstein, R., Glen, F., Hays, G. C., Jackson, A. L., Pelembe, T., ... & Godley, B. J. (2006). Are green turtles globally endangered?. Global Ecology and Biogeography, 15(1), 21-26.

    Article  Google Scholar 

  • Chanda, A., Akhand, A., Manna, S., Das, S., Mukhopadhyay, A., Das, I., ... & Dadhwal, V. K. (2016). Mangrove associates versus true mangroves: a comparative analysis of leaf litter decomposition in Sundarban. Wetlands Ecology and Management, 24(3), 293-315.

    Article  Google Scholar 

  • Chave, J. (2005). Measuring wood density for tropical forest trees. A field manual for the CTFS sites. Toulouse, France, 1-7.

    Google Scholar 

  • Chen, C. T. A., Huang, T. H., Fu, Y. H., Bai, Y., & He, X. (2012). Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current Opinion in Environmental Sustainability, 4(2), 179-185.

    Article  Google Scholar 

  • Chowdhury, A., Naz, A., Bhattacharyya, S., & Sanyal, P. (2018). Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon Management, 9(6), 575-586.

    Article  Google Scholar 

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., … Thornton, P. (2013). Carbon and other biogeochemical cycles. In T. F. Stocker et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge, UK and New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.015

    Chapter  Google Scholar 

  • Cullen-Unsworth, L. C., Jones, B. L., Seary, R., Newman, R., & Unsworth, R. K. (2018). Reasons for seagrass optimism: local ecological knowledge confirms presence of dugongs. Marine Pollution Bulletin, 134, 118-122.

    Article  Google Scholar 

  • Das, S., Zaman, S., Pramanick, P., Pal, N., & Mitra, A. (2015). Suaeda maritima: a potential carbon reservoir of coastal zone. International advanced research journal in science. Engineering and Technology, 2(5), 61-65.

    Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1–8. https://doi.org/10.5194/bgd-2-1-2005.

    Article  Google Scholar 

  • Duarte, C. M., & Chiscano, C. L. (1999). Seagrass biomass and production: a reassessment. Aquatic botany, 65(1-4), 159-174.

    Google Scholar 

  • Dwivedi RS, Rao BRM, Bhattacharya S (1999) Mapping wetlands of the Sundarban delta and its environs using ERS-1 SAR data. Int J Remote Sens 20:2235–2247

    Article  Google Scholar 

  • Ellison, A. M., Farnsworth, E. J., & Merkt, R. E. (1999). Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8(2), 95-115.

    Google Scholar 

  • Ellison, J. C. (1999). Impacts of sediment burial on mangroves. Marine Pollution Bulletin, 37(8-12), 420-426.

    Article  Google Scholar 

  • Erftemeijer, P. L., & Shuail, D. A. (2012). Seagrass habitats in the Arabian Gulf: distribution, tolerance thresholds and threats. Aquatic Ecosystem Health & Management, 15(sup1), 73-83.

    Article  Google Scholar 

  • Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., ... & Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature geoscience, 5(7), 505-509.

    Article  Google Scholar 

  • Ganguly, D., Singh, G., Purvaja, R., Bhatta, R., Selvam, A. P., Banerjee, K., & Ramesh, R. (2018). Valuing the carbon sequestration regulation service by seagrass ecosystems of Palk Bay and Chilika, India. Ocean & Coastal Management, 159, 26-33.

    Article  Google Scholar 

  • Ganguly, D., Singh, G., Ramachandran, P., Selvam, A. P., Banerjee, K., & Ramachandran, R. (2017). Seagrass metabolism and carbon dynamics in a tropical coastal embayment. Ambio, 46(6), 667-679.

    Article  Google Scholar 

  • Geevarghese, G. A., Akhil, B., Magesh, G., Krishnan, P., Purvaja, R., & Ramesh, R. (2018). A comprehensive geospatial assessment of seagrass distribution in India. Ocean & Coastal Management, 159, 16-25.

    Article  Google Scholar 

  • Giri, S., Mukhopadhyay, A., Hazra, S., Mukherjee, S., Roy, D., Ghosh, S., ... & Mitra, D. (2014). A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. Journal of Coastal Conservation, 18(4), 359-367.

    Article  Google Scholar 

  • Gnanamoorthy, P., Selvam, V., Ramasubramanian, R., Chakraborty, S., Pramit, D., & Karipot, A. (2019). Soil organic carbon stock in natural and restored mangrove forests in Pichavaram south-east coast of India. Indian Journal of Geo Marine Sciences Vol. 48 (05), pp. 801-808

    Google Scholar 

  • Green EP, Clark CD, Mumby PJ, Edwards AJ, Ellis AC (1998a) Remote sensing techniques for mangrove mapping. Int J Remote Sens 19:935–956

    Article  Google Scholar 

  • Green EP, Mumby PJ, Ellis AC, Edwards AJ, Clark CD (1998b) The assessment of mangrove areas using high resolution multispectral air borne imagery. J Coast Res 14:433–443

    Google Scholar 

  • Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Majumdar, S. D., Samanta, S., ... & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129-1139.

    Article  Google Scholar 

  • Hansen JCR, Reidenbach MA (2012) Wave and tidally driven flows within Zostera marina seagrass beds and their impact on sediment suspension. Mar Ecol Prog Ser 448: 271–287. https://doi.org/10.3354/meps09225.

    Article  Google Scholar 

  • Harishma, K. M., Sandeep, S., & Sreekumar, V. B. (2020). Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecological Processes, 9(1), 1-9.

    Article  Google Scholar 

  • IPCC (2007) Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: New York, NY, USA, p. 851.

    Google Scholar 

  • ISFR (2019) India State of Forest Report. 2019. Chapter 3 Mangrove cover. Forest Survey of India. Ministry of Environment Forest and Climate Change.

    Google Scholar 

  • Jagtap, T. G., & Inamdar, S. N. (1991). Mapping of seagrass meadows from the Lakshadweep Islands (India), using aerial photographs. Journal of the Indian Society of Remote Sensing, 19(2), 77-82.

    Article  Google Scholar 

  • Jagtap, T. G., Chavan, V. S., & Untawale, A. G. (1993). Mangrove ecosystems of India: a need for protection. Ambio, 252-254.

    Google Scholar 

  • Jana, H., Zaman, S., Chakraborty, S., Pramanick, P., Mondal, K. C., & Mitra, A. (2013). Spatiotemporal variation of stored carbon in Porteresia coarctata along the East and West Coast of India. International Journal of Engineering and Management Sciences, 4(3), 377-381.

    Google Scholar 

  • Jena, B. K., Arunraj, K. S., Suseentharan, V., Tushar, K., & Karthikeyan, T. (2019). Indian coastal ocean radar network. Current Science, 116(3), 372.

    Article  Google Scholar 

  • Jennerjahn, T. C. (2020). Relevance and magnitude of ‘Blue Carbon’ storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine, Coastal and Shelf Science, 107027.

    Google Scholar 

  • Kathiresan K, Anburaj R, Gomathi V, Saravankumar K (2013) Carbon sequestration potential of Rhizophora mucronata and Avicennia marina as influenced by age, season, growth and sediment characteristics in southeast coast of India. J Coast Conserv 17: 397-408.

    Article  Google Scholar 

  • Kauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass, and carbon stocks in mangrove forests (pp. 50). Bogor, Indonesia: CIFOR.

    Google Scholar 

  • Kaviarasan, T., Dahms, H. U., Gokul, M. S., Henciya, S., Muthukumar, K., Shankar, S., & James, R. A. (2019). Seasonal Species Variation of Sediment Organic Carbon Stocks in Salt Marshes of Tuticorin Area, Southern India. Wetlands, 39(3), 483-494.

    Article  Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M et al. (2010) Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cycles 24: 1–8.

    Article  Google Scholar 

  • Keuskamp, J. A., Hefting, M. M., Dingemans, B. J., Verhoeven, J. T., & Feller, I. C. (2015). Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 508, 402-410.

    Article  Google Scholar 

  • Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137.

    Article  Google Scholar 

  • Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 471-477.

    Google Scholar 

  • Koshy, N. E., Bhatt, J. R., & Vakily, J. M. (2018). Synthesis of the Conference on Management and Conservation of Seagrass Ecosystems in India. Ocean & Coastal Management, 159, 3-6.

    Article  Google Scholar 

  • Lan X, Hall BD, Dutton G, Mühle J, Elkins JW (2020). Atmospheric composition [in State of the Climate in 2018, Chapter 2: Global Climate]. Special Online Supplement to the Bulletin of the American Meteorological Society, Vol. 101, No. 8, August, 2020.

    Google Scholar 

  • Laruelle, G. G., Dürr, H. H., Slomp, C. P., & Borges, A. V. (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37(15).

    Google Scholar 

  • Locatelli, T., Binet, T., Kairo, J. G., King, L., Madden, S., Patenaude, G., ... & Huxham, M. (2014). Turning the tide: how blue carbon and payments for ecosystem services (PES) might help save mangrove forests. Ambio, 43(8), 981-995.

    Article  Google Scholar 

  • Lovelock, C. E. (2008). Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems, 11(2), 342-354.

    Article  Google Scholar 

  • Lovelock, C. E., & Duarte, C. M. (2019). Dimensions of blue carbon and emerging perspectives. Biology letters, 15(3), 20180781.

    Article  Google Scholar 

  • Lovelock, C. E., Fourqurean, J. W., & Morris, J. T. (2017). Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds. Frontiers in Marine Science, 4, 143.

    Article  Google Scholar 

  • Lund, J. F., Sungusia, E., Mabele, M. B., & Scheba, A. (2017). Promising change, delivering continuity: REDD+ as conservation fad. World Development, 89, 124-139.

    Article  Google Scholar 

  • Lunstrum, A., & Chen, L. (2014). Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry, 75, 223-232.

    Article  Google Scholar 

  • Macklin, P. A., Suryaputra, I. G. N. A., Maher, D. T., Murdiyarso, D., & Santos, I. R. (2019). Drivers of CO2 along a mangrove-seagrass transect in a tropical bay: Delayed groundwater seepage and seagrass uptake. Continental Shelf Research, 172, 57-67.

    Article  Google Scholar 

  • Mall LP, Singh VP, Garge A (1991) Study of biomass, litter fall, litter decomposition and soil respiration in monogeneric mangrove and mixed mangrove forests of Andaman Islands. Trop Ecol 32: 144-152.

    Google Scholar 

  • Mantgem, P. J. V., & Stephenson, N. L. (2004). Does coring contribute to tree mortality?. Canadian Journal of Forest Research, 34(11), 2394-2398.

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M et al. (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

    Article  Google Scholar 

  • Mcowen, C. J., Weatherdon, L. V., Van Bochove, J. W., Sullivan, E., Blyth, S., Zockler, C., ... & Fletcher, S. (2017). A global map of saltmarshes. Biodiversity data journal, (5).

    Google Scholar 

  • Mitra A, Sengupta K, Banerjee K (2011) Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management 261: 1325-1335.

    Article  Google Scholar 

  • MoEFCC, 2015. India’s Intended Nationally Determined Contribution: Working towards Climate Justice. India’s INDC submission to UNFCCC. http://www4.unfccc.int/Submissions/INDC/Published%20Documents/India/1/INDIA%20INDC%20TO%20UNFCCC.pdf, Accessed date: 14 March 2017.

  • Muthukumaran, M., Rao, A. V. B., & Nagalakshmama, K (2013). Loss of above Ground Biomass (AGB) on Avicennia Marina (Forsk.) and CO2 Emission Due to Thane Cyclone in Puducherry Coast, South India.

    Google Scholar 

  • Nandy S, Kushwaha SPS (2011) Study on the utility of IRS 1D LISS-III data and the classification techniques for mapping of Sundarban mangroves. J Coast Conserv 15:123–137

    Article  Google Scholar 

  • Naskar, K., & Mandal, R. (1999). Ecology and biodiversity of Indian mangroves (Vol. 1). Daya Books.

    Google Scholar 

  • Naskar, S., & Palit, P. K. (2015). Anatomical and physiological adaptations of mangroves. Wetlands ecology and management, 23(3), 357-370.

    Article  Google Scholar 

  • Nasser, A. K. V., Kunhikoya, V. A., & Aboobaker, P. M. (1999). Mangrove ecosystems of Minicoy Island, Lakshadweep. Marine Fisheries Information Service, Technical and Extension Series, 159, 8-10.

    Google Scholar 

  • Nayak S, Sarangi RK, Rajawat AS (2001) Application of IRS P4 OCM data to study the impact of cyclone on coastal environment of Orissa. Curr Sci 80:1208–1213

    Google Scholar 

  • Nayak, S., & Bahuguna, A. (2001). Application of remote sensing data to monitor mangroves and other coastal vegetation of India.

    Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM et al. (2009) Blue carbon: a rapid response assessment. United Nations Environmental Programme, GRID-Arendal, Birkeland Trykkeri AS, Birkeland

    Google Scholar 

  • NOAA (2020) Global Monitoring Laboratory, Earth System Research Laboratories, https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html (accessed on 06 October 2020)

  • Nordhaus, W.D., 2017. Revisiting the social cost of carbon. PNAS 114 (7), 1518–1523.

    Article  Google Scholar 

  • Pandey, C. N., & Pandey, R. (2013). Carbon sequestration in mangroves of Gujarat, India. International Journal of Botany and Research, 3(2), 57-70.

    Google Scholar 

  • Patil, V., Singh, A., Naik, N., & Unnikrishnan, S. (2014). Estimation of carbon stocks in Avicennia marina stand using allometry, CHN analysis, and GIS methods. Wetlands, 34(2), 379-391.

    Article  Google Scholar 

  • Patro, S., Krishnan, P., Samuel, V.D., Purvaja, R. and Ramesh, R., 2017. Seagrass and Salt Marsh Ecosystems in South Asia: An Overview of Diversity, Distribution, Threats and Conservation Status. In: Wetland Science. Springer India.

    Google Scholar 

  • Pattnayak, S., Kumar, M., Sahu, S. C., Dhal, N. K., & Behera, R. K. (2019). Comparison of soil characteristics and carbon content of contrastingly different moist-mixed deciduous and evergreen mangrove forest in Odisha, India. Geology, Ecology, and Landscapes, 3(4), 239-246.

    Article  Google Scholar 

  • Paulose, N. E., Dilipan, E., & Thangaradjou, T. (2013). Integrating Indian remote sensing multi-spectral satellite and field data to estimate seagrass cover change in the Andaman and Nicobar Islands, India. Ocean Science Journal, 48(2), 173-181.

    Article  Google Scholar 

  • Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., ... & Megonigal, P. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One, 7(9), e43542.

    Article  Google Scholar 

  • Ramachandran, S., Sundaramoorthy, S., Krishnamoorthy, R., Devasenapathy, J., & Thanikachalam, M. (1998). Application of remote sensing and GIS to coastal wetland ecology of Tamil Nadu and Andaman and Nicobar group of islands with special reference to mangroves. Current Science, 236-244.

    Google Scholar 

  • Ramesh, R., Banerjee, K., Paneerselvam, A., Raghuraman, R., Purvaja, R., & Lakshmi, A. (2019). Importance of seagrass management for effective mitigation of climate change. In Coastal Management (pp. 283-299). Academic Press.

    Google Scholar 

  • Rathore AP, Chaudhary DR, Jha B (2016) Biomass production, nutrient cycling, and carbon fixation by Salicornia brachiata Roxb.: a promising halophyte for coastal saline soil rehabilitation. International Journal of Phytoremediation 18(8):801–811

    Article  Google Scholar 

  • Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S., Dutta, M. K., ... & Jana, T. K. (2011). Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmospheric Environment, 45(28), 5016-5024.

    Article  Google Scholar 

  • Reddy, C. S., Pattanaik, C., & Murthy, M. S. R. (2007). Assessment and monitoring of mangroves of Bhitarkanika Wildlife Sanctuary, Orissa, India using remote sensing and GIS. Current Science, 1409-1415.

    Google Scholar 

  • Roelfsema, C., Kovacs, E. M., Saunders, M. I., Phinn, S., Lyons, M., & Maxwell, P. (2013). Challenges of remote sensing for quantifying changes in large complex seagrass environments. Estuarine, Coastal and Shelf Science, 133, 161-171.

    Article  Google Scholar 

  • Sahu, S. C., Kumar, M., & Ravindranath, N. H. (2016). Carbon stocks in natural and planted mangrove forests of Mahanadi Mangrove Wetland, East Coast of India. Current Science, 2253-2260.

    Google Scholar 

  • Santos, D., Estrada, G. C., Fernandez, V., Estevam, M. R., Souza, B. T., & Soares, M. L. (2017). First assessment of carbon stock in the belowground biomass of Brazilian mangroves. Anais da Academia Brasileira de Ciências, 89(3), 1579-1589.

    Article  Google Scholar 

  • Serrano, O., Almahasheer, H., Duarte, C. M., & Irigoien, X. (2018). Carbon stocks and accumulation rates in Red Sea seagrass meadows. Scientific reports, 8(1), 1-13.

    Article  Google Scholar 

  • Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S., ... & Erftemeijer, P. L. (2011). Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144(7), 1961-1971.

    Article  Google Scholar 

  • ShyleshChandran, M. S., Ravi, A., John, S. M., Sivan, S., Asha, M. S., Mammen, P. C., ... & Sruthi, S. N. (2020). Ecosystem Carbon Stock of Selected Mangrove Forests of Vypin–Cochin Region, Southwest Coast of India. Wetlands, 1-11.

    Google Scholar 

  • Silliman, B. R. (2014). Salt marshes. Current Biology, 24(9), R348-R350.

    Article  Google Scholar 

  • Sivakumar S, Krishnakumar P, Lakshumanan C (2014) Estimation of carbon stocks in above ground biomass in Muthupet mangrove, Southeast coast of India. International Journal of Intellectual Advancements and Research in Engineering Computations 5(2): 139–150

    Google Scholar 

  • Suresh HS, Bhatt DM, Ravindranath NH, Sukumar R (2013) Species diversity, above ground biomass and standing carbon stocks in different mangrove forest patches of coastal Karnataka: In Mangroves in India: their biology and uses: 191-198.

    Google Scholar 

  • Thangaradjou T, Sridhar R, Senthilkumar, S., & Kannan, S. (2008). Seagrass resource assessment in the Mandapam coast of the Gulf of Mannar Biosphere Reserve, India. Applied ecology and environmental research, 6(1), 139-146.

    Article  Google Scholar 

  • Thangaradjou, T., & Bhatt, J. R. (2018). Status of seagrass ecosystems in India. Ocean & Coastal Management, 159, 7-15.

    Article  Google Scholar 

  • Thomas, S. (2014). Blue carbon: Knowledge gaps, critical issues, and novel approaches. Ecological Economics, 107, 22-38.

    Article  Google Scholar 

  • Tomlinson, P.B. (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Ullman, R., Bilbao-Bastida, V., & Grimsditch, G. (2013). Including blue carbon in climate market mechanisms. Ocean & Coastal Management, 83, 15-18.

    Article  Google Scholar 

  • Umamaheswari, R., Ramach, S., & Nobi, E. P. (2009). Mapping the extend of seagrass meadows of Gulf of Mannar Biosphere Reserve, India using IRS ID satellite imagery. International Journal of Biodiversity and Conservation, 1(5), 187-193.

    Google Scholar 

  • Verhayden A, Dahdouh-Guebas F, Thomaes K, De Genst W, Hettiarachchi S, Koedam N (2002) High-resolution vegetation data for mangrove research as obtained from aerial photography. Environ Dev Sustain 4:113–133

    Article  Google Scholar 

  • Vijay, V., Biradar, R. S., Inamdar, A. B., Deshmukhe, G., Baji, S., & Pikle, M. (2005). Mangrove mapping and change detection around Mumbai (Bombay) using remotely sensed data.

    Google Scholar 

  • Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F., & Oppelt, N. (2012). Review of valuation methods for mangrove ecosystem services. Ecological indicators, 23, 431-446.

    Article  Google Scholar 

  • Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture (pp. 3-28). Woodhead Publishing.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Ghosh, T. (2022). Blue Carbon Potential of India: The Present State of the Art. In: Hazra, S., Bhukta, A. (eds) The Blue Economy. Springer, Cham. https://doi.org/10.1007/978-3-030-96519-8_10

Download citation

Publish with us

Policies and ethics