Skip to main content

Super-Spreading in Infectious Diseases: A Global Challenge for All Disciplines

  • Chapter
  • First Online:
Multidisciplinarity and Interdisciplinarity in Health

Part of the book series: Integrated Science ((IS,volume 6))

  • 784 Accesses

Summary

From the Plague of Athens, the earliest pandemic recorded in history, to COVID-19, infectious disease outbreaks have relentlessly impacted societies, cultures, and economies. For a long time, it has been assumed that the spread of pathogens in a population is homogeneous, with each infected host having approximately equal probabilities of encountering and infecting susceptible secondary contacts. More recently, it was shown that many outbreaks are shaped by heterogeneities, which may occur in the spatial or temporal dimensions and can arise through various mechanisms. These heterogeneities exist at the level of individuals, groups of individuals, and species, and were described in the interaction of human, animal, and cellular populations with bacteria, viruses, parasites, or vectors. Extreme cases of these transmission heterogeneities are known as super-spreading events. Transmission heterogeneities and super-spreading are governed by factors that depend on the host, the pathogen, and the environment. While super-spreading events were documented for many outbreaks studied to date, they are usually identified retrospectively. This makes it challenging to incorporate them into the management of ongoing epidemics or pandemics. Previous studies point toward co-infection, immune suppression, pathogen virulence, airflow dynamics, and high numbers of social contacts as some of the factors involved in super-spreading. A better understanding of super-spreading, from epidemiology to the cellular processes and the mechanistic details, promises to support the development of a framework to identify transmission heterogeneities early during outbreaks, incorporate them into epidemic and pandemic preparedness plans, and reshape the future of public health.

“We live in evolutionary competition with microbes—bacteria and viruses. There is no guarantee that we will be the survivors”. Joshua Lederberg.

Super-spreading in infectious diseases

[Adapted from the Association of Science and Art (ASA), USERN; Made by Nastaran Hosseini].

The code of this chapter is 01101110 01101110 01101001 01101111 01100101 01110010 01110100 01000101 01110110 01101110 01101101.

“We live in evolutionary competition with microbes—bacteria and viruses. There is no guarantee that we will be the survivors.”

Joshua Lederberg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fauci AS, Touchette NA, Folkers GK (2005) Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases. Emerg Infect Dis 11(4):519–525. https://doi.org/10.3201/eid1104.041167

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cunha BA (2004) Historical aspects of infectious diseases, part I. Infect Dis Clin North Am 18 (1):XI–V. https://doi.org/10.1016/S0891-5520(03)00098-9

  3. Huremović D (2019) Brief history of pandemics (pandemics throughout history). In: Psychiatry of pandemics, pp 7–35. https://doi.org/10.1007/978-3-030-15346-5_2

  4. Balloux F, van Dorp L (2017) Q&A: what are pathogens, and what have they done to and for us? BMC Biol 15(1):91–91. https://doi.org/10.1186/s12915-017-0433-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mukherjee S (2017) Emerging infectious diseases: epidemiological perspective. Indian J Dermatol 62(5):459–467. https://doi.org/10.4103/ijd.IJD_379_17

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Doorn HR (2014) Emerging infectious diseases. Medicine (Abingdon) 42(1):60–63. https://doi.org/10.1016/j.mpmed.2013.10.014

    Article  Google Scholar 

  7. Khabbaz R, Bell BP, Schuchat A, Ostroff SM, Moseley R, Levitt A et al (2015) Emerging and reemerging infectious disease threats. Mandell, Douglas, Bennett’s Principles Pract Infect Dis 158–177:e156. https://doi.org/10.1016/B978-1-4557-4801-3.00014-X

  8. Tatem AJ, Rogers DJ, Hay SI (2006) Global transport networks and infectious disease spread. Adv Parasitol 62:293–343. https://doi.org/10.1016/S0065-308X(05)62009-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trauer JM, Dodd PJ, Gomes MGM, Gomez GB, Houben RMGJ, McBryde ES et al (2019) The Importance of heterogeneity to the epidemiology of tuberculosis. Clin Infect Dis (an official publication of the Infectious Diseases Society of America) 69(1):159–166. https://doi.org/10.1093/cid/ciy938

    Article  Google Scholar 

  10. Kong L, Wang J, Han W, Cao Z (2016) Modeling heterogeneity in direct infectious disease transmission in a compartmental model. Int J Environ Res Public Health 13(3). https://doi.org/10.3390/ijerph13030253

  11. Rodriguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bull Math Biol 63(3):547–571. https://doi.org/10.1006/bulm.2001.0231

    Article  CAS  PubMed  Google Scholar 

  12. Bansal S, Grenfell BT, Meyers LA (2007) When individual behaviour matters: homogeneous and network models in epidemiology. J R Soc Interface 4(16):879–891. https://doi.org/10.1098/rsif.2007.1100

    Article  PubMed  PubMed Central  Google Scholar 

  13. Del Valle SY, Hyman JM, Chitnis N (2013) Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Math Biosci Eng 10(5–6):1475–1497. https://doi.org/10.3934/mbe.2013.10.1475

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bolzoni L, Real L, De Leo G (2007) Transmission heterogeneity and control strategies for infectious disease emergence. PLoS ONE 2(8):e747. https://doi.org/10.1371/journal.pone.0000747

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bolker B, Grenfell B (1995) Space, persistence and dynamics of measles epidemics. Philos Trans R Soc Lond B Biol Sci 348(1325):309–320. https://doi.org/10.1098/rstb.1995.0070

    Article  CAS  PubMed  Google Scholar 

  16. Yates A, Antia R, Regoes RR (2006) How do pathogen evolution and host heterogeneity interact in disease emergence? Proc Biol Sci 273(1605):3075–3083. https://doi.org/10.1098/rspb.2006.3681

    Article  PubMed  PubMed Central  Google Scholar 

  17. Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP et al (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A 94(1):338–342. https://doi.org/10.1073/pnas.94.1.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bansal S, Read J, Pourbohloul B, Meyers LA (2010) The dynamic nature of contact networks in infectious disease epidemiology. J Biol Dyn 4(5):478–489. https://doi.org/10.1080/17513758.2010.503376

    Article  PubMed  Google Scholar 

  19. Woolhouse ME, Shaw DJ, Matthews L, Liu WC, Mellor DJ, Thomas MR (2005) Epidemiological implications of the contact network structure for cattle farms and the 20–80 rule. Biol Lett 1(3):350–352. https://doi.org/10.1098/rsbl.2005.0331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stein RA (2011) Super-spreaders in infectious diseases. Int J Infect Dis 15(8):e510-513. https://doi.org/10.1016/j.ijid.2010.06.020

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stein RA, Katz DE (2017) Escherichia coli, cattle and the propagation of disease. FEMS Microbiol Lett 364(6). https://doi.org/10.1093/femsle/fnx050

  22. López L, Burguerner G, Giovanini L (2014) Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach. BMC Res Notes 7:234–234. https://doi.org/10.1186/1756-0500-7-234

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buonomo B, Chitnis N, d’Onofrio A (2018) Preface to the special issue on “Demographic and temporal heterogeneities in infectious disease epidemiology.” Ricerche mat 67(1):3–6. https://doi.org/10.1007/s11587-018-0369-9

    Article  Google Scholar 

  24. Anderson RM, May RM (1985) Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. J Hyg (Lond) 94(3):365–436. https://doi.org/10.1017/s002217240006160x

    Article  CAS  Google Scholar 

  25. Gambhir M, Swerdlow DL, Finelli L, Van Kerkhove MD, Biggerstaff M, Cauchemez S et al (2013) Multiple contributory factors to the age distribution of disease cases: a modeling study in the context of influenza A(H3N2v). Clin Infect Dis 57(Suppl 1):S23-27. https://doi.org/10.1093/cid/cit298

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ubeda F, Jansen VA (2016) The evolution of sex-specific virulence in infectious diseases. Nat Commun 7:13849. https://doi.org/10.1038/ncomms13849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doeschl-Wilson AB, Davidson R, Conington J, Roughsedge T, Hutchings MR, Villanueva B (2011) Implications of host genetic variation on the risk and prevalence of infectious diseases transmitted through the environment. Genetics 188(3):683–693. https://doi.org/10.1534/genetics.110.125625

    Article  PubMed  PubMed Central  Google Scholar 

  28. Manning SD, Woolhouse ME, Ndamba J (1995) Geographic compatibility of the freshwater snail Bulinus globosus and schistosomes from the Zimbabwe highveld. Int J Parasitol 25(1):37–42. https://doi.org/10.1016/0020-7519(94)00097-8

    Article  CAS  PubMed  Google Scholar 

  29. Kao RR (2006) Evolution of pathogens towards low R0 in heterogeneous populations. J Theor Biol 242(3):634–642. https://doi.org/10.1016/j.jtbi.2006.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodrigues P, Margheri A, Rebelo C, Gomes MG (2009) Heterogeneity in susceptibility to infection can explain high reinfection rates. J Theor Biol 259(2):280–290. https://doi.org/10.1016/j.jtbi.2009.03.013

    Article  PubMed  Google Scholar 

  31. Dwyer G, Elkinton JS, Buonaccorsi JP (1997) Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model. Am Nat 150(6):685–707. https://doi.org/10.1086/286089

    Article  CAS  PubMed  Google Scholar 

  32. Kong L, Wang J, Han W, Cao Z (2016) Modeling heterogeneity in direct infectious disease transmission in a compartmental model. Int J Environ Res Public Health 13(3):253. https://doi.org/10.3390/ijerph13030253

    Article  CAS  PubMed Central  Google Scholar 

  33. Mari L, Ciddio M, Casagrandi R, Perez-Saez J, Bertuzzo E, Rinaldo A et al (2017) Heterogeneity in schistosomiasis transmission dynamics. J Theor Biol 432:87–99. https://doi.org/10.1016/j.jtbi.2017.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  34. Alemu K, Worku A, Berhane Y (2013) Malaria infection has spatial, temporal, and spatiotemporal heterogeneity in unstable malaria transmission areas in northwest Ethiopia. PLoS ONE 8(11):e79966. https://doi.org/10.1371/journal.pone.0079966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Volkova VV, Howey R, Savill NJ, Woolhouse ME (2010) Sheep movement networks and the transmission of infectious diseases. PLoS ONE 5(6):e11185. https://doi.org/10.1371/journal.pone.0011185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006) Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273(1599):2327–2333. https://doi.org/10.1098/rspb.2006.3575

    Article  PubMed  Google Scholar 

  37. Miller E, Warburg A, Novikov I, Hailu A, Volf P, Seblova V et al (2014) Quantifying the contribution of hosts with different parasite concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS Negl Trop Dis 8(10):e3288. https://doi.org/10.1371/journal.pntd.0003288

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438(7066):355–359. https://doi.org/10.1038/nature04153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paull SH, Song S, McClure KM, Sackett LC, Kilpatrick AM, Johnson PT (2012) From superspreaders to disease hotspots: linking transmission across hosts and space. Front Ecol Environ 10(2):75–82. https://doi.org/10.1890/110111

    Article  PubMed  Google Scholar 

  40. Kumar S, Jha S, Rai SK (2020) Significance of super spreader events in COVID-19. Indian J Public Health 64(Supplement):S139-s141. https://doi.org/10.4103/ijph.IJPH_495_20

    Article  PubMed  Google Scholar 

  41. Cave E (2020) COVID-19 Super-spreaders: definitional quandaries and implications. Asian Bioeth Rev 1–8. https://doi.org/10.1007/s41649-020-00118-2

  42. Carinci F (2020) Covid-19: preparedness, decentralisation, and the hunt for patient zero. BMJ 368:bmj.m799. https://doi.org/10.1136/bmj.m799

  43. MacKay R (2020) Patient zero: why it’s such a toxic term. Available at: https://theconversation.com/patient-zero-why-its-such-a-toxic-term-134721. Last Accessed 4 July 2020

  44. Vaaben L (2020) Patient Zero er historien om den onde, dumme smittespreder Available at: https://www.information.dk/moti/2020/03/patient-zero-historien-onde-dumme-smittespreder. Last Accessed 4 July 2020

  45. McKay RA (2014) “Patient Zero”: the absence of a patient’s view of the early North American AIDS epidemic. Bull Hist Med 88(1):161–194. https://doi.org/10.1353/bhm.2014.0005

    Article  PubMed  Google Scholar 

  46. Auerbach DM, Darrow WW, Jaffe HW, Curran JW (1984) Cluster of cases of the acquired immune deficiency syndrome. Patients linked by sexual contact. American J Med 76(3):487–492

    Google Scholar 

  47. Worobey M, Watts TD, McKay RA, Suchard MA, Granade T, Teuwen DE et al (2016) 1970s and “Patient 0” HIV-1 genomes illuminate early HIV/AIDS history in North America. Nature 539(7627):98–101. https://doi.org/10.1038/nature19827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen J (2016) Infectious disease. ‘Patient Zero’ no more. Science (New York, NY) 351 (6277):1013. https://doi.org/10.1126/science.351.6277.1013

  49. Darrow WW (2017) And the band played on: before and after. AIDS Behav 21(10):2799–2806. https://doi.org/10.1007/s10461-017-1798-2

    Article  PubMed  Google Scholar 

  50. Shilts R (1987) And the band played on: politics, people, and the AIDS epidemic (hereafter Band New York: St. Martin’s, p 412

    Google Scholar 

  51. Crimp D (1987) How to have promiscuity in an epidemic. 43:237–271. https://doi.org/10.2307/3397576

  52. Anonymous (2016) How researchers cleared the name of HIV Patient Zero. Nature 538(7626):428. https://doi.org/10.1038/538428a

    Article  Google Scholar 

  53. Highberg NR (2004) “Because we were just too scared”: rhetorical constructions of patient zero. Med Humanit Rev 18(1–2):9–26

    PubMed  Google Scholar 

  54. Yu IT, Xie ZH, Tsoi KK, Chiu YL, Lok SW, Tang XP et al (2007) Why did outbreaks of severe acute respiratory syndrome occur in some hospital wards but not in others? Clin Infect Dis 44(8):1017–1025. https://doi.org/10.1086/512819

    Article  PubMed  Google Scholar 

  55. Shen Z, Ning F, Zhou W, He X, Lin C, Chin DP et al (2003) (2004) Superspreading SARS events, Beijing. Emerg Infect Dis 10(2):256–260. https://doi.org/10.3201/eid1002.030732

    Article  Google Scholar 

  56. Al-Tawfiq JA, Rodriguez-Morales AJ (2020) Super-spreading events and contribution to transmission of MERS, SARS, and COVID-19. J Hosp Infect. https://doi.org/10.1016/j.jhin.2020.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gopalakrishna G, Choo P, Leo YS, Tay BK, Lim YT, Khan AS et al (2004) SARS transmission and hospital containment. Emerg Infect Dis 10(3):395–400. https://doi.org/10.3201/eid1003.030650

    Article  PubMed  PubMed Central  Google Scholar 

  58. (CDC) CfDCaP (2003) Severe acute respiratory syndrome—Singapore, 2003. MMWR Morb Mortal Wkly Rep 52(18):405–411

    Google Scholar 

  59. Wallinga J, Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol 160(6):509–516. https://doi.org/10.1093/aje/kwh255

    Article  PubMed  Google Scholar 

  60. Zhang Y, Li Y, Wang L, Li M, Zhou X (2020) Evaluating transmission heterogeneity and super-spreading event of COVID-19 in a Metropolis of China. Int J Environ Res Public Health 17(10). https://doi.org/10.3390/ijerph17103705

  61. Lin J, Yan K, Zhang J, Cai T, Zheng J (2020) A super-spreader of COVID-19 in Ningbo city in China. J Infect Public Health 13(7):935–937. https://doi.org/10.1016/j.jiph.2020.05.023

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M (2008) Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6(12):904–912. https://doi.org/10.1038/nrmicro2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Woolhouse M (2017) Quantifying Transmission. Microbiol Spectr 5(4). https://doi.org/10.1128/microbiolspec.MTBP-0005-2016

  64. Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, Heesterbeek JA et al (2006) Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc Natl Acad Sci U S A 103(3):547–552. https://doi.org/10.1073/pnas.0503776103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adriani KS (2019) [The uncomfortable history of Mary Mallon and typhoid fever]. Ned Tijdschr Geneeskd 163

    Google Scholar 

  66. Marineli F, Tsoucalas G, Karamanou M, Androutsos G (2013) Mary Mallon (1869–1938) and the history of typhoid fever. Ann Gastroenterol 26(2):132–134

    PubMed  PubMed Central  Google Scholar 

  67. Brooks J (1996) The sad and tragic life of Typhoid Mary. CMAJ 154(6):915–916

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Soper GA (1939) The curious career of Typhoid Mary. Bull N Y Acad Med 15(10):698–712

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mary Mallon (Typhoid Mary) (1939). Am J Public Health Nations Health 29 (1):66–68. https://doi.org/10.2105/ajph.29.1.66

  70. Cherry JD (2004) The chronology of the 2002–2003 SARS mini pandemic. Paediatr Respir Rev 5(4):262–269. https://doi.org/10.1016/j.prrv.2004.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  71. Luk HKH, Li X, Fung J, Lau SKP, Woo PCY (2019) Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol 71:21–30. https://doi.org/10.1016/j.meegid.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cleri DJ, Ricketti AJ, Vernaleo JR (2010) Severe acute respiratory syndrome (SARS). Infect Dis Clin North Am 24(1):175–202. https://doi.org/10.1016/j.idc.2009.10.005

    Article  PubMed  PubMed Central  Google Scholar 

  73. Xu R-H, He J-F, Evans MR, Peng G-W, Field HE, Yu D-W et al (2004) Epidemiologic clues to SARS origin in China. Emerg Infect Dis 10(6):1030–1037. https://doi.org/10.3201/eid1006.030852

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rosling L, Rosling M (2003) Pneumonia causes panic in Guangdong province. BMJ 326(7386):416. https://doi.org/10.1136/bmj.326.7386.416

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li Y, Yu IT, Xu P, Lee JH, Wong TW, Ooi PL et al (2004) Predicting super spreading events during the 2003 severe acute respiratory syndrome epidemics in Hong Kong and Singapore. Am J Epidemiol 160(8):719–728. https://doi.org/10.1093/aje/kwh273

    Article  PubMed  Google Scholar 

  76. Yan W (2015) Going batty: Studying natural reservoirs to inform drug development. Nat Med 21(8):831–833. https://doi.org/10.1038/nm0815-831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sampathkumar P, Temesgen Z, Smith TF, Thompson RL (2003) SARS: epidemiology, clinical presentation, management, and infection control measures. Mayo Clin Proc 78(7):882–890. https://doi.org/10.4065/78.7.882

    Article  PubMed  Google Scholar 

  78. Cherry JD, Krogstad P (2004) SARS: the first pandemic of the 21st century. Pediatr Res 56(1):1–5. https://doi.org/10.1203/01.Pdr.0000129184.87042.Fc

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fleck F (2003) WHO says SARS outbreak is over, but fight should go on. BMJ 327(7406):70. https://doi.org/10.1136/bmj.327.7406.70-c

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hung LS (2003) The SARS epidemic in Hong Kong: what lessons have we learned? J R Soc Med 96(8):374–378. https://doi.org/10.1258/jrsm.96.8.374

    Article  PubMed  PubMed Central  Google Scholar 

  81. Update: Outbreak of severe acute respiratory syndrome--worldwide, 2003 (2003). MMWR Morbidity and mortality weekly report 52(12):241–246, 248

    Google Scholar 

  82. Leung GM, Hedley AJ, Ho LM, Chau P, Wong IO, Thach TQ et al (2004) The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. Ann Intern Med 141(9):662–673

    Article  Google Scholar 

  83. Tam DK, Lee S, Lee SS (2007) Impact of SARS on avian influenza preparedness in healthcare workers. Infection 35(5):320–325. https://doi.org/10.1007/s15010-007-6353-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tomlinson B, Cockram C (2003) SARS: experience at Prince of Wales hospital, Hong Kong. Lancet 361(9368):1486–1487. https://doi.org/10.1016/s0140-6736(03)13218-7

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hui DSC, Zumla A (2019) Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Am 33(4):869–889. https://doi.org/10.1016/j.idc.2019.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wong RS, Hui DS (2004) Index patient and SARS outbreak in Hong Kong. Emerg Infect Dis 10(2):339–341. https://doi.org/10.3201/eid1002.030645

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM et al (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348(20):1986–1994. https://doi.org/10.1056/NEJMoă85

  88. Harrison LH, Armstrong CW, Jenkins SR, Harmon MW, Ajello GW, Miller GB Jr et al (1991) A cluster of meningococcal disease on a school bus following epidemic influenza. Arch Intern Med 151(5):1005–1009

    Article  CAS  Google Scholar 

  89. Yu IT, Qiu H, Tse LA, Wong TW (2014) Severe acute respiratory syndrome beyond Amoy Gardens: completing the incomplete legacy. Clin Infect Dis 58(5):683–686. https://doi.org/10.1093/cid/cit797

    Article  PubMed  Google Scholar 

  90. Li Y, Duan S, Yu IT, Wong TW (2005) Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E Amoy Gardens. Indoor Air 15(2):96–111. https://doi.org/10.1111/j.1600-0668.2004.00318.x

    Article  CAS  PubMed  Google Scholar 

  91. Yip C, Chang WL, Yeung KH, Yu IT (2007) Possible meteorological influence on the severe acute respiratory syndrome (SARS) community outbreak at Amoy Gardens Hong Kong. J Environ Health 70(3):39–46

    PubMed  Google Scholar 

  92. Meng X, Huang X, Zhou P, Li C, Wu A (2020) Alert for SARS-CoV-2 infection caused by fecal aerosols in rural areas in China. Infect Control Hospital Epidemiol 1–1. https://doi.org/10.1017/ice.2020.114

  93. McKinney KR, Gong YY, Lewis TG (2006) Environmental transmission of SARS at Amoy Gardens. J Environ Health 68(9):26–30; quiz 51–22

    Google Scholar 

  94. Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH et al (2004) Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med 350(17):1731–1739. https://doi.org/10.1056/NEJMoa032867

    Article  CAS  PubMed  Google Scholar 

  95. Lau JT, Lau M, Kim JH, Tsui HY, Tsang T, Wong TW (2004) Probable secondary infections in households of SARS patients in Hong Kong. Emerg Infect Dis 10(2):235–243. https://doi.org/10.3201/eid1002.030626

    Article  PubMed  Google Scholar 

  96. Chu CM, Cheng VC, Hung IF, Chan KS, Tang BS, Tsang TH et al (2005) Viral load distribution in SARS outbreak. Emerg Infect Dis 11(12):1882–1886. https://doi.org/10.3201/eid1112.040949

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bowen JT, Laroe C (2006) Airline networks and the international diffusion of severe acute respiratory syndrome (SARS). Geogr J 172(2):130–144. https://doi.org/10.1111/j.1475-4959.2006.00196.x

    Article  PubMed  Google Scholar 

  98. Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP et al (2003) Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med 349(25):2416–2422. https://doi.org/10.1056/NEJMoa031349

    Article  CAS  PubMed  Google Scholar 

  99. Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K et al (2003) Identification of severe acute respiratory syndrome in Canada. N Engl J Med 348(20):1995–2005. https://doi.org/10.1056/NEJMoă34

  100. Varia M, Wilson S, Sarwal S, McGeer A, Gournis E, Galanis E et al (2003) Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto Canada. Cmaj 169(4):285–292

    PubMed  PubMed Central  Google Scholar 

  101. Maskalyk J, Hoey J (2003) SARS update. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne 168(10):1294–1295

    Google Scholar 

  102. MacDougall H (2007) Toronto’s Health Department in action: influenza in 1918 and SARS in 2003. J Hist Med Allied Sci 62(1):56–89. https://doi.org/10.1093/jhmas/jrl042

    Article  PubMed  Google Scholar 

  103. Braden CR, Dowell SF, Jernigan DB, Hughes JM (2013) Progress in global surveillance and response capacity 10 years after severe acute respiratory syndrome. Emerg Infect Dis 19(6):864–869. https://doi.org/10.3201/eid1906.130192

    Article  PubMed  PubMed Central  Google Scholar 

  104. Svoboda T, Henry B, Shulman L, Kennedy E, Rea E, Ng W et al (2004) Public health measures to control the spread of the severe acute respiratory syndrome during the outbreak in Toronto. N Engl J Med 350(23):2352–2361. https://doi.org/10.1056/NEJMoa032111

    Article  CAS  PubMed  Google Scholar 

  105. Skowronski DM, Petric M, Daly P, Parker RA, Bryce E, Doyle PW et al (2006) Coordinated response to SARS, Vancouver. Canada. Emerg Infect Dis 12(1):155–158. https://doi.org/10.3201/eid1201.050327

    Article  PubMed  Google Scholar 

  106. Wong O (2004) Severe acute respiratory syndrome (SARS). Occup Environ Med 61(1):e1–e1

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Raboud J, Shigayeva A, McGeer A, Bontovics E, Chapman M, Gravel D et al (2010) Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto. Canada. PloS one 5(5):e10717–e10717. https://doi.org/10.1371/journal.pone.0010717

    Article  CAS  PubMed  Google Scholar 

  108. McDonald LC, Simor AE, Su IJ, Maloney S, Ofner M, Chen KT et al (2004) SARS in healthcare facilities, Toronto and Taiwan. Emerg Infect Dis 10(5):777–781. https://doi.org/10.3201/eid1005.030791

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ofner-Agostini M, Wallington T, Henry B, Low D, McDonald LC, Berger L et al. (2008) Investigation of the second wave (phase 2) of severe acute respiratory syndrome (SARS) in Toronto, Canada. What happened? Canada communicable disease report = Releve des maladies transmissibles au Canada 34(2):1–11

    Google Scholar 

  110. Dwosh HA, Hong HH, Austgarden D, Herman S, Schabas R (2003) Identification and containment of an outbreak of SARS in a community hospital. CMAJ 168(11):1415–1420

    PubMed  PubMed Central  Google Scholar 

  111. Loeb M, McGeer A, Henry B, Ofner M, Rose D, Hlywka T et al (2004) SARS among critical care nurses, Toronto. Emerg Infect Dis 10(2):251–255. https://doi.org/10.3201/eid1002.030838

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hui DS (2016) Super-spreading events of MERS-CoV infection. Lancet 388(10048):942–943. https://doi.org/10.1016/s0140-6736(16)30828-5

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820. https://doi.org/10.1056/NEJMoa1211721

    Article  CAS  PubMed  Google Scholar 

  114. Ramadan N, Shaib H (2019) Middle East respiratory syndrome coronavirus (MERS-CoV): a review. Germs 9(1):35–42. https://doi.org/10.18683/germs.2019.1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol 87(14):7790–7792. https://doi.org/10.1128/JVI.01244-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Killerby ME, Biggs HM, Midgley CM, Gerber SI, Watson JT (2020) Middle East respiratory syndrome coronavirus transmission. Emerg Infect Dis 26(2):191–198. https://doi.org/10.3201/eid2602.190697

    Article  PubMed  PubMed Central  Google Scholar 

  117. Park M, Thwaites RS, Openshaw PJM (2020) COVID-19: Lessons from SARS and MERS. Eur J Immunol 50(3):308–311. https://doi.org/10.1002/eji.202070035

    Article  CAS  PubMed Central  Google Scholar 

  118. Alsolamy S, Arabi YM (2015) Infection with Middle East respiratory syndrome coronavirus. Can J Respir Ther 51(4):102

    PubMed  PubMed Central  Google Scholar 

  119. Majumder MS, Rivers C, Lofgren E, Fisman D (2014) Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: insights from publicly available data. PLoS Curr 6. https://doi.org/10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c

  120. Hajjar SA, Memish ZA, McIntosh K (2013) Middle East respiratory syndrome coronavirus (MERS-CoV): a perpetual challenge. Ann Saudi Med 33(5):427–436. https://doi.org/10.5144/0256-4947.2013.427

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ki M (2015) 2015 MERS outbreak in Korea: hospital-to-hospital transmission. Epidemiol Health 37:e2015033. https://doi.org/10.4178/epih/e2015033

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kim KM, Ki M, Cho SI, Sung M, Hong JK, Cheong HK et al (2015) Epidemiologic features of the first MERS outbreak in Korea: focus on Pyeongtaek St Mary’s Hospital. Epidemiol Health 37:e2015041. https://doi.org/10.4178/epih/e2015041

    Article  PubMed  PubMed Central  Google Scholar 

  123. Choi JY (2015) An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015. Yonsei Med J 56(5):1174–1176. https://doi.org/10.3349/ymj.2015.56.5.1174

    Article  PubMed  PubMed Central  Google Scholar 

  124. Oh MD, Park WB, Park SW, Choe PG, Bang JH, Song KH et al (2018) Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. Korean J Intern Med 33(2):233–246. https://doi.org/10.3904/kjim.2018.031

    Article  PubMed  PubMed Central  Google Scholar 

  125. Jo S, Hong J, Lee SE, Ki M, Choi BY, Sung M (2019) Airflow analysis of Pyeongtaek St Mary’s Hospital during hospitalization of the first Middle East respiratory syndrome patient in Korea. R Soc Open Sci 6(3):181164. https://doi.org/10.1098/rsos.181164

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lee JY, Kim YJ, Chung EH, Kim DW, Jeong I, Kim Y et al (2017) The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, 2015. BMC Infect Dis 17(1):498. https://doi.org/10.1186/s12879-017-2576-5

    Article  PubMed  PubMed Central  Google Scholar 

  127. Middle East Respiratory Syndrome Coronavirus Outbreak in the Republic of Korea, 2015 (2015). Osong Public Health Res Perspect 6(4):269–278. https://doi.org/10.1016/j.phrp.2015.08.006

  128. Cho SY, Kang JM, Ha YE, Park GE, Lee JY, Ko JH et al (2016) MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study. Lancet 388(10048):994–1001. https://doi.org/10.1016/s0140-6736(16)30623-7

    Article  PubMed  PubMed Central  Google Scholar 

  129. Park GE, Ko JH, Peck KR, Lee JY, Lee JY, Cho SY et al (2016) Control of an outbreak of Middle East respiratory syndrome in a Tertiary hospital in Korea. Ann Intern Med 165(2):87–93. https://doi.org/10.7326/m15-2495

    Article  PubMed  Google Scholar 

  130. Kim KH, Tandi TE, Choi JW, Moon JM, Kim MS (2017) Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. J Hosp Infect 95(2):207–213. https://doi.org/10.1016/j.jhin.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  131. Kang CK, Song KH, Choe PG, Park WB, Bang JH, Kim ES et al (2017) Clinical and epidemiologic characteristics of spreaders of Middle East respiratory syndrome coronavirus during the 2015 outbreak in Korea. J Korean Med Sci 32(5):744–749. https://doi.org/10.3346/jkms.2017.32.5.744

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chun BC (2016) Understanding and modeling the super-spreading events of the Middle East respiratory syndrome outbreak in Korea. Infect Chemother 48(2):147–149. https://doi.org/10.3947/ic.2016.48.2.147

    Article  PubMed  PubMed Central  Google Scholar 

  133. Kim Y, Ryu H, Lee S (2018) Agent-based modeling for super-spreading events: a case study of MERS-CoV transmission dynamics in the Republic of Korea. Int J Environ Res Public Health 15(11):2369. https://doi.org/10.3390/ijerph15112369

    Article  PubMed Central  Google Scholar 

  134. Frieden TR, Lee CT (2020) Identifying and interrupting superspreading events-implications for control of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26(6):1059–1066. https://doi.org/10.3201/eid2606.200495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Willman M, Kobasa D, Kindrachuk J (2019) A comparative analysis of factors influencing two outbreaks of Middle Eastern respiratory syndrome (MERS) in Saudi Arabia and South Korea. Viruses 11(12). https://doi.org/10.3390/v11121119

  136. Zheng J (2020) SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci 16(10):1678–1685. https://doi.org/10.7150/ijbs.45053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu J, Chai P, Ge S, Fan X (2020) Recent understandings toward coronavirus disease 2019 (COVID-19): from bench to bedside. Front Cell Dev Biol 8:476. https://doi.org/10.3389/fcell.2020.00476

    Article  PubMed  PubMed Central  Google Scholar 

  138. JHCR. C (2020) Center JHCR. Available at: https://coronavirus.jhu.edu/map.html. Last Accessed March 10, 2022

  139. Bouffanais R, Lim SS (2020) Cities—try to predict superspreading hotspots for COVID-19. Nature 583(7816):352–355. https://doi.org/10.1038/d41586-020-02072-3

    Article  CAS  PubMed  Google Scholar 

  140. Kang CR, Lee JY, Park Y, Huh IS, Ham HJ, Han JK et al. (2020) Coronavirus disease exposure and spread from nightclubs, South Korea. Emerg Infect Dis 26(10). https://doi.org/10.3201/eid2610.202573

  141. News B (2020) Coronavirus Australia: Melbourne locks down tower blocks as cases rise. Available at: https://www.bbc.com/news/world-australia-53289616. Last Accessed on 28 July 2020

  142. Feng E (2020) Lockdowns ordered as COVID-19 cluster found near Beijing food market. Available at: https://www.npr.org/2020/06/15/876962147/lockdowns-ordered-as-covid-19-cluster-found-near-beijing-food-market. Last Accessed on 27 July 2020

  143. Xu XK, Liu XF, Wu Y, Ali ST, Du Z, Bosetti P et al (2020) Reconstruction of transmission pairs for novel coronavirus disease 2019 (COVID-19) in mainland China: estimation of super-spreading events, serial interval, and hazard of infection. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa790

    Article  PubMed  PubMed Central  Google Scholar 

  144. Correa-Martínez CL, Kampmeier S, Kümpers P, Schwierzeck V, Hennies M, Hafezi W et al (2020) A pandemic in times of global tourism: superspreading and exportation of COVID-19 cases from a ski area in Austria. J Clin Microbiol. https://doi.org/10.1128/jcm.00588-20

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kabesch M, Roth S, Brandstetter S, Häusler S, Juraschko E, Weigl M et al (2020) Successful containment of Covid-19 outbreak in a large maternity and perinatal center while continuing clinical service. Pediatr Allergy Immunol. https://doi.org/10.1111/pai.13265

    Article  PubMed  PubMed Central  Google Scholar 

  146. Preßler J, Fill Malfertheiner S, Kabesch M, Buntrock-Döpke H, Häusler S, Ambrosch A et al (2020) Postnatal SARS-CoV-2 infection and immunological reaction: a prospective family cohort study. Pediatr Allergy Immunol. https://doi.org/10.1111/pai.13302

    Article  PubMed  PubMed Central  Google Scholar 

  147. Hodcroft EB (2020) Preliminary case report on the SARS-CoV-2 cluster in the UK, France, and Spain. Swiss Med Wkly 150 (9–10). https://doi.org/10.4414/smw.2020.20212

  148. Hamner L, Dubbel P, Capron I, Ross A, Jordan A, Lee J et al (2020) High SARS-CoV-2 attack rate following exposure at a Choir Practice—Skagit County, Washington. MMWR Morb Mortal Wkly Rep 69(19):606–610. https://doi.org/10.15585/mmwr.mm6919e6

    Article  CAS  PubMed  Google Scholar 

  149. Kang YJ (2020) Characteristics of the COVID-19 outbreak in Korea from the mass infection perspective. J Prev Med Public Health 53(3):168–170. https://doi.org/10.3961/jpmph.20.072

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kim S, Jeong YD, Byun JH, Cho G, Park A, Jung JH et al (2020) Evaluation of COVID-19 epidemic outbreak caused by temporal contact-increase in South Korea. Int J Infect Dis: IJID: Official Publ Int Soc Infect Dis 96:454–457. https://doi.org/10.1016/j.ijid.2020.05.036

    Article  CAS  Google Scholar 

  151. Korean Society of Infectious D, Korean Society of Pediatric Infectious D, Korean Society of E, Korean Society for Antimicrobial T, Korean Society for Healthcare-associated Infection C, Prevention et al. (2020) Report on the Epidemiological Features of Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to March 2, 2020. J Korean Med Sci 35(10):e112–e112. https://doi.org/10.3346/jkms.2020.35.e112

  152. Shim E, Tariq A, Choi W, Lee Y, Chowell G (2020) Transmission potential and severity of COVID-19 in South Korea. Int J Infect Dis: IJID: Official Publ Int Soc Infect Dis 93:339–344. https://doi.org/10.1016/j.ijid.2020.03.031

    Article  CAS  Google Scholar 

  153. BBC (2020) Coronavirus: India ‘super spreader’ quarantines 40,000 people. Available at: https://www.bbc.com/news/world-asia-india-52061915 Last Accessed 8 July 2020

  154. Quadri SA (2020) COVID-19 and religious congregations: Implications for spread of novel pathogens. Int J Infect Dis: IJID: Official Publ Int Soc Infect Dis 96:219–221. https://doi.org/10.1016/j.ijid.2020.05.007

    Article  CAS  Google Scholar 

  155. Towner JS, Amman BR, Sealy TK, Carroll SA, Comer JA, Kemp A et al (2009) Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5(7):e1000536. https://doi.org/10.1371/journal.ppat.1000536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Feldmann H, Sprecher A, Geisbert TW (2020) Ebola. N Engl J Med 382(19):1832–1842. https://doi.org/10.1056/NEJMra1901594

    Article  PubMed  Google Scholar 

  157. Olival KJ, Hayman DT (2014) Filoviruses in bats: current knowledge and future directions. Viruses 6(4):1759–1788. https://doi.org/10.3390/v6041759

    Article  PubMed  PubMed Central  Google Scholar 

  158. Pourrut X, Kumulungui B, Wittmann T, Moussavou G, Delicat A, Yaba P et al (2005) The natural history of Ebola virus in Africa. Microbes Infect/Institut Pasteur 7(7–8):1005–1014. https://doi.org/10.1016/j.micinf.2005.04.006

    Article  Google Scholar 

  159. Carroll SA, Towner JS, Sealy TK, McMullan LK, Khristova ML, Burt FJ et al (2013) Molecular evolution of viruses of the family Filoviridae based on 97 whole-genome sequences. J Virol 87(5):2608–2616. https://doi.org/10.1128/jvi.03118-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Muhlberger E (2007) Filovirus replication and transcription. Future virology 2(2):205–215. https://doi.org/10.2217/17460794.2.2.205

    Article  PubMed  PubMed Central  Google Scholar 

  161. Breman JG, Heymann DL, Lloyd G, McCormick JB, Miatudila M, Murphy FA et al (2016) Discovery and description of Ebola Zaire virus in 1976 and relevance to the West African epidemic during 2013–2016. J Infect Dis 214(suppl 3):S93-s101. https://doi.org/10.1093/infdis/jiw207

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kadanali A, Karagoz G (2015) An overview of Ebola virus disease. North Clin Istanb 2(1):81–86. https://doi.org/10.14744/nci.2015.97269

    Article  PubMed  PubMed Central  Google Scholar 

  163. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P et al (2005) Fruit bats as reservoirs of Ebola virus. Nature 438(7068):575–576. https://doi.org/10.1038/438575a

    Article  CAS  PubMed  Google Scholar 

  164. Leroy EM, Epelboin A, Mondonge V, Pourrut X, Gonzalez JP, Muyembe-Tamfum JJ et al (2009) Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector borne and zoonotic diseases (Larchmont, NY) 9(6):723–728. https://doi.org/10.1089/vbz.2008.0167

    Article  Google Scholar 

  165. Nakayama E, Saijo M (2013) Animal models for Ebola and Marburg virus infections. Front Microbiol 4:267. https://doi.org/10.3389/fmicb.2013.00267

    Article  PubMed  PubMed Central  Google Scholar 

  166. Curran KG, Gibson JJ, Marke D, Caulker V, Bomeh J, Redd JT et al (2014) (2016) Cluster of Ebola virus disease linked to a single funeral—Moyamba District, Sierra Leone. MMWR Morb Mortal Wkly Rep 65(8):202–205. https://doi.org/10.15585/mmwr.mm6508a2

    Article  Google Scholar 

  167. Gire SK, Goba A, Andersen KG, Sealfon RS, Park DJ, Kanneh L et al (2014) Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345(6202):1369–1372. https://doi.org/10.1126/science.1259657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. World Health Organization (2015) Sierra Leone: a traditional healer and a funeral. https://www.who.int/news/item/01-09-2015-sierra-leone-a-traditional-healer-and-a-funeral. Last Acessed 11 Nov 2021

  169. Faye O, Boëlle PY, Heleze E, Faye O, Loucoubar C, Magassouba N et al (2015) Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis 15(3):320–326. https://doi.org/10.1016/s1473-3099(14)71075-8

    Article  PubMed  PubMed Central  Google Scholar 

  170. Althaus CL (2015) Ebola superspreading. Lancet Infect Dis 15(5):507–508. https://doi.org/10.1016/s1473-3099(15)70135-0

    Article  PubMed  PubMed Central  Google Scholar 

  171. Lau MS, Dalziel BD, Funk S, McClelland A, Tiffany A, Riley S et al (2017) Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. Proc Natl Acad Sci U S A 114(9):2337–2342. https://doi.org/10.1073/pnas.1614595114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Khan AS, Tshioko FK, Heymann DL, Le Guenno B, Nabeth P, Kerstiens B et al. (1999) The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995. Commission de Lutte contre les Epidemies a Kikwit. J Infect Dis 179(Suppl 1):S76–86. https://doi.org/10.1086/514306

  173. Borchert M, Mutyaba I, Van Kerkhove MD, Lutwama J, Luwaga H, Bisoborwa G et al (2011) Ebola haemorrhagic fever outbreak in Masindi District, Uganda: outbreak description and lessons learned. BMC Infect Dis 11:357. https://doi.org/10.1186/1471-2334-11-357

    Article  PubMed  PubMed Central  Google Scholar 

  174. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N et al (2014) Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 371(15):1418–1425. https://doi.org/10.1056/NEJMoa1404505

    Article  CAS  PubMed  Google Scholar 

  175. Vassantachart JM, Yeo AH, Vassantachart AY, Jacob SE, Golkar L (2020) Art of prevention: the importance of measles recognition and vaccination. Int J Womens Dermatol 6(2):89–93. https://doi.org/10.1016/j.ijwd.2019.06.031

    Article  PubMed  Google Scholar 

  176. Krawiec C, Hinson JW (2020) Rubeola (Measles). In: StatPearls. StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., Treasure Island (FL)

    Google Scholar 

  177. Abad CL, Safdar N (2015) The Reemergence of Measles. Curr Infect Dis Rep 17(12):51. https://doi.org/10.1007/s11908-015-0506-5

    Article  CAS  PubMed  Google Scholar 

  178. Wolfson LJ, Strebel PM, Gacic-Dobo M, Hoekstra EJ, McFarland JW, Hersh BS (2007) Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 369(9557):191–200. https://doi.org/10.1016/s0140-6736(07)60107-x

    Article  PubMed  Google Scholar 

  179. Krishnamoorthy Y, Sakthivel M, Eliyas SK, Surendran G, Sarveswaran G (2019) Worldwide trend in measles incidence from 1980 to 2016: a pooled analysis of evidence from 194 WHO Member States. J Postgrad Med 65(3):160–163. https://doi.org/10.4103/jpgm.JPGM_508_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Paunio M, Peltola H, Valle M, Davidkin I, Virtanen M, Heinonen OP (1998) Explosive school-based measles outbreak: intense exposure may have resulted in high risk, even among revaccinees. Am J Epidemiol 148(11):1103–1110. https://doi.org/10.1093/oxfordjournals.aje.a009588

    Article  CAS  PubMed  Google Scholar 

  181. De Serres G, Boulianne N, Defay F, Brousseau N, Benoît M, Lacoursière S et al (2012) Higher risk of measles when the first dose of a 2-dose schedule of measles vaccine is given at 12–14 months versus 15 months of age. Clin Infect Dis 55(3):394–402. https://doi.org/10.1093/cid/cis439

    Article  CAS  PubMed  Google Scholar 

  182. Seward JF, Orenstein WA (2012) Editorial commentary: a rare event: a measles outbreak in a population with high 2-dose measles vaccine coverage. Clin Infect Dis 55(3):403–405. https://doi.org/10.1093/cid/cis445

    Article  PubMed  Google Scholar 

  183. De Serres G, Markowski F, Toth E, Landry M, Auger D, Mercier M et al (2013) Largest measles epidemic in North America in a decade–Quebec, Canada, 2011: contribution of susceptibility, serendipity, and superspreading events. J Infect Dis 207(6):990–998. https://doi.org/10.1093/infdis/jis923

    Article  PubMed  Google Scholar 

  184. Taubenberger JK, Morens DM (2008) The pathology of influenza virus infections. Annu Rev Pathol 3:499–522. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Killingley B, Nguyen-Van-Tam J (2013) Routes of influenza transmission. Influenza Other Respir Viruses 7 Suppl 2 (Suppl 2):42–51. https://doi.org/10.1111/irv.12080

  186. Fabian P, McDevitt JJ, DeHaan WH, Fung ROP, Cowling BJ, Chan KH et al (2008) Influenza virus in human exhaled breath: an observational study. PLoS ONE 3(7):e2691–e2691. https://doi.org/10.1371/journal.pone.0002691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Saunders-Hastings PR, Krewski D (2016) Reviewing the history of pandemic influenza: understanding patterns of emergence and transmission. Pathogens 5(4):66. https://doi.org/10.3390/pathogens5040066

    Article  PubMed Central  Google Scholar 

  188. Ghebrehewet S, MacPherson P, Ho A (2016) Influenza. BMJ (Clinical research ed), vol 355, pp i6258–i6258. https://doi.org/10.1136/bmj.i6258

  189. Suzuki A, Mizumoto K, Akhmetzhanov AR, Nishiura H (2019) Interaction among Influenza viruses A/H1N1, A/H3N2, and B in Japan. Int J Environ Res Public Health 16(21):4179. https://doi.org/10.3390/ijerph16214179

    Article  PubMed Central  Google Scholar 

  190. Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG (1979) An outbreak of influenza aboard a commercial airliner. Am J Epidemiol 110(1):1–6. https://doi.org/10.1093/oxfordjournals.aje.a112781

    Article  CAS  PubMed  Google Scholar 

  191. Pestre V, Morel B, Encrenaz N, Brunon A, Lucht F, Pozzetto B et al (2012) Transmission by super-spreading event of pandemic A/H1N1 2009 influenza during road and train travel. Scand J Infect Dis 44(3):225–227. https://doi.org/10.3109/00365548.2011.631936

    Article  PubMed  Google Scholar 

  192. Ducrotoy MJ, Muñoz PM, Conde-Álvarez R, Blasco JM, Moriyón I (2018) A systematic review of current immunological tests for the diagnosis of cattle brucellosis. Prev Vet Med 151:57–72. https://doi.org/10.1016/j.prevetmed.2018.01.005

    Article  PubMed  Google Scholar 

  193. Mancilla M (2016) Smooth to rough dissociation in Brucella: the missing link to Virulence. Front Cell Infect Microbiol 5:98–98. https://doi.org/10.3389/fcimb.2015.00098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hull NC, Schumaker BA (2018) Comparisons of brucellosis between human and veterinary medicine. Infect Ecol Epidemiol 8(1):1500846. https://doi.org/10.1080/20008686.2018.1500846

    Article  PubMed  PubMed Central  Google Scholar 

  195. Kim H, Jeong W, Jeoung HY, Song JY, Kim JS, Beak JH et al (2012) Complete genome sequence of Brucella abortus A13334, a new strain isolated from the fetal gastric fluid of dairy cattle. J Bacteriol 194(19):5444. https://doi.org/10.1128/jb.01124-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Borriello G, Capparelli R, Bianco M, Fenizia D, Alfano F, Capuano F et al (2006) Genetic resistance to Brucella abortus in the water buffalo (Bubalus bubalis). Infect Immun 74(4):2115–2120. https://doi.org/10.1128/iai.74.4.2115-2120.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gheibi A, Khanahmad H, Kashfi K, Sarmadi M, Khorramizadeh MR (2018) Development of new generation of vaccines for Brucella abortus. Heliyon 4(12):e01079–e01079. https://doi.org/10.1016/j.heliyon.2018.e01079

    Article  PubMed  PubMed Central  Google Scholar 

  198. Galińska EM, Zagórski J (2013) Brucellosis in humans–etiology, diagnostics, clinical forms. Ann Agric Environ Med 20(2):233–238

    PubMed  Google Scholar 

  199. Capparelli R, Parlato M, Iannaccone M, Roperto S, Marabelli R, Roperto F et al (2009) Heterogeneous shedding of Brucella abortus in milk and its effect on the control of animal brucellosis. J Appl Microbiol 106(6):2041–2047. https://doi.org/10.1111/j.1365-2672.2009.04177.x

    Article  CAS  PubMed  Google Scholar 

  200. Conway T, Cohen PS (2015) Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr 3(3). https://doi.org/10.1128/microbiolspec.MBP-0006-2014

  201. Lasaro M, Liu Z, Bishar R, Kelly K, Chattopadhyay S, Paul S et al (2014) Escherichia coli isolate for studying colonization of the mouse intestine and its application to two-component signaling knockouts. J Bacteriol 196(9):1723–1732. https://doi.org/10.1128/JB.01296-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Eggesbø M, Moen B, Peddada S, Baird D, Rugtveit J, Midtvedt T et al (2011) Development of gut microbiota in infants not exposed to medical interventions. APMIS 119(1):17–35. https://doi.org/10.1111/j.1600-0463.2010.02688.x

    Article  PubMed  Google Scholar 

  203. Reilly A (1998) Prevention and control of enterohaemorrhagic Escherichia coli (EHEC) infections: memorandum from a WHO meeting. WHO Consultation on Prevention and Control of Enterohaemorrhagic Escherichia coli (EHEC) Infections. Bull World Health Organ 76(3):245–255

    Google Scholar 

  204. Stromberg ZR, Van Goor A, Redweik GAJ, Wymore Brand MJ, Wannemuehler MJ, Mellata M (2018) Pathogenic and non-pathogenic Escherichia coli colonization and host inflammatory response in a defined microbiota mouse model. Dis Model Mech 11(11):dmm035063. https://doi.org/10.1242/dmm.035063

  205. Weir E (2000) Escherichia coli O157:H7. CMAJ 163(2):205

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Poirier K, Faucher SP, Béland M, Brousseau R, Gannon V, Martin C et al (2008) Escherichia coli O157:H7 survives within human macrophages: global gene expression profile and involvement of the Shiga toxins. Infect Immun 76(11):4814–4822. https://doi.org/10.1128/IAI.00446-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Munns KD, Selinger LB, Stanford K, Guan L, Callaway TR, McAllister TA (2015) Perspectives on super-shedding of Escherichia coli O157:H7 by cattle. Foodborne Pathog Dis 12(2):89–103. https://doi.org/10.1089/fpd.2014.1829

    Article  CAS  PubMed  Google Scholar 

  208. Lim JY, Yoon J, Hovde CJ (2010) A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 20(1):5–14

    Article  CAS  Google Scholar 

  209. Mir RA, Schaut RG, Looft T, Allen HK, Sharma VK, Kudva IT (2020) Recto-Anal junction (RAJ) and fecal microbiomes of cattle experimentally challenged with Escherichia coli O157:H7. Front Microbiol 11:693. https://doi.org/10.3389/fmicb.2020.00693

    Article  PubMed  PubMed Central  Google Scholar 

  210. Lim JY, Li J, Sheng H, Besser TE, Potter K, Hovde CJ (2007) Escherichia coli O157:H7 colonization at the rectoanal junction of long-duration culture-positive cattle. Appl Environ Microbiol 73(4):1380–1382. https://doi.org/10.1128/aem.02242-06

    Article  CAS  PubMed  Google Scholar 

  211. Su C, Brandt LJ (1995) Escherichia coli O157:H7 infection in humans. Ann Intern Med 123(9):698–714. https://doi.org/10.7326/0003-4819-123-9-199511010-00009

    Article  CAS  PubMed  Google Scholar 

  212. Rahal EA, Kazzi N, Nassar FJ, Matar GM (2012) Escherichia coli O157:H7-Clinical aspects and novel treatment approaches. Front Cell Infect Microbiol 2:138. https://doi.org/10.3389/fcimb.2012.00138

    Article  PubMed  PubMed Central  Google Scholar 

  213. Nangaku M, Nishi H, Fujita T (2007) Pathogenesis and prognosis of thrombotic microangiopathy. Clin Exp Nephrol 11(2):107–114. https://doi.org/10.1007/s10157-007-0466-7

    Article  PubMed  Google Scholar 

  214. Sabouri S, Sepehrizadeh Z, Amirpour-Rostami S, Skurnik M (2017) A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157:H7 phages as potential biocontrol and phage therapy agents. Int J Food Microbiol 243:52–57. https://doi.org/10.1016/j.ijfoodmicro.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  215. Wang O, McAllister TA, Plastow G, Stanford K, Selinger B, Guan LL (2018) Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by Cattle. Appl Environ Microbiol 84(1). https://doi.org/10.1128/aem.01738-17

  216. Mir RA, Brunelle BW, Alt DP, Arthur TM, Kudva IT (2020) Supershed Escherichia coli O157:H7 has potential for increased persistence on the rectoanal junction squamous epithelial cells and antibiotic resistance. Int J Microbiol 2020:2368154. https://doi.org/10.1155/2020/2368154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Omisakin F, MacRae M, Ogden ID, Strachan NJ (2003) Concentration and prevalence of Escherichia coli O157 in cattle feces at slaughter. Appl Environ Microbiol 69(5):2444–2447. https://doi.org/10.1128/aem.69.5.2444-2447.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ogden ID, MacRae M, Strachan NJ (2004) Is the prevalence and shedding concentrations of E. coli O157 in beef cattle in Scotland seasonal? FEMS Microbiol Lett 233(2):297–300. https://doi.org/10.1016/j.femsle.2004.02.021

  219. Powell JR (2019) An evolutionary perspective on vector-borne diseases. Front Genet 10:1266–1266. https://doi.org/10.3389/fgene.2019.01266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Bockarie MJ, Davies JB (1990) The transmission of onchocerciasis at a forest village in Sierra Leone. II. Man-fly contact, human activity and exposure to transmission. Ann Trop Med Parasitol 84(6):599–605. https://doi.org/10.1080/00034983.1990.11812515

  221. Medley GF, Sinden RE, Fleck S, Billingsley PF, Tirawanchai N, Rodriguez MH (1993) Heterogeneity in patterns of malarial oocyst infections in the mosquito vector. Parasitology 106(Pt 5):441–449. https://doi.org/10.1017/s0031182000076721

    Article  PubMed  Google Scholar 

  222. Pichon G, Awono-Ambene HP, Robert V (2000) High heterogeneity in the number of Plasmodium falciparum gametocytes in the bloodmeal of mosquitoes fed on the same host. Parasitology 121(Pt 2):115–120. https://doi.org/10.1017/s0031182099006277

    Article  PubMed  Google Scholar 

  223. Mitri C, Vernick KD (2012) Anopheles gambiae pathogen susceptibility: the intersection of genetics, immunity and ecology. Curr Opin Microbiol 15(3):285–291. https://doi.org/10.1016/j.mib.2012.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ciddio M, Mari L, Sokolow SH, De Leo GA, Casagrandi R, Gatto M (2017) The spatial spread of schistosomiasis: a multidimensional network model applied to Saint-Louis region, Senegal. Adv Water Resour 108:406–415. https://doi.org/10.1016/j.advwatres.2016.10.012

    Article  PubMed  PubMed Central  Google Scholar 

  225. Nelwan ML (2019) Schistosomiasis: life cycle, diagnosis, and control. Curr Ther Res Clin Exp 91:5–9. https://doi.org/10.1016/j.curtheres.2019.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  226. Verjee MA (2019) Schistosomiasis: still a cause of significant morbidity and mortality. Res Rep Trop Med 10:153–163. https://doi.org/10.2147/rrtm.S204345

    Article  PubMed  PubMed Central  Google Scholar 

  227. Makaula P, Sadalaki JR, Muula AS, Kayuni S, Jemu S, Bloch P (2014) Schistosomiasis in Malawi: a systematic review. Parasit Vectors 7(1):570. https://doi.org/10.1186/s13071-014-0570-y

    Article  PubMed  PubMed Central  Google Scholar 

  228. Colley DG, Bustinduy AL, Secor WE, King CH (2014) Human schistosomiasis. Lancet 383(9936):2253–2264. https://doi.org/10.1016/s0140-6736(13)61949-2

    Article  PubMed  PubMed Central  Google Scholar 

  229. Ross AG, Bartley PB, Sleigh AC, Olds GR, Li Y, Williams GM et al (2002) Schistosomiasis. N Engl J Med 346(16):1212–1220. https://doi.org/10.1056/NEJMra012396

    Article  PubMed  Google Scholar 

  230. Mitreva M (2012) The genome of a blood fluke associated with human cancer. Nat Genet 44(2):116–118. https://doi.org/10.1038/ng.1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Grimes JE, Croll D, Harrison WE, Utzinger J, Freeman MC, Templeton MR (2014) The relationship between water, sanitation and schistosomiasis: a systematic review and meta-analysis. PLoS Negl Trop Dis 8(12):e3296. https://doi.org/10.1371/journal.pntd.0003296

    Article  PubMed  PubMed Central  Google Scholar 

  232. Brindley PJ, Hotez PJ (2013) Break out: urogenital schistosomiasis and Schistosoma haematobium infection in the post-genomic era. PLoS Negl Trop Dis 7(3):e1961. https://doi.org/10.1371/journal.pntd.0001961

    Article  PubMed  PubMed Central  Google Scholar 

  233. Gryseels B, Polman K, Clerinx J, Kestens L (2006) Human schistosomiasis. Lancet 368(9541):1106–1118. https://doi.org/10.1016/s0140-6736(06)69440-3

    Article  PubMed  Google Scholar 

  234. Collins JJ 3rd, King RS, Cogswell A, Williams DL, Newmark PA (2011) An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis 5(3):e1009. https://doi.org/10.1371/journal.pntd.0001009

    Article  PubMed  PubMed Central  Google Scholar 

  235. Woolhouse ME, Etard JF, Dietz K, Ndhlovu PD, Chandiwana SK (1998) Heterogeneities in schistosome transmission dynamics and control. Parasitology 117(Pt 5):475–482

    Article  Google Scholar 

  236. Ross AG, Sleigh AC, Li Y, Davis GM, Williams GM, Jiang Z et al (2001) Schistosomiasis in the People’s Republic of China: prospects and challenges for the 21st century. Clin Microbiol Rev 14(2):270–295. https://doi.org/10.1128/cmr.14.2.270-295.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lin DD, Hu GH, Zhang SJ (2005) Optimal combined approaches of field intervention for schistosomiasis control in China. Acta Trop 96(2–3):242–247. https://doi.org/10.1016/j.actatropica.2005.07.018

    Article  PubMed  Google Scholar 

  238. Yu Q, Zhao GM, Hong XL, Lutz EA, Guo JG (2013) Impact and cost-effectiveness of a comprehensive Schistosomiasis japonica control program in the Poyang Lake region of China. Int J Environ Res Public Health 10(12):6409–6421. https://doi.org/10.3390/ijerph10126409

    Article  PubMed  PubMed Central  Google Scholar 

  239. French MD, Churcher TS, Gambhir M, Fenwick A, Webster JP, Kabatereine NB et al (2010) Observed reductions in Schistosoma mansoni transmission from large-scale administration of praziquantel in Uganda: a mathematical modelling study. PLoS Negl Trop Dis 4(11):e897. https://doi.org/10.1371/journal.pntd.0000897

    Article  PubMed  PubMed Central  Google Scholar 

  240. Koukounari A, Gabrielli AF, Toure S, Bosque-Oliva E, Zhang Y, Sellin B et al (2007) Schistosoma haematobium infection and morbidity before and after large-scale administration of praziquantel in Burkina Faso. J Infect Dis 196(5):659–669. https://doi.org/10.1086/520515

    Article  PubMed  Google Scholar 

  241. Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21(6):659–667. https://doi.org/10.1097/QCO.0b013e328318978f

    Article  CAS  PubMed  Google Scholar 

  242. Carlton EJ, Hubbard A, Wang S, Spear RC (2013) Repeated Schistosoma japonicum infection following treatment in two cohorts: evidence for host susceptibility to helminthiasis? PLoS Negl Trop Dis 7(3):e2098. https://doi.org/10.1371/journal.pntd.0002098

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zhou YB, Liang S, Jiang QW (2012) Factors impacting on progress towards elimination of transmission of schistosomiasis japonica in China. Parasit Vectors 5:275. https://doi.org/10.1186/1756-3305-5-275

    Article  PubMed  PubMed Central  Google Scholar 

  244. King CH (2009) Toward the elimination of schistosomiasis. N Engl J Med 360(2):106–109. https://doi.org/10.1056/NEJMp0808041

    Article  CAS  PubMed  Google Scholar 

  245. Woolhouse ME, Chandiwana SK, Bradley M (1990) On the distribution of schistosome infections among host snails. Int J Parasitol 20(3):325–327

    Article  CAS  Google Scholar 

  246. Chandiwana SK, Woolhouse ME (1991) Heterogeneities in water contact patterns and the epidemiology of Schistosoma haematobium. Parasitology 103(Pt 3):363–370

    Article  Google Scholar 

  247. Clennon JA, King CH, Muchiri EM, Kariuki HC, Ouma JH, Mungai P et al (2004) Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. Am J Trop Med Hyg 70(4):443–448

    Article  Google Scholar 

  248. Meurs L, Mbow M, Boon N, van den Broeck F, Vereecken K, Dièye TN et al (2013) Micro-geographical heterogeneity in Schistosoma mansoni and S. haematobium infection and morbidity in a co-endemic community in northern Senegal. PLoS Negl Trop Dis 7(12):e2608. https://doi.org/10.1371/journal.pntd.0002608

  249. Talapko J, Škrlec I, Alebić T, Jukić M, Včev A (2019) Malaria: the past and the present. Microorganisms 7(6). https://doi.org/10.3390/microorganisms7060179

  250. Fletcher TE, Beeching NJ (2013) Malaria. J R Army Med Corps 159(3):158–166. https://doi.org/10.1136/jramc-2013-000112

    Article  PubMed  Google Scholar 

  251. Dhiman S (2019) Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty 8(1):14–14. https://doi.org/10.1186/s40249-019-0524-x

    Article  PubMed  PubMed Central  Google Scholar 

  252. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F et al (2010) Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis 201(11):1764–1774. https://doi.org/10.1086/652456

    Article  PubMed  Google Scholar 

  253. Parker BS, Paredes Olortegui M, Peñataro Yori P, Escobedo K, Florin D, Rengifo Pinedo S et al (2013) Hyperendemic malaria transmission in areas of occupation-related travel in the Peruvian Amazon. Malar J 12:178. https://doi.org/10.1186/1475-2875-12-178

    Article  PubMed  PubMed Central  Google Scholar 

  254. Naidoo S, London L, Burdorf A, Naidoo RN, Kromhout H (2011) Occupational activities associated with a reported history of malaria among women working in small-scale agriculture in South Africa. Am J Trop Med Hyg 85(5):805–810. https://doi.org/10.4269/ajtmh.2011.11-0092

    Article  PubMed  PubMed Central  Google Scholar 

  255. Ghebreyesus TA, Haile M, Witten KH, Getachew A, Yohannes M, Lindsay SW et al (2000) Household risk factors for malaria among children in the Ethiopian highlands. Trans R Soc Trop Med Hyg 94(1):17–21. https://doi.org/10.1016/s0035-9203(00)90424-3

    Article  CAS  PubMed  Google Scholar 

  256. Baidjoe AY, Stevenson J, Knight P, Stone W, Stresman G, Osoti V et al (2016) Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. Malar J 15:307. https://doi.org/10.1186/s12936-016-1362-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Chirebvu E, Chimbari MJ, Ngwenya BN (2014) Assessment of risk factors associated with malaria transmission in Tubu village, northern Botswana. Malar Res Treat 2014:403069–403069. https://doi.org/10.1155/2014/403069

    Article  PubMed  PubMed Central  Google Scholar 

  258. Esayas E, Woyessa A, Massebo F (2020) Malaria infection clustered into small residential areas in lowlands of southern Ethiopia. Parasite Epidemiol Control 10:e00149. https://doi.org/10.1016/j.parepi.2020.e00149

    Article  PubMed  PubMed Central  Google Scholar 

  259. Smith DL, Dushoff J, McKenzie FE (2004) The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2(11):e368. https://doi.org/10.1371/journal.pbio.0020368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Hansen E, Buckee CO (2013) Modeling the human infectious reservoir for malaria control: does heterogeneity matter? Trends Parasitol 29(6):270–275. https://doi.org/10.1016/j.pt.2013.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  261. Gupta S, Hill AV, Kwiatkowski D, Greenwood AM, Greenwood BM, Day KP (1994) Parasite virulence and disease patterns in Plasmodium falciparum malaria. Proc Natl Acad Sci U S A 91(9):3715–3719. https://doi.org/10.1073/pnas.91.9.3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bonnet S, Gouagna LC, Paul RE, Safeukui I, Meunier JY, Boudin C (2003) Estimation of malaria transmission from humans to mosquitoes in two neighbouring villages in south Cameroon: evaluation and comparison of several indices. Trans R Soc Trop Med Hyg 97(1):53–59. https://doi.org/10.1016/s0035-9203(03)90022-8

    Article  CAS  PubMed  Google Scholar 

  263. Mbogo CM, Mwangangi JM, Nzovu J, Gu W, Yan G, Gunter JT et al (2003) Spatial and temporal heterogeneity of Anopheles mosquitoes and Plasmodium falciparum transmission along the Kenyan coast. Am J Trop Med Hyg 68(6):734–742

    Article  Google Scholar 

  264. Roca-Feltrer A, Schellenberg JR, Smith L, Carneiro I (2009) A simple method for defining malaria seasonality. Malar J 8:276. https://doi.org/10.1186/1475-2875-8-276

    Article  PubMed  PubMed Central  Google Scholar 

  265. Giha HA, Rosthoj S, Dodoo D, Hviid L, Satti GM, Scheike T et al (2000) The epidemiology of febrile malaria episodes in an area of unstable and seasonal transmission. Trans R Soc Trop Med Hyg 94(6):645–651. https://doi.org/10.1016/s0035-9203(00)90218-9

    Article  CAS  PubMed  Google Scholar 

  266. Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G (2006) DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg 75(2):231–237

    Article  CAS  Google Scholar 

  267. Stresman G, Bousema T, Cook J (2019) Malaria hotspots: is there epidemiological evidence for fine-scale spatial targeting of interventions? Trends Parasitol 35(10):822–834. https://doi.org/10.1016/j.pt.2019.07.013

    Article  PubMed  Google Scholar 

  268. Kangoye DT, Noor A, Midega J, Mwongeli J, Mkabili D, Mogeni P et al (2016) Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast. Malar J 15:213–213. https://doi.org/10.1186/s12936-016-1260-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Kang SY, Battle KE, Gibson HS, Cooper LV, Maxwell K, Kamya M et al (2018) Heterogeneous exposure and hotspots for malaria vectors at three study sites in Uganda. Gates Open Res 2:32. https://doi.org/10.12688/gatesopenres.12838.2

    Article  PubMed  PubMed Central  Google Scholar 

  270. Rouamba T, Nakanabo-Diallo S, Derra K, Rouamba E, Kazienga A, Inoue Y et al (2019) Socioeconomic and environmental factors associated with malaria hotspots in the Nanoro demographic surveillance area. Burkina Faso. BMC Public Health 19(1):249. https://doi.org/10.1186/s12889-019-6565-z

    Article  PubMed  Google Scholar 

  271. Platt A, Obala AA, MacIntyre C, Otsyula B, Meara WPO (2018) Dynamic malaria hotspots in an open cohort in western Kenya. Sci Rep 8(1):647. https://doi.org/10.1038/s41598-017-13801-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Gaudart J, Poudiougou B, Dicko A, Ranque S, Toure O, Sagara I et al (2006) Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village. BMC Public Health 6:286. https://doi.org/10.1186/1471-2458-6-286

    Article  PubMed  PubMed Central  Google Scholar 

  273. Oduro AR, Conway DJ, Schellenberg D, Satoguina J, Greenwood BM, Bojang KA (2013) Seroepidemiological and parasitological evaluation of the heterogeneity of malaria infection in the Gambia. Malar J 12:222. https://doi.org/10.1186/1475-2875-12-222

    Article  PubMed  PubMed Central  Google Scholar 

  274. Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC (2006) Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5:78. https://doi.org/10.1186/1475-2875-5-78

    Article  PubMed  PubMed Central  Google Scholar 

  275. Tewara MA, Mbah-Fongkimeh PN, Dayimu A, Kang F, Xue F (2018) Small-area spatial statistical analysis of malaria clusters and hotspots in Cameroon; 2000–2015. BMC Infect Dis 18(1):636. https://doi.org/10.1186/s12879-018-3534-6

    Article  PubMed  PubMed Central  Google Scholar 

  276. Toty C, Barré H, Le Goff G, Larget-Thiéry I, Rahola N, Couret D et al (2010) Malaria risk in Corsica, former hot spot of malaria in France. Malar J 9:231. https://doi.org/10.1186/1475-2875-9-231

    Article  PubMed  PubMed Central  Google Scholar 

  277. Midega JT, Smith DL, Olotu A, Mwangangi JM, Nzovu JG, Wambua J et al (2012) Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat Commun 3:674. https://doi.org/10.1038/ncomms1672

    Article  CAS  PubMed  Google Scholar 

  278. Garske T, Ferguson NM, Ghani AC (2013) Estimating air temperature and its influence on malaria transmission across Africa. PLoS ONE 8(2):e56487. https://doi.org/10.1371/journal.pone.0056487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, Ogada E et al (2010) Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med 7(7):e1000304. https://doi.org/10.1371/journal.pmed.1000304

    Article  PubMed  PubMed Central  Google Scholar 

  280. Norris LC, Norris DE (2013) Heterogeneity and changes in inequality of malaria risk after introduction of insecticide-treated bed nets in Macha. Zambia. Am J Trop Med Hyg 88(4):710–717. https://doi.org/10.4269/ajtmh.11-0595

    Article  PubMed  Google Scholar 

  281. Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature 438(7067):492–495. https://doi.org/10.1038/nature04024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Corder RM, Ferreira MU, Gomes MGM (2020) Modelling the epidemiology of residual Plasmodium vivax malaria in a heterogeneous host population: a case study in the Amazon Basin. PLoS Comput Biol 16(3):e1007377. https://doi.org/10.1371/journal.pcbi.1007377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Moss WJ, Hamapumbu H, Kobayashi T, Shields T, Kamanga A, Clennon J et al (2011) Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey. Malar J 10:163. https://doi.org/10.1186/1475-2875-10-163

    Article  PubMed  PubMed Central  Google Scholar 

  284. Trape JF, Rogier C, Konate L, Diagne N, Bouganali H, Canque B et al (1994) The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 51(2):123–137

    Article  CAS  Google Scholar 

  285. Trape JF, Pison G, Spiegel A, Enel C, Rogier C (2002) Combating malaria in Africa. Trends Parasitol 18(5):224–230. https://doi.org/10.1016/s1471-4922(02)02249-3

    Article  PubMed  Google Scholar 

  286. Mwangi TW, Fegan G, Williams TN, Kinyanjui SM, Snow RW, Marsh K (2008) Evidence for over-dispersion in the distribution of clinical malaria episodes in children. PLoS ONE 3(5):e2196. https://doi.org/10.1371/journal.pone.0002196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Russell AB, Trapnell C, Bloom JD (2018) Extreme heterogeneity of influenza virus infection in single cells. Elife 7:e32303. https://doi.org/10.7554/eLife.32303

  288. Gog JR, Murcia A, Osterman N, Restif O, McKinley TJ, Sheppard M et al (2012) Dynamics of Salmonella infection of macrophages at the single cell level. J R Soc Interface 9(75):2696–2707. https://doi.org/10.1098/rsif.2012.0163

    Article  PubMed  PubMed Central  Google Scholar 

  289. Achouri S, Wright JA, Evans L, Macleod C, Fraser G, Cicuta P et al (2015) The frequency and duration of Salmonella-macrophage adhesion events determines infection efficiency. Philos Trans R Soc Lond B Biol Sci 370(1661):20140033–20140033. https://doi.org/10.1098/rstb.2014.0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Avraham R, Hung DT (2016) A perspective on single cell behavior during infection. Gut Microbes 7(6):518–525. https://doi.org/10.1080/19490976.2016.1239001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343(6167):204–208. https://doi.org/10.1126/science.1244705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. McIntrye J, Rowley D, Jenkin CR (1967) The functional heterogeneity of macrophages at the single cell level. Aust J Exp Biol Med Sci 45(6):675–680. https://doi.org/10.1038/icb.1967.67

    Article  CAS  PubMed  Google Scholar 

  293. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science (New York, NY) 343(6167):204–208. https://doi.org/10.1126/science.1244705

    Article  CAS  Google Scholar 

  294. Zack JA, Kim SG, Vatakis DN (2013) HIV restriction in quiescent CD4+ T cells. Retrovirology 10:37–37. https://doi.org/10.1186/1742-4690-10-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X et al (2004) Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78(12):6122–6133. https://doi.org/10.1128/JVI.78.12.6122-6133.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Pan X, Baldauf H-M, Keppler OT, Fackler OT (2013) Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res 23(7):876–885. https://doi.org/10.1038/cr.2013.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Zhang Z-Q, Wietgrefe SW, Li Q, Shore MD, Duan L, Reilly C et al (2004) Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc Natl Acad Sci USA 101(15):5640–5645. https://doi.org/10.1073/pnas.0308425101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Doitsh G, Galloway NLK, Geng X, Yang Z, Monroe KM, Zepeda O et al (2014) Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484):509–514. https://doi.org/10.1038/nature12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Gonzalez SM, Aguilar-Jimenez W, Su R-C, Rugeles MT (2019) Mucosa: key interactions determining sexual transmission of the HIV infection. Front Immunol 10:144–144. https://doi.org/10.3389/fimmu.2019.00144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Vatakis DN, Nixon CC, Zack JA (2010) Quiescent T cells and HIV: an unresolved relationship. Immunol Res 48(1–3):110–121. https://doi.org/10.1007/s12026-010-8171-0

    Article  PubMed  Google Scholar 

  301. Card CM, Ball TB, Fowke KR (2013) Immune quiescence: a model of protection against HIV infection. Retrovirology 10:141–141. https://doi.org/10.1186/1742-4690-10-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhang Z, Schuler T, Zupancic M, Wietgrefe S, Staskus KA, Reimann KA et al (1999) Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286(5443):1353–1357. https://doi.org/10.1126/science.286.5443.1353

    Article  CAS  PubMed  Google Scholar 

  303. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. The Lancet 186(4814):1241–1243. https://doi.org/10.1016/S0140-6736(01)20383-3

    Article  Google Scholar 

  304. D’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysenteriques. C R Acad Sci 165:373–375

    Google Scholar 

  305. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64(5):679–699

    Article  CAS  Google Scholar 

  306. Keen EC, Bliskovsky VV, Malagon F, Baker JD, Prince JS, Klaus JS et al (2017) Novel “superspreader” bacteriophages promote horizontal gene transfer by transformation. MBio 8(1). https://doi.org/10.1128/mBio.02115-16

  307. Sugiura C, Miyaue S, Shibata Y, Matsumoto A, Maeda S (2017) Bacteriophage P1vir-induced cell-to-cell plasmid transformation in Escherichia coli. AIMS Microbiol 3(4):784–797. https://doi.org/10.3934/microbiol.2017.4.784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Eichenwald HF, Kotsevalov O, Fasso LA (1960) The “cloud baby”: an example of bacterial-viral interaction. Am J Dis Child 100:161–173. https://doi.org/10.1001/archpedi.1960.04020040163003

    Article  CAS  PubMed  Google Scholar 

  309. Bassetti S, Bischoff WE, Walter M, Bassetti-Wyss BA, Mason L, Reboussin BA et al (2005) Dispersal of Staphylococcus aureus into the air associated with a rhinovirus infection. Infect Control Hosp Epidemiol 26(2):196–203. https://doi.org/10.1086/502526

    Article  PubMed  Google Scholar 

  310. Sherertz RJ, Reagan DR, Hampton KD, Robertson KL, Streed SA, Hoen HM et al (1996) A cloud adult: the Staphylococcus aureus-virus interaction revisited. Ann Intern Med 124(6):539–547. https://doi.org/10.7326/0003-4819-124-6-199603150-00001

    Article  CAS  PubMed  Google Scholar 

  311. Sherertz RJ, Bassetti S, Bassetti-Wyss B (2001) “Cloud” health-care workers. Emerg Infect Dis 7(2):241–244. https://doi.org/10.3201/eid0702.010218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Lass S, Hudson PJ, Thakar J, Saric J, Harvill E, Albert R et al (2013) Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. J R Soc Interface 10(80):20120588. https://doi.org/10.1098/rsif.2012.0588

    Article  PubMed  PubMed Central  Google Scholar 

  313. Gueirard P, Minoprio P, Guiso N (1996) Intranasal inoculation of Bordetella bronchiseptica in mice induces long-lasting antibody and T-cell mediated immune responses. Scand J Immunol 43(2):181–192. https://doi.org/10.1046/j.1365-3083.1996.d01-30.x

    Article  CAS  PubMed  Google Scholar 

  314. Maruszewska-Cheruiyot M, Donskow-Lysoniewska K, Piechna K, Krawczak K, Doligalska M (2019) L4 stage Heligmosomoides polygyrus prevents the maturation of dendritic JAWS II cells. Exp Parasitol 196:12–21. https://doi.org/10.1016/j.exppara.2018.10.010

    Article  PubMed  Google Scholar 

  315. Strandmark J, Steinfelder S, Berek C, Kuhl AA, Rausch S, Hartmann S (2017) Eosinophils are required to suppress Th2 responses in Peyer’s patches during intestinal infection by nematodes. Mucosal Immunol 10(3):661–672. https://doi.org/10.1038/mi.2016.93

    Article  CAS  PubMed  Google Scholar 

  316. Cohen MS, Hoffman IF, Royce RA, Kazembe P, Dyer JR, Daly CC et al (1997) Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Res Group. Lancet 349(9069):1868–1873. https://doi.org/10.1016/s0140-6736(97)02190-9

    Article  CAS  Google Scholar 

  317. Ghys PD, Fransen K, Diallo MO, Ettiègne-Traoré V, Coulibaly IM, Yeboué KM et al (1997) The associations between cervicovaginal HIV shedding, sexually transmitted diseases and immunosuppression in female sex workers in Abidjan. Côte d’Ivoire. Aids 11(12):F85-93. https://doi.org/10.1097/00002030-199712000-00001

    Article  CAS  PubMed  Google Scholar 

  318. Howell AK, Tongue SC, Currie C, Evans J, Williams DJL, McNeilly TN (2018) Co-infection with Fasciola hepatica may increase the risk of Escherichia coli O157 shedding in British cattle destined for the food chain. Prev Vet Med 150:70–76. https://doi.org/10.1016/j.prevetmed.2017.12.007

    Article  PubMed  PubMed Central  Google Scholar 

  319. Moreau E, Chauvin A (2010) Immunity against helminths: interactions with the host and the intercurrent infections. J Biomed Biotechnol 2010:428593–428593. https://doi.org/10.1155/2010/428593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Brady MT, O’Neill SM, Dalton JP, Mills KH (1999) Fasciola hepatica suppresses a protective Th1 response against Bordetella pertussis. Infect Immun 67(10):5372–5378

    Article  CAS  Google Scholar 

  321. Lisowska KA, Pindel M, Pietruczuk K, Kuźmiuk-Glembin I, Storoniak H, Dębska-Ślizień A et al (2019) The influence of a single hemodialysis procedure on human T lymphocytes. Sci Rep 9(1):5041. https://doi.org/10.1038/s41598-019-41619-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Lim WH, Kireta S, Russ GR, Coates PT (2007) Uremia impairs blood dendritic cell function in hemodialysis patients. Kidney Int 71(11):1122–1131. https://doi.org/10.1038/sj.ki.5002196

    Article  CAS  PubMed  Google Scholar 

  323. Kuroki Y, Tsuchida K, Go I, Aoyama M, Naganuma T, Takemoto Y et al (2007) A study of innate immunity in patients with end-stage renal disease: special reference to toll-like receptor-2 and -4 expression in peripheral blood monocytes of hemodialysis patients. Int J Mol Med 19(5):783–790

    CAS  PubMed  Google Scholar 

  324. Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM et al (2003) Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet (London, England) 361(9371):1767–1772. https://doi.org/10.1016/s0140-6736(03)13412-5

    Article  CAS  Google Scholar 

  325. Isakbaeva ET, Khetsuriani N, Beard RS, Peck A, Erdman D, Monroe SS et al (2004) SARS-associated coronavirus transmission, United States. Emerg Infect Dis 10(2):225–231. https://doi.org/10.3201/eid1002.030734

    Article  PubMed  PubMed Central  Google Scholar 

  326. Abdullah ASM, Tomlinson B, Cockram CS, Thomas GN (2003) Lessons from the severe acute respiratory syndrome outbreak in Hong Kong. Emerg Infect Dis 9(9):1042–1045. https://doi.org/10.3201/eid0909.030366

    Article  PubMed  PubMed Central  Google Scholar 

  327. Tsui PT, Kwok ML, Yuen H, Lai ST (2003) Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerg Infect Dis 9(9):1064–1069. https://doi.org/10.3201/eid0909.030362

    Article  PubMed  PubMed Central  Google Scholar 

  328. Leung TF, Wong GWK, Hon KLE, Fok TF (2003) Severe acute respiratory syndrome (SARS) in children: epidemiology, presentation and management. Paediatr Respir Rev 4(4):334–339. https://doi.org/10.1016/s1526-0542(03)00088-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Gopinath S, Hotson A, Johns J, Nolan G, Monack D (2013) The systemic immune state of super-shedder mice is characterized by a unique neutrophil-dependent blunting of TH1 responses. PLoS Pathog 9(6):e1003408. https://doi.org/10.1371/journal.ppat.1003408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Thompson LJ, Dunstan SJ, Dolecek C, Perkins T, House D, Dougan G et al (2009) Transcriptional response in the peripheral blood of patients infected with Salmonella enterica serovar Typhi. Proc Natl Acad Sci U S A 106(52):22433–22438. https://doi.org/10.1073/pnas.0912386106

    Article  PubMed  PubMed Central  Google Scholar 

  331. Xie SY, Zeng G, Lei J, Li Q, Li HB, Jia QB (2003) Analyses on one case of severe acute respiratory syndrome ‘super transmitter’ and chain of transmission. Zhonghua Liu Xing Bing Xue Za Zhi 24(6):449–453

    PubMed  Google Scholar 

  332. Beldomenico PM (2020) Do superspreaders generate new superspreaders? A hypothesis to explain the propagation pattern of COVID-19. Int J Infect Dis: IJID: Official Publ Int Soc Infect Dis 96:461–463. https://doi.org/10.1016/j.ijid.2020.05.025

    Article  CAS  Google Scholar 

  333. Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF (2015) MERS, SARS, and Ebola: the role of super-spreaders in infectious disease. Cell Host Microbe 18(4):398–401. https://doi.org/10.1016/j.chom.2015.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Mohammed AA (2007) Risk factors associated with superspreading events in SARS. Thorax 62(7):649–649

    PubMed Central  Google Scholar 

  335. Luo T, Comas I, Luo D, Lu B, Wu J, Wei L et al (2015) Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci USA 112(26):8136–8141. https://doi.org/10.1073/pnas.1424063112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Bach SJ, McAllister TA, Mears GJ, Schwartzkopf-Genswein KS (2004) Long-haul transport and lack of preconditioning increases fecal shedding of Escherichia coli and Escherichia coli O157:H7 by calves. J Food Prot 67(4):672–678. https://doi.org/10.4315/0362-028x-67.4.672

    Article  CAS  PubMed  Google Scholar 

  337. Zhong N-S, Wong GWK (2004) Epidemiology of severe acute respiratory syndrome (SARS): adults and children. Paediatr Respir Rev 5(4):270–274. https://doi.org/10.1016/j.prrv.2004.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  338. Amer H, Alqahtani AS, Alzoman H, Aljerian N, Memish ZA (2018) Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017. Am J Infect Control 46(9):1022–1025. https://doi.org/10.1016/j.ajic.2018.02.023

    Article  PubMed  PubMed Central  Google Scholar 

  339. Hui DS, Azhar EI, Memish ZA, Zumla A (2020) Human coronavirus infections—severe acute respiratory syndrome (SARS), Middle East Respiratory Syndrome (MERS), and SARS-CoV-2. Ref Module Biomed Sci: B978-970-912-801238-801233.811634-801234. https://doi.org/10.1016/B978-0-12-801238-3.11634-4

  340. Kim S-H, Ko J-H, Park GE, Cho SY, Ha YE, Kang J-M et al (2017) Atypical presentations of MERS-CoV infection in immunocompromised hosts. J Infect Chemother 23(11):769–773. https://doi.org/10.1016/j.jiac.2017.04.004

    Article  PubMed  PubMed Central  Google Scholar 

  341. Venegas-Vargas C, Henderson S, Khare A, Mosci RE, Lehnert JD, Singh P et al (2016) Factors associated with Shiga toxin-producing Escherichia coli shedding by dairy and beef cattle. Appl Environ Microbiol 82(16):5049–5056. https://doi.org/10.1128/AEM.00829-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Wang O, McAllister TA, Plastow G, Stanford K, Selinger B, Guan LL (2017) Host mechanisms involved in cattle Escherichia coli O157 shedding: a fundamental understanding for reducing foodborne pathogen in food animal production. Sci Rep 7(1):7630–7630. https://doi.org/10.1038/s41598-017-06737-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Timothy J. Cardozo, M.D., Ph.D., NYU Langone Health, Department of Biochemistry and Molecular Pharmacology, New York City, NY, USA, and Oana Ometa, Ph.D., Babes-Bolyai University, Faculty of Political, Administrative and Communication Sciences, Cluj-Napoca, Romania, for valuable comments and conversations during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stein, R.A. (2022). Super-Spreading in Infectious Diseases: A Global Challenge for All Disciplines. In: Rezaei, N. (eds) Multidisciplinarity and Interdisciplinarity in Health. Integrated Science, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-030-96814-4_16

Download citation

Publish with us

Policies and ethics