Skip to main content

Reef Ecology in the Western Pacific for Adaptation to Global Change

  • Chapter
  • First Online:
Coral Reefs of the Western Pacific Ocean in a Changing Anthropocene

Part of the book series: Coral Reefs of the World ((CORW,volume 14))

  • 543 Accesses

Abstract

Coral reefs are critically important to the economic development of most tropical countries. However, they have faced multi-stressors from natural and anthropogenic disturbances, particularly from coastal development, tourism, overfishing, and coral bleaching. Consequently, the loss of vulnerable species from coral communities is occurring at an accelerating rate. Many coral species are particularly at risk. Coral reef recovery following severe disturbances depends on several complicated factors, including resistance and tolerance to stresses, recruitment rate, reef connectivity, and local stressors. Maintaining reef framework is also very important, particularly bioerosion rate at a degraded reef. As global climate change potentially causes more frequent and severe coral bleaching events, identifying and conserving coral reef refugia is critically important. Most coral reefs are in a type of marine protected areas that intensively require scientific data for management. The achievements of passive and active coral reef restoration projects in the Western Pacific are necessarily considered for the improvement of coral reef management plans. In this chapter, we synthesize important information on coral reef biodiversity decline and extinction risk; coral reef recovery after disturbances; coral reef resilience; coral reef connectivity; coral reef bioerosion; coral reef refugia under global change; marine protected area networks; and passive and active restoration of degraded coral reefs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abesamis RA, Saenz-Agudelo P, Berumen ML, Bode M, Jadloc CRL, Solera LA et al (2017) Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities. Coral Reefs 36:791ā€“801

    ArticleĀ  Google ScholarĀ 

  • Aeby GS (2006) Outbreak of coral disease in the Northwestern Hawaiian Islands. Coral Reefs 24:481

    ArticleĀ  Google ScholarĀ 

  • Aeby GS, Williams GJ, Franklin EC, Haapkyla J, Harvell CD, Neale S et al (2011) Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific. PLoS One 6(2):e16887. https://doi.org/10.1371/journal.pone.0016887

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Agardy T (2010) Ocean zoning: making marine management more effective. Earthscan, London

    BookĀ  Google ScholarĀ 

  • Agardy T, Notarbartolo DS, Christie P (2011) Mind the gap: addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar Policy 35:226ā€“232

    ArticleĀ  Google ScholarĀ 

  • Ainsworth CH, Mumby PJ (2015) Coral-algal phase shifts alter fish communities and reduce fisheries production. Glob Change Biol 21(1):165ā€“172. https://doi.org/10.1111/gcb.12667

    ArticleĀ  Google ScholarĀ 

  • Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends Ecol Evol 25:233ā€“240

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Alino PM, Cunanan PMQ, Juinio-Menez MA, Paz RR (2011) Lessons from the Philippines: achieving synergies through marine protected area networks. Philippine Environmental Governance (EcoGov) Project, Pasig City

    Google ScholarĀ 

  • Allemand D, Osborn D (2019) Ocean acidification impacts on coral reefs: from sciences to solutions. Reg Stud Mar Sci 28:100558. https://doi.org/10.1016/j.rsma.2019.100558

    ArticleĀ  Google ScholarĀ 

  • Allen GR (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquat Conserv Mar Freshw Ecosyst 18:541ā€“556

    ArticleĀ  Google ScholarĀ 

  • Almany GR, Connolly SR, Heath DD, Hogan JD, Jones GP, McCook LJ et al (2009) Connectivity, biodiversity conservation and the design of marine reserve networks for coral reefs. Coral Reefs 28:339ā€“351

    ArticleĀ  Google ScholarĀ 

  • Alvarado JJ, Cortes J, Guzman H, Reyes-Bonilla H (2016) Bioerosion by the sea urchin Diadema mexicanum along Eastern Tropical Pacific coral reefs. Mar Ecol 37(5):1088ā€“1102. https://doi.org/10.1111/maec.12372

    ArticleĀ  Google ScholarĀ 

  • Amar KO, Rinkevich B (2007) A floating mid-water coral nursery as larval dispersion hub: testing an idea. Mar Biol 151(2):713ā€“718

    ArticleĀ  Google ScholarĀ 

  • Andres NG, Witman JD (1995) Trends in community structure on a Jamaican reef. Mar Ecol Prog Ser 118:305ā€“310

    ArticleĀ  Google ScholarĀ 

  • Anthony K, Marshall PA, Abdulla A, Beeden R, Bergh C, Black R et al (2015) Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biol 21(1):48ā€“61

    ArticleĀ  Google ScholarĀ 

  • Antonius AA (1999) Halofolliculina corallasia, a new coral-killing ciliate on Indo-Pacific reefs. Coral Reefs 18:300ā€“300

    ArticleĀ  Google ScholarĀ 

  • Antonius AA, Bernhard R (1997) A possible link between coral diseases and a corallivorous snail (Drupella cornus) outbreak in the Red Sea. Atoll Res Bull 447:1ā€“9. https://doi.org/10.5479/si.00775630.447.1

    ArticleĀ  Google ScholarĀ 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460:25ā€“38

    ArticleĀ  Google ScholarĀ 

  • Aronson RB, Macintyre IG, Precht WF, Murdoch TJT, Wapnick CM (2002) The expanding scale of species turnover events on coral reefs in Belize. Ecol Monogr 72:233ā€“249

    ArticleĀ  Google ScholarĀ 

  • Aronson J, Clewell A, Moreno-Mateos D (2016) Ecological restoration and ecological engineering: complementary or indivisible? Ecol Eng 91:392ā€“395

    ArticleĀ  Google ScholarĀ 

  • Asaad I, Lundquist CJ, Erdmann M, Hooidonk RV, Costello MJ (2018) Designating spatial priorities for marine biodiversity conservation in the Coral Triangle. Front Mar Sci 5:400. https://doi.org/10.3389/fmars.2018.00400

    ArticleĀ  Google ScholarĀ 

  • Asaad I, Lundquist CJ, Erdmann MV, Costello MJ (2019) An interactive atlas for marine biodiversity conservation in the Coral Triangle. Earth Syst Sci Data 11:163ā€“174

    ArticleĀ  Google ScholarĀ 

  • Ayling AM, Ayling AL (1987) Ningaloo Marine Park: preliminary fish density assessment and habitat survey, with information on coral damage due to Drupella grazing. Report to the Department of Conservation and Land Management, Western Australia

    Google ScholarĀ 

  • Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273ā€“278

    ArticleĀ  Google ScholarĀ 

  • Babcock RC, Shears NT, Alcala AC, Barrett NS, Edgar GJ, Lafferty KD et al (2010) Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc Natl Acad Sci USA 43:18256ā€“18261

    ArticleĀ  Google ScholarĀ 

  • Babcock RC, Dambacher JM, Morello EB, PlagĆ”nyi ƉE, Hayes KR, Sweatman HPA, Pratchett MS (2016) Assessing different causes of crown-of-thorns starfish outbreaks and appropriate responses for management on the Great Barrier Reef. PLoS One 11(12):e0169048

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Bachtiar I, Suharsono DA, Zamani NP (2019) Practical resilience index for coral reef assessment. Ocean Sci J 54(1):117ā€“127

    ArticleĀ  Google ScholarĀ 

  • Baird AH, Madin JS, Ɓlvarez-Noriega M, Fontoura L, Kerry JT, Kuo CY, Precoda K (2018) A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar Ecol Prog Ser 603:257ā€“264

    ArticleĀ  Google ScholarĀ 

  • Bak RPM (1976) The growth of coral colonies and the importance of crustose coralline algae and burrowing sponges in relation with carbonate accumulation. Neth J Sea Res 10:28ā€“337

    ArticleĀ  Google ScholarĀ 

  • Bak RPM (1990) Pattern of echinoid bioerosion in two Pacific coral reef lagoons. Mar Ecol Prog Ser 66:267ā€“272

    ArticleĀ  Google ScholarĀ 

  • Bak RPM (1994) Sea urchin bioerosion on coral reef place in the carbonate budget and relevant variables. Coral Reefs 13:99ā€“103

    ArticleĀ  Google ScholarĀ 

  • Bak RPM, van Eys G (1975) Predation of the sea urchin Diadema antillarum Philippi on living coral. Oecologia 20:111ā€“115

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and eastern Pacific. Proc 8th Int Coral Reef Symp 2:1301ā€“1306

    CASĀ  Google ScholarĀ 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435ā€“471

    ArticleĀ  Google ScholarĀ 

  • Barbosa SS, Byrne M, Kelaher BP (2008) Bioerosion caused by foraging of the tropical chiton Acanthopleura gemmata at One Tree Reef, southern Great Barrier Reef. Coral Reefs 27:635ā€“639

    ArticleĀ  Google ScholarĀ 

  • Baria MVB, de la Cruz DW, Villanueva RD, Guest J (2012) Spawning of three-year-old Acropora millepora corals reared from larvae in northwestern Philippines. Bull Mar Sci 88:61ā€“62

    ArticleĀ  Google ScholarĀ 

  • Barkley HC, Cohen AL, Golbuu Y, Starczak VR, DeCarlo TM, Shamberger KEF (2015) Changes in coral reef communities across a natural gradient in seawater pH. Sci Adv 1(5). https://doi.org/10.1126/sciadv.1500328

  • Barnhill KA, Bahr KD (2019) Coral resilience at Malaukaā€™a Fringing Reef, Kāneā€™ohe Bay, Oā€™ahu after 18 years. J Mar Sci Eng 7:311. https://doi.org/10.3390/jmse7090311

    ArticleĀ  Google ScholarĀ 

  • Baums IB, Paris CB, ChĆ©rubin LM (2006) A bio-oceanographic filter to larval dispersal in a reef-building coral. Limnol Oceanogr 51:1969ā€“1981. https://doi.org/10.4319/lo.2006.51.5.1969

    ArticleĀ  Google ScholarĀ 

  • Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA et al (2019) Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol Appl. https://doi.org/10.1002/eap.1978

  • Beetham E, Kench PS, Popinet S (2017) Future reef growth can mitigate physical impacts of sea-level rise on atoll islands. Earthā€™s Future 5:1002ā€“1014. https://doi.org/10.1002/2017ef000589

    ArticleĀ  Google ScholarĀ 

  • Beger M, Sommer B, Harrison PL, Smith SD, Pandolfi JM (2014) Conserving potential coral reef refuges at high latitudes. Divers Distrib 20(3):245ā€“257

    ArticleĀ  Google ScholarĀ 

  • Bellwood DR (1995) Direct estimate of bioerosion by two parrotfish species, Chlorurus gibbus and C. sordidus, on the Great Barrier Reef, Australia. Mar Biol 121:419ā€“429

    ArticleĀ  Google ScholarĀ 

  • Bellwood DR, Choat JH (1990) A functional analysis of grazing in parrotfishes (family Scaridae): the ecological implications. Environ Biol Fishes 28:189ā€“214

    ArticleĀ  Google ScholarĀ 

  • Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281ā€“285

    ArticleĀ  Google ScholarĀ 

  • Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827ā€“833

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bessey C, Babcock RC, Thomson DP, Haywood MDE (2018) Outbreak densities of the coral predator Drupella in relation to in situ Acropora growth rates on Ningaloo Reef, Western Australia. Coral Reefs 37:985ā€“993. https://doi.org/10.1007/s00338-018-01748-7

    ArticleĀ  Google ScholarĀ 

  • Birkeland C (1982) Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Mar Biol 69:175ā€“185

    ArticleĀ  Google ScholarĀ 

  • Birkeland C, Lucas JS (1990) Acanthaster planci: major management problem of coral reefs. CRC Press, Boca Raton, FL

    Google ScholarĀ 

  • Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008a) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol Ann Rev 46:5ā€“63

    Google ScholarĀ 

  • Birrell CL, McCook LJ, Willis BL, Diaz-Pulido GA (2008b) Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr Mar Biol 46:25ā€“65

    Google ScholarĀ 

  • Blakeway D, Byers M, Stoddart J, Rossendell J (2013) Coral colonisation of an artificial reef in a turbid nearshore environment, Dampier Harbour, western Australia. PLoS One 8(9):e75281

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bostrƶm-Einarsson L, Ceccarelli D, Babcock RC, Bayraktarov E, Cook N, Harrison P et al (2018) Coral restoration in a changing world - a global synthesis of methods and techniques. National Environmental Science Program, Reef and Rainforest Research Centre Ltd, Cairns, p 63

    Google ScholarĀ 

  • Bostrƶm-Einarsson L, Babcock RC, Bayraktarov E, Ceccarelli D, Cook N, Ferse SCA et al (2020) Coral restoration - A systematic review of current methods, successes, failures and future directions. PLoS One 15(1):e0226631. https://doi.org/10.1371/journal.pone.0226631

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, Shearer TL et al (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327ā€“337

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Box SJ, Mumby PJ (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139ā€“149

    ArticleĀ  Google ScholarĀ 

  • Bradshaw AD (1996) Underlying principles of restoration. Can J Fish Aquat Sci 53(Suppl 1):3ā€“9

    ArticleĀ  Google ScholarĀ 

  • Brandl SJ, Rasher DB, CĆ“tĆ© IM, Casey JM, Darling ES, Lefcheck JS, Duffy JE (2019) Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front Ecol Environ 2019. https://doi.org/10.1002/fee.2088

  • Brandt ME, Smith TB, Correa AMS, Vega-Thurber R (2013) Disturbance induced coral fragmentation as a driver of a coral disease outbreak. PLoS One 8(2):e57164

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bridge TCL, Luiz OJ, Kuo CY, Precoda K, Madin EM, Madin JS et al (2020) Incongruence between life-history traits and conservation status in reef corals. Coral Reefs 39:271ā€“279

    ArticleĀ  Google ScholarĀ 

  • Brodie J, Fabricius K, Death G, Okaji K (2005) Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Mar Pollut Bull. 51(1ā€“4):266ā€“278

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bromley RG (1978) Bioerosion of the Bermudan reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23:169ā€“197

    ArticleĀ  Google ScholarĀ 

  • Bromley RG (1994) The palaeoecology of bioerosion. In: Donovan SK (ed) The Palaeobiology of trace fossils. Wiley, Chichester

    Google ScholarĀ 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:129ā€“138

    ArticleĀ  Google ScholarĀ 

  • Bruckner AW, Bruckner RJ (1997) Outbreak of coral disease in Puerto Rico. Coral Reefs 16:260

    ArticleĀ  Google ScholarĀ 

  • Bruno JF, CĆ“tĆ© IM, Toth LT (2019) Climate change, coral loss, and the curious case of the parrotfish paradigm: why donā€™t marine protected areas improve reef resilience? Annu Rev Mar Sci 11:307ā€“334

    ArticleĀ  Google ScholarĀ 

  • Budd AF, Pandolfi JM (2010) Evolutionary novelty is concentrated at the edge of coral species distributions. Science 328(5985):1558ā€“1561

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bulleri F, Couraudon-RĆ©ale M, Lison de Loma T, Claudet J (2013) Variability in the effects of macroalgae on the survival and growth of corals: the consumer connection. PLoS One 8(11):e79712. https://doi.org/10.1371/journal.pone.0079712

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington, DC

    Google ScholarĀ 

  • Burkepile DE, Hay ME (2008) Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc Natl Acad Sci USA 105:16201ā€“16206

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bythell JC, Hillis-Starr ZM, Rogers CS (2000) Local variability but landscape stability in coral reef communities following repeated hurricane impacts. Mar Ecol Prog Ser 204:93ā€“100

    ArticleĀ  Google ScholarĀ 

  • Cabral RB, Mamauag SS, AliƱo PM (2015) Designing a marine protected areas network in a data-limited situation. Mar Policy 59:64ā€“76

    ArticleĀ  Google ScholarĀ 

  • Cacciapaglia C, van Woesik R (2015) Reef-coral refugia in a rapidly changing ocean. Glob Change Biol 1ā€“11. https://doi.org/10.1111/gcb.12851

  • Camp EF, Nitschke MR, Rodolfo-Metalpa R, Houlbreque F, Gardner SG, Smith DJ, Zampighi M, Suggett DJ (2017) Reef-building corals thrive within hot-acidified and deoxygenated waters. Sci Rep 7:2434

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Carpenter RC (1981) Grazing by Diadema antillarum (Philippi) and its effects on the benthic algal community. J Mar Res 39:749ā€“765

    Google ScholarĀ 

  • Carpenter RC, Edmunds PJ (2006) Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol Lett 9:268ā€“277

    ArticleĀ  Google ScholarĀ 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560ā€“563. https://doi.org/10.1126/science.1159196

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Carreiro-Silva M, McClanahan TR (2001) Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing. J Exp Mar Biol Ecol 262:133ā€“153

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cebrian E (2010) Grazing on coral reefs facilitates growth of the excavating sponge Cliona orientalis (Clionaidae, Hadromerida). Mar Ecol Prog Ser 31:533ā€“538

    ArticleĀ  Google ScholarĀ 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL et al (2000) Consequences of changing biodiversity. Nature 405:234ā€“242

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chave KE, Smith SV, Roy KJ (1972) Carbonate production by coral reefs. Mar Geol 12:123ā€“140

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chazottes V, Le Campion-Alsumard T, Peyrot-Clausade M, Cuet P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21:375ā€“390

    ArticleĀ  Google ScholarĀ 

  • Chou LM, Tun KPP (1997) Coral transplantation as a reef conservation tool - the Singapore experience. PACON 97 Proceedings. PACON International, Hawaii

    Google ScholarĀ 

  • Chou LM, Yeemin T, Bin Gor Yaman AR, Vo ST, Alino P, Suharsono (2009) Coral reef restoration in the South China Sea. Galaxea 11:67ā€“74

    ArticleĀ  Google ScholarĀ 

  • Christie P, Pollnac RB, Fluharty DL, Hixon MA, Lowry GK, Mahon R et al (2009) Tropical marine EBM feasibility: a synthesis of case studies and comparative analyses. Coast Manag 37:374ā€“385

    ArticleĀ  Google ScholarĀ 

  • Cinner J, Huchery C, MacNeil M et al (2016) Bright spots among the worldā€™s coral reefs. Nature 535:416ā€“419. https://doi.org/10.1038/nature18607

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Claremont M, Reid DG, Williams ST (2011) Evolution of corallivory in the gastropod genus Drupella. Coral Reefs 30:977ā€“990

    ArticleĀ  Google ScholarĀ 

  • Clements CS, Hay ME (2019) Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae. Nat Ecol Evol 3:178ā€“182

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Colgan MW (1987) Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci. Ecology 68:1592ā€“1160

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Comeau S, Carpenter RC, Nojiri Y, Putnam HM, Sakai K, Edmunds PJ (2014) Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proc R Soc B 281:20141339. https://doi.org/10.1098/rspb.2014.1339

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16:S101ā€“S113

    ArticleĀ  Google ScholarĀ 

  • Connell JH, Hughes TP, Wallace CC (1997) A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol Monogr 67:461ā€“488

    ArticleĀ  Google ScholarĀ 

  • Coppard SE, Campbell AC (2005) Distribution and abundance of regular sea urchins on two coral reefs in Fiji. Micron 37:249ā€“269

    Google ScholarĀ 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443ā€“466. https://doi.org/10.1146/annurev.marine.010908.163757

    ArticleĀ  Google ScholarĀ 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522ā€“527

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cros A, Toonen RJ, Donahue MJ, Karl SA (2017) Connecting Palauā€™s marine protected areas: a population genetic approach to conservation. Coral Reefs 36:735ā€“748

    ArticleĀ  Google ScholarĀ 

  • Daly J, Zuchowicz N, Lendo CIN, Khosla K, Lager C, Henley EM et al (2018) Successful cryopreservation of coral larvae using vitrification and laser warming. Sci Rep 8:15714. https://doi.org/10.1038/s41598-018-34035

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Darling ES, McClanahan TR, Cote IM (2010) Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv Lett 3:122ā€“130

    ArticleĀ  Google ScholarĀ 

  • Deā€™ath G, Moran PJ (1998) Factors affecting the behaviour of crown-of-thorns starfish Acanthaster planci on the Great Barrier Reef: 2: feeding preferences. J Exp Mar Biol Ecol 20(1):107ā€“126

    ArticleĀ  Google ScholarĀ 

  • Deā€™ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci 109(44):17995ā€“17999. https://doi.org/10.1073/pnas.1208909109

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • dela Cruz D, Harrison PL (2017) Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci Rep 7:13985

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Dishon G, Grossowicz M, Krom M, Guy G, Gruber DF, Tchernov D (2020) Evolutionary traits that enable scleractinian corals to survive mass extinction events. Sci Rep 10:3903. https://doi.org/10.1038/s41598-020-60605-2

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Dobrowski SZ (2010) A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biol 17:1022ā€“1035

    ArticleĀ  Google ScholarĀ 

  • Done TJ, Potts DC (1992) Influences of habitat and natural disturbances on contributions of massive porites corals to reef communities. Mar Biol 114:479ā€“493

    ArticleĀ  Google ScholarĀ 

  • Done TJ, Ogden JC, Wiebe WJ, Rosen BR (1996) Biodiversity and ecosystem function of coral reefs. In: Mooney JH, Cushman E, Medina E, Sala OE, Schulze E-D (eds) Functional roles of biodiversity: a global perspective. Wiley, New York, pp 393ā€“429

    Google ScholarĀ 

  • Done TJ, DeVantier LM, Turak E, Fisk DA, Wakeford M, van Woesik R (2010) Coral growth on three reefs: development of recovery benchmarks using a space for time approach. Coral Reefs 29:815ā€“833

    ArticleĀ  Google ScholarĀ 

  • Dorman JG, Castruccio FS, Curchitser EN, Kleypas JA, Powell TM (2016) Modeled connectivity of Acropora millepora populations from reefs of the Spratly Islands and the greater South China Sea. Coral Reefs 35:169ā€“179

    ArticleĀ  Google ScholarĀ 

  • Du J, Xie M, Wang Y, Chen Z, Liu W, Liao J, Chen B (2020) Connectivity of fish assemblages along the mangrove-seagrass coral reef continuum in Wenchang, China. Acta Oceanol Sin 1ā€“10. https://doi.org/10.1007/s13131-019-1490-7

  • Dudley N (ed) (2008) Guidelines for applying protected area management categories. International Union for Conservation of Nature and Natural Resources (IUCN), Gland

    Google ScholarĀ 

  • Duffy JE, Godwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549:261ā€“264

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Dumas P, Kulbicki M, Chifflet S, Fichez R, Ferraris J (2007) Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J Exp Mar Biol Ecol 344:88ā€“100

    ArticleĀ  Google ScholarĀ 

  • Edmunds PJ (2017) Unusually high coral recruitment during the 2016 El NiƱo in Moā€™orea, French Polynesia. PLoS One 12(10):e0185167. https://doi.org/10.1371/journal.pone.0185167

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Edmunds PJ, McIlroy SE, Adjeroud M, Ang PO, Bergman JL, Carpenter RC et al (2018) Critical information gaps impeding understanding of the role of larval connectivity among coral reef islands in an era of global change. Front Mar Sci 5:290. https://doi.org/10.3389/fmars.2018.00290

    ArticleĀ  Google ScholarĀ 

  • Edwards AJ (ed) (2010) Reef rehabilitation manual. Coral Reef Targeted Research & Capacity Building for Management Program, St Lucia, Australia

    Google ScholarĀ 

  • Edwards AJ, Guest JR, Heyward AJ, Villanueva RD, Baria MV, Bollozos ISF, Golbuu Y (2015) Direct seeding of mass-cultured coral larvae is not an effective option for reef rehabilitation. Mar Ecol Prog Ser 525:105ā€“116

    ArticleĀ  Google ScholarĀ 

  • Ehler C, Douvere F (2009) Marine spatial planning: a step-by-step approach toward ecosystem-based management. Intergovernmental OceanographicCommission and Man and the Biosphere Programme, Paris

    Google ScholarĀ 

  • Ehrlich HL (1990) Microbial formation and degradation of carbonates. In: Ehrlich HL (ed) Geomicrobiology. Dekker, New York

    Google ScholarĀ 

  • Emslie MJ, Cheal AJ, Sweatman H, Delean S (2008) Recovery from disturbance of coral and reef fish communities on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 371:177ā€“190

    ArticleĀ  Google ScholarĀ 

  • Epstein N, Bak RPM, Rinkevich B (2001) Strategies for gardening denuded coral reef areas: the applicability of using different types of coral material for reef restoration. Restor Ecol 9:432ā€“442

    ArticleĀ  Google ScholarĀ 

  • Epstein N, Bak RPM, Rinkevich B (2003) Applying forest restoration principles to coral reef rehabilitation. Aquat Conserv Mar Freshw Ecosyst 13:387ā€“395

    ArticleĀ  Google ScholarĀ 

  • Eyre BD, Cyronak T, Drupp P, De Carlo EH, Sachs JP, Andersson AJ (2018) Coral reefs will transition to net dissolving before end of century. Science 359:908ā€“911

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fabricius K (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125ā€“146

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fabricius K, Okaji K, Deā€™ath G (2010) Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29(3):593ā€“605

    ArticleĀ  Google ScholarĀ 

  • Fabricius KE, Langdon C, Uthicke C, Noonan S, Deā€™ath G, Okazaki R et al (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1(3):165ā€“169

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fang JKH, Schƶnberg CHL, Mello-Athayde MA, Achlatis M, Hoegh-Guldberg O, Dove S (2018) Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios. Oecologia 187(1):25ā€“35. https://doi.org/10.1007/s00442-018-4105-7

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Feng M, Colberg F, Slawinski D, Berry O, Babcock R (2016) Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia. J Mar Syst 164:1ā€“12

    ArticleĀ  Google ScholarĀ 

  • Fernandes L, Green A, Tanzer J, White A, AlinƵ PM, Jompa J et al (2012) Biophysical principles for designing resilient networks of marine protected areas to integrate fisheries, biodiversity and climate change objectives in the Coral Triangle. Report prepared by The Nature Conservancy for the Coral Triangle Support Partnership, p 152

    Google ScholarĀ 

  • Ferrario F, Beck MW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L (2014) The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun 5:3794. https://doi.org/10.1038/ncomms4794

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Folke C (2016) Resilience (republished). Ecol Soc 21(4):44

    ArticleĀ  Google ScholarĀ 

  • Food and Agriculture Organization (FAO) (2003) The ecosystem approach to fisheries. FAO of the UN, Rome

    Google ScholarĀ 

  • Food and Agriculture Organization (FAO) (2011) Fisheries management. 4. Marine protected areas and fisheries. FAO Technical Guidelines for Responsible Fisheries, No 4, Suppl 4. FAO, Rome, p 198

    Google ScholarĀ 

  • Forsman ZH, Page CA, Toonen RJ, Vaughan D (2015) Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3:e1313

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Fox HE, Caldwell RL (2006) Recovery from blast fishing on coral reefs: a tale of two scales. Ecol Appl 16(5):1631ā€“1635

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Fox HE, Mous PJ, Pet JS, Muljadi AH, Caldwell RL (2005) Experimental assessment of coral reef rehabilitation following blast fishing. Conserv Biol 19(1):98ā€“107

    ArticleĀ  Google ScholarĀ 

  • Frade PR, Bongaerts P, Englebert N, Rogers A, Gonzalez-Rivero M, Hoegh-Guldberg O (2018) Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat Commun 9:3447. https://doi.org/10.1038/s41467-018-05741-0

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Frasera KA, Adams VM, Pressey RL, Pandolfi JM (2019) Impact evaluation and conservation outcomes in marine protected areas: a case study of the Great Barrier Reef Marine Park. Biol Conserv 238:108185. https://doi.org/10.1016/j.biocon.2019.07.030

    ArticleĀ  Google ScholarĀ 

  • Freeman LA (2015) Robust performance of marginal Pacific coral reef habitats in future climate scenarios. PLoS One 10:e0128875

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Friedlander A, Aeby G, Brainard R, Brown E, Chaston K, Clark A et al (2008) The state of coral reef ecosystems of the Main Hawaiian Islands. In: Waddell J (ed) The state of Coral Reef ecosystems of the United States and Pacific freely associated states, vol 11. NOAA Technical Memorandum National Ocean Service (NOS) National Centers for Coastal Ocean Science (NCCOS), Silver Spring, MD, pp 222ā€“269

    Google ScholarĀ 

  • Fujioka Y, Yamazato K (1983) Host selection of some Okinawan coral associated gastropods belonging to the genera Drupella, Coralliophila and Quoyula. Galaxea 2:59ā€“73

    Google ScholarĀ 

  • Gaines SD, White C, Carr MH, Palumbi SR (2010) Designing marine reserve networks for both conservation and fisheries management. Proc Natl Acad Sci USA 107:18286ā€“18293

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gamfeldt L, Lefcheck JS, Byrnes JE et al (2015) Marine biodiversity and ecosystem functioning: whatā€™s known and whatā€™s next? Oikos 124:252ā€“265

    ArticleĀ  Google ScholarĀ 

  • Gell FR, Roberts CM (2003) Benefits beyond boundaries: the fishery effects of marine reserves. Trends Ecol Evol 18:448ā€“455

    ArticleĀ  Google ScholarĀ 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS (2013) Recovery of an isolated coral reef system following severe disturbance. Science 340:69ā€“71

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Global Change Biol 2:495ā€“509

    ArticleĀ  Google ScholarĀ 

  • Glynn PW (1997) Bioerosion and coral-reef growth: a dynamic balance. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 69ā€“98

    Google ScholarĀ 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer, Berlin

    Google ScholarĀ 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475ā€“478

    Google ScholarĀ 

  • Goreau TF, Hartman WD (1963) Boring sponges as controlling factors in the formation and maintenance of coral reefs. Am Assoc Adv Sci Pubs 75:25ā€“54

    Google ScholarĀ 

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315ā€“326

    ArticleĀ  Google ScholarĀ 

  • Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci USA 103:8425ā€“8429

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson J, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291ā€“1300

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Graham NAJ, McClanahan TR, MacNeil MA, Wilson SK, Polunin NVC, Jennings S et al (2008) Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS One 3:e3039. https://doi.org/10.1371/journal.pone.0003039

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Graham NAJ, Nash KL, Kool JT (2011) Coral reef recovery dynamics in a changing world. Coral Reefs 30:283ā€“294

    ArticleĀ  Google ScholarĀ 

  • Graham NAJ, Jennings S, MacNeil MA et al (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94ā€“97

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Green A, Smith SE, Lipsett-Moore G, Groves C, Peterson N, Sheppard S et al (2009) Designing a resilient network of marine protected areas for Kimbe Bay, Papua New Guinea. Oryx 43:488ā€“498

    ArticleĀ  Google ScholarĀ 

  • Green A, White A, Kilarski S (eds) (2013) Designing marine protected area networks to achieve fisheries, biodiversity, and climate change objectives in tropical ecosystems: a practitioner guide. The Nature Conservancy, and the USAID Coral Triangle Support Partnership, Cebu City, Philippines

    Google ScholarĀ 

  • Guest JR, Baria MV, Gomez ED, Heyward AJ, Edwards AJ (2014) Closing the circle: is it feasible to rehabilitate reefs with sexually propagated corals? Coral Reefs 33:45ā€“55

    ArticleĀ  Google ScholarĀ 

  • Guest JR, Tun K, Low J, VergĆ©s A, Marzinelli EM, Campbell AH et al (2016) 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Sci Rep 6:36260

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gunderson LH (2000) Ecological resilience: in theory and application. Ann Rev Ecol Syst 31:425ā€“439

    ArticleĀ  Google ScholarĀ 

  • HaapkylƤ J, Unsworth RKF, Flavell M, Bourne DG, Schaffelke B, Willis BL (2011) Seasonal rainfall and runoff promote coral disease on an inshore reef. PLoS One 6(2):e16893. https://doi.org/10.1371/journal.pone.001689

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Halford AR, Caley MJ (2009) Towards an understanding of resilience in isolated coral reefs. Global Change Biol 15:3031ā€“3045

    ArticleĀ  Google ScholarĀ 

  • Halford A, Cheal AJ, Ryan D, Williams DM (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892ā€“1905

    ArticleĀ  Google ScholarĀ 

  • Halpern BS, Warner RR (2003) Review paper. Matching marine reserve design to reserve objectives. Proc Biol Sci 270:1871ā€“1878

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z (ed) Coral reef ecosystems, ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 133ā€“207

    Google ScholarĀ 

  • Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR et al (2012) Larval export from marine reserves and the recruitment benefits for fishes and fisheries. Curr Biol 22:1023ā€“1028

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Harrison P, Villanueva R, dela Cruz D (2016) Coral reef restoration using mass coral larval reseeding. Australian Centre for International Agricultural Research, Canberra, Australia

    Google ScholarĀ 

  • Heery EC, Hoeksema BW, Browne NK, Reimer JD, Ang PO, Huang D et al (2018) Urban coral reefs: degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia. Mar Pollut Bull 135:654ā€“681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Heyward AJ, Smith LD, Rees M, Field SN (2002) Enhancement of coral recruitment by in situ mass culture of coral larvae. Mar Ecol Prog Ser 230:113ā€“118

    ArticleĀ  Google ScholarĀ 

  • Highsmith RC (1981) Coral bioerosion: damage relative to skeletal density. Am Nat 117:193ā€“198

    ArticleĀ  Google ScholarĀ 

  • Highsmith RC, Riggs AC, D'Antonio CM (1980) Survival of hurricane-generated coral fragments and a disturbance model of reef calcification/growth rates. Oecologia 46(3):322ā€“329

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Highsmith RC, Lueptow RL, Schonberg SC (1983) Growth and bioerosion of three massive corals on the Belize Barrier Reef. Mar Ecol Prog Ser 13:261ā€“271

    ArticleĀ  Google ScholarĀ 

  • Hock K, Doropoulos C, Gorton R, Condie SA, Mumby PJ (2019) Split spawning increases robustness of coral larval supply and inter-reef connectivity. Nat Commun 10:3463. https://doi.org/10.1038/s41467-019-11367-7

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737ā€“1742

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K et al (2014) The ocean. In: Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, New York, pp 1655ā€“1731

    Google ScholarĀ 

  • Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S (2017) Coral reef ecosystems under climate change and ocean acidification. Front Mar Sci 4:158

    ArticleĀ  Google ScholarĀ 

  • Hoeksema BW, Scott C, True JD (2013) Dietary shift in corallivorous Drupella snails following a major bleaching event at Koh Tao, Gulf of Thailand

    Google ScholarĀ 

  • Hoey AS, Bellwood DR (2008) Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:37ā€“47

    ArticleĀ  Google ScholarĀ 

  • Holl KD, Aide TM (2011) When and where to actively restore ecosystems? For Ecol Manag 261:1558ā€“1563

    ArticleĀ  Google ScholarĀ 

  • Holling CS (1986) The resilience of terrestrial ecosystems: local surprise and global change. In: Clark WC, Munn RE (eds) Sustainable development of the biosphere International Institute for Applied Systems Analysis (IIASA). Cambridge University Press, Cambridge, UK

    Google ScholarĀ 

  • Holling CS, Schindler DW, Walker BW, Roughgarden J (1995) Biodiversity in the functioning of ecosystems: an ecological synthesis. In: Perrings CA, Maler K-G, Folke C, Holling CS, Jansson B-O (eds) Biodiversity loss, ecological and economical issues. Cambridge University Press, Cambridge, UK

    Google ScholarĀ 

  • Holmes KE, Edinger EN, Hariyadi LGV, Risk MJ (2000) Bioerosion of live massive corals and branching coral rubble on Indonesian coral reefs. Mar Pollut Bull 40:606ā€“617

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3ā€“35

    ArticleĀ  Google ScholarĀ 

  • Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105ā€“108

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Horoszowski-Fridman YB, Rinkevich B (2017) Restoring the animal forests: harnessing silviculture biodiversity concepts for coral transplantation. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham, Switzerland, pp 1313ā€“1335

    ChapterĀ  Google ScholarĀ 

  • Horoszowski-Fridman YB, Izhaki I, Rinkevich B (2011) Engineering of coral reef larval supply through transplantation of nursery-farmed gravid colonies. J Exp Mar Biol Ecol 399:162ā€“166

    ArticleĀ  Google ScholarĀ 

  • Horoszowski-Fridman YB, BrĆŖthes J-C, Rahmani N, Rinkevich B (2015) Marine silviculture: incorporating ecosystem engineering properties into reef restoration acts. Ecol Eng 82:201ā€“213

    ArticleĀ  Google ScholarĀ 

  • Huang D (2012) Threatened reef corals of the world. PLoS One 7:e34459. https://doi.org/10.1371/journal.pone.0034459

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Huang D, Licuanan WY, Hoeksema BW, Chen CA, Ang PO, Huang H et al (2015) Extraordinary diversity of reef corals in the South China Sea. Mar Biodivers 45:157ā€“168. https://doi.org/10.1007/s12526-014-0236-1

    ArticleĀ  Google ScholarĀ 

  • Huang D, Hoeksema BW, Affendi YA, Ang PO, Chen CA, Huang H et al (2016) Conservation of reef corals in the South China sea based on species and evolutionary diversity. Biodivers Conserv 25:331ā€“344

    ArticleĀ  Google ScholarĀ 

  • Huang W, Li M, Yu K, Wang Y, Li J, Liang J et al (2018) Genetic diversity and large-scale connectivity of the scleractinian coral Porites lutea in the South China Sea. Coral Reefs 37:1259ā€“1271

    ArticleĀ  Google ScholarĀ 

  • Hughes TP (1989) Community structure and diversity of coral reefs: the role of history. Ecology 70:275ā€“279

    ArticleĀ  Google ScholarĀ 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547ā€“1551

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hughes TP, Connell JH (1999) Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr 44(3):932ā€“940

    ArticleĀ  Google ScholarĀ 

  • Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250ā€“2263

    ArticleĀ  Google ScholarĀ 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929ā€“933

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L et al (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17(4):360ā€“365. https://doi.org/10.1016/j.cub.2006.12.049

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25(11):633ā€“642

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC et al (2017a) Coral reefs in the Anthropocene. Nature 546:82ā€“90

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hughes TP, Kerry JT, Aā€™lvarez-Noriega M, Aā€™lvarez-Romero JG, Anderson KD, Baird AH et al (2017b) Global warming and recurrent mass bleaching of corals. Nature 543:373ā€“377

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hutchings PA (1986) Biological destruction of coral reefs - A review. Coral Reefs 4:239ā€“252

    ArticleĀ  Google ScholarĀ 

  • Hutchings PA (2011) Bioerosion. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Dordrecht, The Netherlands, pp 139ā€“156

    ChapterĀ  Google ScholarĀ 

  • Hutchings PA, Peyrot-Clausade M (2002) The distribution and abundance of boring species of polychaetes and sipunculans in coral substrates in French Polynesia. J Exp Mar Biol Ecol 269:101ā€“121

    ArticleĀ  Google ScholarĀ 

  • Hutchings PA, Kiene WE, Cunningham RB, Donnelly C (1992) Spatial and temporal patterns of non-colonial boring organisms (polychaetes, sipunculans and bivalves molluscs) in Porites at Lizard Island, Great Barrier Reef. Coral Reefs 11:23ā€“31

    ArticleĀ  Google ScholarĀ 

  • IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1, 2nd edn. IUCN, Gland, Switzerland

    Google ScholarĀ 

  • IUCN-WCPA (2008) Establishing marine protected area networks - making it happen. IUCN World Commission on Protected Areas, Washington, DC

    Google ScholarĀ 

  • Iwao K, Omori M, Taniguchi H, Tamura M (2010) Transplanted Acropora tenuis (Dana) spawned first in their life 4 years after culture from eggs. Galaxea J Coral Reef Stud 12:47ā€“47

    ArticleĀ  Google ScholarĀ 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293(5530):629ā€“638

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jokiel PL, Brown EK (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii Glob. Change Biol 10:1627ā€“1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x

    ArticleĀ  Google ScholarĀ 

  • Jones GP, Almany GR, Russ GR, Sale PF, Steneck RR, van Oppen MJH et al (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28:307ā€“325

    ArticleĀ  Google ScholarĀ 

  • Kapsenberg L, Cyronak T (2019) Ocean acidification refugia in variable environments. Glob Change Biol 25:3201ā€“3214. https://doi.org/10.1111/gcb.14730

    ArticleĀ  Google ScholarĀ 

  • Kavousi J, Keppel G (2018) Clarifying the concept of climate change refugia for coral reefs. ICES J Mar Sci 75(1):43ā€“49

    ArticleĀ  Google ScholarĀ 

  • Kayal M, Vercelloni J, de Loma TL, Bosserelle P, Chancerelle Y, Geoffroy S et al (2012) Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One 7(10):e47363. https://doi.org/10.1371/journal.pone.004736

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kendall MS, Poti M, Wynne TT, Kinlan BP, Bauer LB (2013) Consequences of the life history traits of pelagic larvae on interisland connectivity during a changing climate. Mar Ecol Prog Ser 489:43ā€“59. https://doi.org/10.3354/meps10432

    ArticleĀ  Google ScholarĀ 

  • Kenyon JC, Aeby GS, Brainard RE, Chojnacki JD, Dunlap MJ, Wilkinson CB (2006) Mass coral bleaching on high-latitude reefs in the Hawaiian Archipelago. In: Proceedings of the 10th coral reef international symposium, Okinawa, Japan, pp 631ā€“643

    Google ScholarĀ 

  • Keppel G, Wardell-Johnson GW (2012) Refugia: keys to climate change management. Global Change Biol 18:2389ā€“2391

    ArticleĀ  Google ScholarĀ 

  • Keppel G, van Niel KP, Wardell-Johnson GW, Yates CJ, Byrne M, Mucina L et al (2012) Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecol Biogeogr 21:393ā€“404

    ArticleĀ  Google ScholarĀ 

  • Keshavmurthy S, Kuo CY, Huang YY, Carballo-BolaƱos R, Meng PJ, Wang JT et al (2019) Coral reef resilience in taiwan: lessons from long-term ecological research on the coral reefs of Kenting National Park (Taiwan). J Mar Sci Eng 7:388

    ArticleĀ  Google ScholarĀ 

  • Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous-Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195ā€“223

    ArticleĀ  Google ScholarĀ 

  • Kinzie RA (1999) Sex, symbiosis and coral reef communities. Am Zool 39:80ā€“91

    ArticleĀ  Google ScholarĀ 

  • Kleeman K (1990) Boring and growth in chemically boring bivalves from the Caribbean, Eastern Pacific and Australiaā€™s Great Barrier Reef. Senckenbergiana Maritima 21:101ā€“154

    Google ScholarĀ 

  • Kleypas JA, Buddemeier RW, Gattuso JP (2001) The future of coral reefs in an age of global change. Int J Earth Sci 90:426ā€“437. https://doi.org/10.1007/s005310000125

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kleypas JA, Thompson DM, Castruccio FS, Curchitser EN, Pinsky M, Watson JR (2016) Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob Chang Biol. https://doi.org/10.1111/gcb.13347

  • Kline DI, Kuntz NM, Breitbart M, Knowlton N, Rohwer F (2006) Role of elevated organic carbon levels and microbial activity in coral mortality. Mar Ecol Prog Ser 314:119ā€“125

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Knowlton N (1992) Thresholds and multiple stable states in coral reef community dynamics. Am Zool 32:674ā€“682

    ArticleĀ  Google ScholarĀ 

  • Knowlton N, Lang JC, Rooney MC, Clifford P (1981) Evidence for delayed mortality in hurricane-damaged Jamaican staghorn corals. Nature 294(5838):251ā€“252

    ArticleĀ  Google ScholarĀ 

  • Kobluk DR, Risk MJ (1977) Rate and nature of infestation of carbonate substrate by a boring alga. J Exp Mar Biol Ecol 27:107ā€“115

    ArticleĀ  Google ScholarĀ 

  • Krone R, Paster M, Schuhmacher H (2011) Effect of the surgeonfish Ctenochaetus striatus (Acanthuridae) on the processes of sediment transport and deposition on a coral reef in the Red Sea. Facies 57:215ā€“221

    ArticleĀ  Google ScholarĀ 

  • Krueck NC, Abdurrahim AY, Adhuri DS, Mumby PJ, Ross H (2019) Quantitative decision support tools facilitate social-ecological alignment in community-based marine protected area design. Ecol Soc 24(4):6. https://doi.org/10.5751/ES-11209-240406

    ArticleĀ  Google ScholarĀ 

  • Kuffner IB, Toth LT (2016) A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv Biol 30:706ā€“715. https://doi.org/10.1111/cobi.12725

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147:159ā€“165

    ArticleĀ  Google ScholarĀ 

  • Lam K, Shin PKS (2007) Severe bioerosion caused by an outbreak of corallivorous Drupella and Diadema at Hoi Ha Wan Marine Park, Hong Kong. Coral Reefs 26:893

    ArticleĀ  Google ScholarĀ 

  • Langea ID, Perry CT, Alvarez-Filip L (2020) Carbonate budgets as indicators of functional reef ā€œhealthā€: a critical review of data underpinning census-based methods and current. Ecol Indic 110:10585

    Google ScholarĀ 

  • Ledlie MH, Graham NAJ, Bythell JC, Wilson SK, Jennings S, Polunin NVC et al (2007) Phase shifts and the role of herbivory in the resilience of coral reefs. Coral Reefs 26:641ā€“653

    ArticleĀ  Google ScholarĀ 

  • Lefcheck JS, Innes-Gold AA, Brandl SJ et al (2019) Tropical fish diversity enhances coral reef functioning across multiple scales. Sci Adv 5(3):eaav6420

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines SD et al (2009) Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384:33ā€“46

    ArticleĀ  Google ScholarĀ 

  • Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431ā€“436

    ArticleĀ  Google ScholarĀ 

  • Li Y, Fluharty DL (2017) Marine protected area networks in China: challenges and prospects. Mar Policy 85:8ā€“16

    ArticleĀ  Google ScholarĀ 

  • Linden B, Rinkevich B (2011) Creating stocks of young colonies from brooding-coral larvae, amenable to active reef restoration. J Exp Mar Biol Ecol 398:40ā€“46

    ArticleĀ  Google ScholarĀ 

  • Linden B, Rinkevich B (2017) Elaborating of an eco-engineering approach for stock enhanced sexually derived coral colonies. J Exp Mar Biol Ecol 486:314ā€“321

    ArticleĀ  Google ScholarĀ 

  • Linden B, Vermeij MJA, Rinkevich B (2019) The coral settlement box: a simple device to produce coral stock from brooded coral larvae entirely in situ. Ecol Eng 132:115ā€“119

    ArticleĀ  Google ScholarĀ 

  • Lindo-Atichati D, Curcic M, Paris CB, Buston PM (2016) Description of surface transport in the region of the Belizean Barrier Reef based on observations and alternative high-resolution models. Ocean Model 106:74ā€“89

    ArticleĀ  Google ScholarĀ 

  • Link JS (2010) Ecosystem-based fisheries management. Cambridge University Press, Cambridge

    BookĀ  Google ScholarĀ 

  • Lirman D (2001) Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19:392ā€“399. https://doi.org/10.1007/s003380000125

    ArticleĀ  Google ScholarĀ 

  • Lirman D, Schopmeyer S (2016) Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4:e2597. https://doi.org/10.7717/peerj.2597

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Loh TL, Tanzil JTL, Chou LM (2006) Preliminary study of community development and scleractinian recruitment on fiberglass artificial reef units in the sedimented waters of Singapore. Aquat Conserv Mar Freshw Ecosyst 16:61ā€“76

    ArticleĀ  Google ScholarĀ 

  • Lowe JR, Williamson DH, Ceccarelli DM, Evans RD, Russ GR (2019) Responses of coral reef wrasse assemblages to disturbance and marine reserve protection on the Great Barrier Reef. Mar Biol 166(119):21

    Google ScholarĀ 

  • Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS III, Cornell SE et al (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Change 28:289ā€“297. https://doi.org/10.1016/j.gloenvcha.2014.07.009

    ArticleĀ  Google ScholarĀ 

  • MacGeachy JK, Stearn CW (1976) Boring by macro-organisms in the coral Montastraea annularis on Barbados reefs. Hydrobiol 61:715ā€“745

    Google ScholarĀ 

  • Machendiranathan M, Ranith R, Senthilnathan L, Saravanakumar A, Thangaradjou T (2020) Resilience of coral recruits in Gulf of Mannar Marine Biosphere Reserve (GOMMBR), India. Reg Stud Mar Sci 34:101055

    Google ScholarĀ 

  • Manikandan B, Ravindran J, Jayabalan VP, Shrinivasu S, Manimurali R, Paramasivam K (2017) Resilience potential of an Indian Ocean reef: an assessment through coral recruitment pattern and survivability of juvenile corals to recurrent stress events. Environ Sci Pollut Res 24:13614ā€“13625

    ArticleĀ  Google ScholarĀ 

  • Manzello DP, Enochs IC, Melo N, Gledhill DK, Johns EM (2012) Ocean acidification refugia of the Florida Reef tract. PLoS One 7(7):e41715. https://doi.org/10.1371/journal.pone.0041715

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Marshall P, Schuttenberg H (2006) A reef managerā€™s guide to coral bleaching. Great Barrier Reef Marine Park Authority, Townsville

    Google ScholarĀ 

  • Maynard JA, McKagan S, Raymundo L, Ahmadia GN, Johnston L, Houk P et al (2015) Assessing relative resilience potential of coral reefs to inform management. Biol Conserv 192:109ā€“119

    ArticleĀ  Google ScholarĀ 

  • Maynard JA, Marshall PA, Parker B, Mcleod E, Ahmadia G, van Hooidonk R et al (2017) A guide to assessing coral reef resilience for decision support. UN Environment, Nairobi, Kenya

    Google ScholarĀ 

  • McClanahan TR (1999) Predation and the control of the sea urchin Echinometra viridis and fleshy algae in the patch reefs of Glovers Reef, Belize. Ecosystems 2:511ā€“523

    ArticleĀ  Google ScholarĀ 

  • McClanahan TR (2008) Response of the coral reef benthos and herbivory to fishery closure management and the 1998 ENSO disturbance. Oecologia 155:169ā€“177

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McClanahan TR, Donner SD, Maynard JA, MacNeil MA, Graham NAJ, Maina J et al (2012) Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS One 7(8):e42884. https://doi.org/10.1371/journal.pone.0042884

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • McCook LJ, Lian J, Lei X, Chen Z, Xue G, Ang P, Zhang X, Huang H (2019) Marine protected areas in southern China: upgrading conservation effectiveness in the ā€˜eco-civilizationā€™ era. Aquatic Conserv Mar Freshw Ecosyst 29(S2):33ā€“43

    ArticleĀ  Google ScholarĀ 

  • McKergow LA, Prosser IP, Hughes AO, Brodie J (2005) Sources of sediment to the Great Barrier Reef world heritage area. Mar Pollut Bull 51(1):200ā€“211

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McLeod E, Salm AR, Green JA (2009) Designing marine protected area networks to address the impacts of climate change. Front Ecol Environ 7:362ā€“370

    ArticleĀ  Google ScholarĀ 

  • Mcleod E, Anthony KRN, Mumby PJ, Maynard J, Beedene R, Graham NAJ et al (2019) The future of resilience-based management in coral reef ecosystems. J Environ Manag 233:291ā€“301

    ArticleĀ  Google ScholarĀ 

  • McWilliam M, Chase TJ, Hoogenboom MO (2018) Neighbor diversity regulates the productivity of coral assemblages. Curr Biol 28:3634ā€“3639

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Miller MW (2015) Coral disturbance and recovery in a changing world. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, Dordrecht, The Netherlands, pp 217ā€“230

    ChapterĀ  Google ScholarĀ 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Glob Biogeochem Cycles 7:927ā€“957

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ministry of Environment of Japan (2010) ICRI East Asia regional strategy on MPA networks 2010. Japan Wildlife Research Center, Ministry of Environment of Japan, Tokyo, p 19

    Google ScholarĀ 

  • Ministry of Environment of Japan (2016) The action plan to conserve coral reef ecosystems in Japan 2016 - 2020. Biodiversity Policy Division, Nature Conservation Bureau, Ministry of Environment of Japan, Tokyo, p 48

    Google ScholarĀ 

  • Minsaris LOA, Damar A, Imran Z, Madduppa H (2019) The potential relative resilience of coral reefs in Wakatobi as a sustainable management foundation. J Coast Conserv 23:995ā€“1004. https://doi.org/10.1007/s11852-019-00706-x

    ArticleĀ  Google ScholarĀ 

  • Mitsch WJ (2014) When will ecologists learn engineering and engineers learn ecology? Ecol Eng 65:9ā€“14. https://doi.org/10.1016/j.ecoleng.2013.10.002

    ArticleĀ  Google ScholarĀ 

  • Mokady O, Lazar B, Loya Y (1996) Echinoid bioerosion as a major structuring force of Red Sea coral reefs. Bio Bull 90:367ā€“372

    ArticleĀ  Google ScholarĀ 

  • Montaggioni L, Braithwaite C (2009) Patterns of carbonate production and deposition on reefs. In: Developments in marine geology. Elsevier, Amsterdam, pp 171ā€“222

    Google ScholarĀ 

  • Monteil Y, Teo A, Fong J, Bauman AG, Todd PA (2020) Effects of macroalgae on coral fecundity in a degraded coral reef system. Mar Pollut Bull 151:110890

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mora C, Graham NAJ, Nystrƶm M (2016) Ecological limitations to the resilience of coral reefs. Coral Reefs 35:1271ā€“1280

    ArticleĀ  Google ScholarĀ 

  • Moretzsohn F, Tsuchiya M (1993) Preliminary survey of the coral boring Bivalvia fauna of Okinawa, southern Japan. Proc 7th Int Coral Reef Symp 1:404ā€“412

    Google ScholarĀ 

  • Morrison RJ, Aalbersberg WGL (2006) Science and management of Suva Lagoon. In: Morrison RJ, Aalbersberg WGL (eds) At the crossroads: science and management of the Suva Lagoon. Institute of Applied Science, The University of the South Pacific, Suva, Fiji, pp 1ā€“2

    Google ScholarĀ 

  • Moyer JT, Emerson WK, Ross M (1982) Massive destruction of scleractinian corals by the muricid gastropod, Drupella, in Japan and the Philippines. Nautilus 96:69ā€“82

    Google ScholarĀ 

  • Muallil RN, Deocadez MR, Martinez RJS, Mamauag SS, NaƱola JCL, AliƱo PM (2015) Community assemblages of commercially important coral reef fishes inside and outside marine protected areas in the Philippines. Reg Stud Mar Sci 1:47ā€“54

    Google ScholarĀ 

  • Muallil RN, Deocadez MR, Martinez RJS, Campos WL, Mamauag SS, NaƱola CL et al (2019) Effectiveness of small locally-managed marine protected areas for coral reef fisheries management in the Philippines. Ocean Coast Manag 179:104831. https://doi.org/10.1016/j.ocecoaman.2019.104831

    ArticleĀ  Google ScholarĀ 

  • Mumby PJ, Harborne AR (2010) Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS One 5:e8657. https://doi.org/10.1371/journal.pone.0008657

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mumby PJ, Steneck RS (2008) Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol 23:555ā€“563

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Mumby PJ, Hedley JD, Zychaluk K, Harborne AR, Blackwell PG (2006a) Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol Mod 196:131ā€“148

    ArticleĀ  Google ScholarĀ 

  • Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR et al (2006b) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98ā€“101

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mumby PJ, Hastings A, Edwards HJ (2007) Thresholds and the resilience of Caribbean coral reefs. Nature 450:98ā€“101

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mumby PJ, Vitolo R, Stephenson DB (2011) Temporal clustering of tropical cyclones and its ecosystem impacts. Proc Natl Acad Sci 108(43):17626ā€“17630

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mumby PJ, Chollett I, Wolff NW, Bozec YM (2014a) Ecological resilience, robustness, and vulnerability: how do these concepts benefit ecosystem management? Curr Opin Environ Sustain 7:22ā€“27

    ArticleĀ  Google ScholarĀ 

  • Mumby PJ, Wolff NH, Bozec YM, Chollett I, Halloran P (2014b) Operationalizing the resilience of coral reefs in an era of climate change. Conserv Lett 7:176ā€“187

    ArticleĀ  Google ScholarĀ 

  • Munday PL, Leis JM, Lough JM, Paris CB, Kingsford MJ, Berumen ML et al (2009) Climate change and coral reef connectivity. Coral Reefs 28:379ā€“395. https://doi.org/10.1007/s00338-008-0461-9

    ArticleĀ  Google ScholarĀ 

  • Muthiga NA, McClanahan TR (2007) Ecology of Diadema. Edible sea urchins. In: Lawrence JM (ed) Biology and ecology. Elsevier, Amsterdam

    Google ScholarĀ 

  • Naeem S, Thompson LJ, Lawler SP, Lowton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734ā€“737

    ArticleĀ  Google ScholarĀ 

  • Nakabayashi A, Yamakita T, Nakamura T, Aizawa H, Kitano YF, Iguchi A et al (2019) The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Sci Rep 9:1892. https://doi.org/10.1038/s41598-018-38333-5

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6(1):e14521. https://doi.org/10.1371/journal.pone.0014521

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • National Oceanic and Atmospheric Administration (2018) Coral Reef Conservation Program Strategic Plan. National Oceanic and Atmospheric Administration, U.S. Department of Commerce, p 23

    Google ScholarĀ 

  • Neumann AC (1966) Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol Oceanogr 11:92ā€“108

    ArticleĀ  Google ScholarĀ 

  • NRC (2001) Marine protected areas: tools for sustaining ocean ecosystems. National Academy Press, Washington, DC

    Google ScholarĀ 

  • Nugues MM, Bak RPM (2006) Differential competitive abilities between Caribbean coral species and a brown alga: a year of experiments and a long-term perspective. Mar Ecol Prog Ser 315:75ā€“86

    ArticleĀ  Google ScholarĀ 

  • Nugues MM, Smith GW, van Hooidonk RJ, Seabra MI, Bak RPM (2004) Algal contact as a trigger for coral disease. Ecol Lett 7:919ā€“923

    ArticleĀ  Google ScholarĀ 

  • Nystrƶm M, Folke C (2001) Spatial resilience of coral reefs. Ecosystems 4:406ā€“417

    ArticleĀ  Google ScholarĀ 

  • Nystrƶm M, Folke C, Moberg F (2000) Coral-reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15:413ā€“417

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Obura DO, Grimsdith G (2009) Resilience assessment of coral reefs - assessment protocol for coral reefs, focusing on coral bleaching and thermal stress. IUCN working group on Climate Change and Coral Reefs, Gland, Switzerland, p 70

    Google ScholarĀ 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291ā€“320

    ArticleĀ  Google ScholarĀ 

  • Omori M (2005) Success of mass culture of Acropora corals from egg to colony in open water. Coral Reefs 24:563ā€“563

    ArticleĀ  Google ScholarĀ 

  • Omori M (2019) Coral restoration research and technical developments: what we have learned so far. Mar Biol Res. https://doi.org/10.1080/17451000.2019.1662050

  • Omori M, Iwao K, Tamura M (2008) Growth of transplanted Acropora tenuis 2 years after egg culture. Coral Reefs 27:165

    ArticleĀ  Google ScholarĀ 

  • Orwin KH, Wardle DA (2004) New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol Biochem 36:1907ā€“1912

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Osborne K, Thompson AA, Cheal AJ, Emslie MJ, Johns KA, Jonker MJ et al (2017) Delayed coral recovery in a warming ocean. Glob Change Biol 2017:1ā€“13

    Google ScholarĀ 

  • Osorno A, Peyrot-Clausade M, Hutchings PA (2005) Patterns and rates of erosion in dead Porites across the Great Barrier Reef (Australia) after 2 years and 4 years of exposure. Coral Reefs 24:292ā€“303

    ArticleĀ  Google ScholarĀ 

  • Page CA, Muller EM, Vaughan DE (2018) Microfragmenting for the successful restoration of slow growing massive corals. Ecol Eng 123:86ā€“94

    ArticleĀ  Google ScholarĀ 

  • Palumbi SR (2004) Marine reserves and ocean neighborhoods: the spatial scale of marine populations and their management. Annu Rev Environ Resour 29:31ā€“68

    ArticleĀ  Google ScholarĀ 

  • Palumbi SR, McLeod KL, GrĆ¼nbaum D (2008) Ecosystems in action: lessons from marine ecology about recovery, resistance, and reversibility. Bioscience 58:33ā€“42

    ArticleĀ  Google ScholarĀ 

  • Pari N, Peyrot-Clausade M, Le Campion-Alsumard T, Hutchings P, Chazottes V, Golubic S et al (1998) Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure. Mar Ecol Prog Ser 166:119ā€“130

    ArticleĀ  Google ScholarĀ 

  • Paris CB, Cowen RK, Lwizab KMM, Wang DP, Olson DB (2002) Multivariate objective analysis of the coastal circulation of Barbados, West Indies: implication for larval transport. Deep Sea Res I 49:1363ā€“1386. https://doi.org/10.1016/S0967-0637(02)00033-X

    ArticleĀ  Google ScholarĀ 

  • Pata PR, YƱiguez AT (2019) Larval connectivity patterns of the North Indo-West Pacific coral reefs. PLoS One 14(7):e0219913. https://doi.org/10.1371/journal.pone.0219913

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Payri C (1997) Hydrolithon reinboldii rhodolith distribution, growth and carbon production of a French Polynesian reef. In: Proceedings of the 8th international coral reef symposium, pp 755ā€“760

    Google ScholarĀ 

  • Perry CT, Alvarez-Filip L (2018) Changing geo-ecological functions of coral reefs in the Anthropocene. Funct Ecol 1ā€“13. https://doi.org/10.1111/1365-2435.13247

  • Perry CT, Harborne AR (2016) Bioerosion on modern reefs: impacts and responses under changing ecological and environmental conditions. In: Hubbard DK, Rogers CS, Lipps JH, Stanley GD (eds) Coral reefs at the crossroads. Springer, Dordrecht, Netherlands, pp 69ā€“101

    ChapterĀ  Google ScholarĀ 

  • Perry CT, Hepburn LJ (2008) Syn-depositional alteration of coral reef framework through bioerosion, encrustation and cementation: taphonomic signatures of reef accretion and reef depositional events. Earth Sci Rev 86:106ā€“144. https://doi.org/10.1016/j.earscirev.2007.08.006

    ArticleĀ  Google ScholarĀ 

  • Perry CT, Kench PS, Smithers SG, Riegl B, Yamano H, Oā€™Leary MJ (2011) Implications of reef ecosystem change for the stability and maintenance of coral reef islands. Glob Change Biol 17:3679ā€“3696. https://doi.org/10.1111/j.1365-2486.2011.02523.x

    ArticleĀ  Google ScholarĀ 

  • Perry CT, Kench PS, Oā€™Leary MJ, Morgan KM, Januchowski-Hartley F (2015) Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43(6):503ā€“506

    ArticleĀ  Google ScholarĀ 

  • Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6ā€“18

    ArticleĀ  Google ScholarĀ 

  • Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251ā€“296

    Google ScholarĀ 

  • Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3(3). https://doi.org/10.3390/d3030424

  • Pratchett MS, Hoey AS, Cvitanovic C, Hobbs JP, Fulton CJ (2014) Abundance, diversity, and feeding behavior of coral reef butterflyfishes at Lord Howe Island. Ecol Evol 4(18):3612ā€“3625. https://doi.org/10.1002/ece3.1208

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rachmilovitz EN, Rinkevich B (2017) Tiling the reefā€”exploring the first step of an ecological engineering tool that may promote phase-shift reversals in coral reefs. Ecol Eng 105:150ā€“161

    ArticleĀ  Google ScholarĀ 

  • Radtke G, Golubic S (2005) Microborings in mollusk shells, Bay of Safaga, Egypt: morphometry and ichnology. Facies 51:118ā€“134

    ArticleĀ  Google ScholarĀ 

  • Raymundo LJ, Maypa AP (2004) Getting bigger faster: mediation of size-specific mortality via fusion in juvenile coral transplants. Ecol Appl 14:281ā€“295

    ArticleĀ  Google ScholarĀ 

  • Raymundo LJH, Harvell CD, Reynolds TL (2003) Porites ulcerative white spot disease: description, prevalence, and host range of a new coral disease affecting Indo-Pacific reefs. Dis Aquat Org 56:95ā€“104

    ArticleĀ  Google ScholarĀ 

  • Raymundo L, Maypa AP, Gomez ED, Cadiz P (2007) Can dynamite-blasted reefs recover? A novel, low-tech approach to stimulating natural recovery in fish and coral populations. Mar Pollut Bull 54(7):1009ā€“1019. https://doi.org/10.1016/j.marpolbul.2007.02.006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Raymundo LJ, Halford AR, Maypa AP, Kerr AM (2009) Functionally diverse reef-fish communities ameliorate coral disease. Proc Natl Acad Sci 106:17067ā€“17070

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rice ME, Macintyre IG (1982) Distribution of Sipuncula in the coral reef community, Carrie Bow Cay, Belize. In: RĆ¼tzler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize I: structure and communities. Smithsonian Institution Press, Washington, DC, pp 311ā€“320

    Google ScholarĀ 

  • Rice MM, Maher RL, Correa AMS, Moeller HV, Lemoine NP, Shantz AA et al (2020) Macroborer presence on corals increases with nutrient input and promotes parrotfish bioerosion. Coral Reefs 39:409ā€“418

    ArticleĀ  Google ScholarĀ 

  • Richmond RH (1993) Coral-reefs - present problems and future concerns resulting from anthropogenic disturbance. Am Zool 33:524ā€“536

    ArticleĀ  Google ScholarĀ 

  • Riegl B (2003) Climate change and coral reefs: different effects in two high-latitude areas (Arabian Gulf, South Africa). Coral Reefs 22:433ā€“446

    ArticleĀ  Google ScholarĀ 

  • Riegl B, Piller WE (2003) Possible refugia for reefs in times of environmental stress. Int J Earth Sci 92:520ā€“531

    ArticleĀ  Google ScholarĀ 

  • Rinkevich B (1995) Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor Ecol 3:241ā€“251

    ArticleĀ  Google ScholarĀ 

  • Rinkevich B (2000) Steps towards the evaluation of coral reef restoration by using small branch fragments. Mar Biol 136:807ā€“812

    ArticleĀ  Google ScholarĀ 

  • Rinkevich B (2005) Conservation of coral reefs through active restoration measures: recent approaches and last decade progress. Environ Sci Technol 39:4333ā€“4342

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rinkevich B (2006) The coral gardening concept and the use of underwater nurseries; lesson learned from silvics and silviculture. In: Precht WF (ed) Coral reef restoration handbook. CRC Press, Boca Raton, FL, pp 291ā€“301

    ChapterĀ  Google ScholarĀ 

  • Rinkevich B (2014) Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Curr Opin Environ Sustain 7:28ā€“36

    ArticleĀ  Google ScholarĀ 

  • Rinkevich B (2015) Climate change and active reef restorationā€”ways of constructing the ā€œreefs of tomorrowā€. J Mar Sci Eng 3:111ā€“127

    ArticleĀ  Google ScholarĀ 

  • Rinkevich B (2019) The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J Mar Sci Eng 7:201. https://doi.org/10.3390/jmse7070201

    ArticleĀ  Google ScholarĀ 

  • Rippe JP, Baumann JH, De Leener DN, Aichelman HE, Friedlander EB, Davies SW et al (2018) Corals sustain growth but not skeletal density across the Florida Keys reef tract despite ongoing warming. Global Change Biol. https://doi.org/10.1111/gcb.14422

  • Risk MJ, Sammarco PW (1982) Bioerosion of corals and the influence of damselfish territoriality: a preliminary study. Oecologia (Berl) 52:376ā€“380

    ArticleĀ  Google ScholarĀ 

  • Roberts CM (1995) Effects of fishing on the ecosystem structure of coral reefs. Conserv Biol 9(5):988ā€“995

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Robertson R (1970) Review of the predators and parasites of stony corals, with special reference to symbiotic prosobranch gastropods. Pac Sci 24:43ā€“54

    Google ScholarĀ 

  • Robinson JPW, Wilson SK, Graham NAJ (2019) Abiotic and biotic controls on coral recovery 16 years after mass bleaching. Coral Reefs 38(6):1255ā€“1265. https://doi.org/10.1007/s00338-019-01831-7

    ArticleĀ  Google ScholarĀ 

  • Roche RC, Williams GJ, Turner JR (2018) Towards developing a mechanistic understanding of coral reef resilience to thermal stress across multiple scales. Curr Clim Change Rep 4:51ā€“64

    ArticleĀ  Google ScholarĀ 

  • Roth F, Saalmann F, Thomson T, Cokera DJ, Villalobos R, Jones BH et al (2018) Coral reef degradation affects the potential for reef recovery after disturbance. Mar Environ Res 142:42ā€“158

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rotjan RD, Lewis SM (2006) Parrotfish abundance and selective corallivory on a Belizean coral reef. J Exp Mar Biol Ecol 335:292ā€“301

    ArticleĀ  Google ScholarĀ 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 92:2850ā€“2853

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265ā€“269

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ruengsawang N, Yeemin T (2000) Bioerosion caused by grazing activities on coral communities in the Gulf of Thailand. In: Proceeding of 9th International Coral Reef Symposium, Indonesia, vol 1, pp 289ā€“294

    Google ScholarĀ 

  • Russ G (1984) Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Mar Ecol Prog Ser 20(1):23ā€“34

    ArticleĀ  Google ScholarĀ 

  • Russ GR (2002) Yet another review of marine reserves as fishery management tools. In: Sale PF (ed) Coral reef fishes, dynamics and diversity in complex ecosystems. Academic Press, San Diego, CA, pp 421ā€“443

    ChapterĀ  Google ScholarĀ 

  • Russo AR (1980) Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands. J Mar Res 38:99ā€“110

    Google ScholarĀ 

  • Sale PF (2004) Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol 44:390ā€“399

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Sale PF, van Lavieren MC, Lagman A, Atema J, Butler M, Fauvelot C et al (2010) Preserving reef connectivity: a handbook for marine protected area managers. Connectivity Working Group, Coral Reef Targeted Research & Capacity Building for Management Program, UNU-INWEH

    Google ScholarĀ 

  • Sammarco PW (1980) Diadema and its relationship to coral spat mortality: grazing, competition, and biological disturbance. J Exp Mar Biol Ecol 45:245ā€“272

    ArticleĀ  Google ScholarĀ 

  • Sammarco PW (1982) Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J Exp Mar Biol Ecol 61:31ā€“55

    ArticleĀ  Google ScholarĀ 

  • Sammarco PW, Williams AH (1982) Damselfish territoriality: influence on diadema distribution and implications for coral community structure. Mar Ecol Prog Ser 8(1):53ā€“59

    ArticleĀ  Google ScholarĀ 

  • Sammarco PW, Carleton JH, Risk MJ (1986) Effects of grazing and damselfish territoriality on bioerosion of dead corals: direct effects. J Exp Mar Biol Ecol 98:1ā€“19

    ArticleĀ  Google ScholarĀ 

  • Sammarco PW, Risk MJ, Rose C (1987) Effects of grazing and damselfish territoriality on internal bioerosion of dead corals: indirect effects. J Exp Mar Biol Ecol 112:185ā€“199

    ArticleĀ  Google ScholarĀ 

  • Samsuvan W, Yeemin T, Sutthacheep M, Pengsakun S, Putthayakool J, Thummasan M (2019) Diseases and compromised health states of massive Porites spp. in the Gulf of Thailand and the Andaman Sea. Acta Oceanol Sin 38(1):118ā€“127

    ArticleĀ  Google ScholarĀ 

  • Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM et al (2008) Baselines and degradation of coral reefs in the northern Line Islands. PLoS One 3:e1548. https://doi.org/10.1371/journal.pone.0001548

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Sangsawang L, Casareto BE, Ohba H, Vu HM, Meekaew A, Suzuki T, Yeemin T et al (2017) 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci 4:171201. https://doi.org/10.1098/rsos.171201

  • Scoffin TP (1992) Taphonomy of coral reefs: a review. Coral Reefs 11:57ā€“77. https://doi.org/10.1007/bf00357423

    ArticleĀ  Google ScholarĀ 

  • Scoffin T (1993) The geological effects of hurricanes on coral reefs and the interpretation of storm deposits. Coral Reefs 12:203ā€“221

    ArticleĀ  Google ScholarĀ 

  • Selig ER, Bruno JF (2010) A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS One 5:e9278. https://doi.org/10.1371/journal.pone.0009278

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Selkoe KA, Toonen RJ (2011) Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar Ecol Prog Ser 436:291ā€“305. https://doi.org/10.3354/meps09238

    ArticleĀ  Google ScholarĀ 

  • Selkoe KA, Dā€™Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB et al (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1ā€“19. https://doi.org/10.3354/meps11792

    ArticleĀ  Google ScholarĀ 

  • Shafir S, Rinkevich B (2008) The underwater silviculture approach for reef restoration: an emergent aquaculture theme. In: Schwartz SH (ed) Aquaculture research trends. Nova Science, New York, pp 279ā€“295

    Google ScholarĀ 

  • Shafir S, Rinkevich B (2010) Integrated long term mid-water coral nurseries: a management instrument evolving into a floating ecosystem. Univ Maurit Res J 16:365ā€“379

    Google ScholarĀ 

  • Shafir S, van Rijn J, Rinkevich B (2004) A mid-water coral nursery. In: Proceedings of the 10th International Coral Reef Symposium, Okinawa, Japan, 28 Juneā€“2 July 2004, pp 1674ā€“1679

    Google ScholarĀ 

  • Shafir S, Van Rijn J, Rinkevich B (2006) Steps in the construction of underwater coral nursery, an essential component in reef restoration acts. J Mar Biol 149:679ā€“687

    ArticleĀ  Google ScholarĀ 

  • Shafir S, Gur O, Rinkevich BA (2008) Drupella cornus outbreak in the northern Gulf of Eilat and changes in coral prey. Coral Reefs 27:379ā€“379

    ArticleĀ  Google ScholarĀ 

  • Shantz AA, Ladd MC, Burkepile DE (2020) Overfishing and the ecological impacts of extirpating large parrotfish from Caribbean coral reefs. Ecol Monogr 90(2):e01403. https://doi.org/10.1002/ecm.1403

    ArticleĀ  Google ScholarĀ 

  • Sheppard CRC, Harris A, Sheppard ALS (2008) Archipelago-wide coral recovery patterns since 1998 in the Chagos Archipelago, central Indian Ocean. Mar Ecol Prog Ser 362:109ā€“117

    ArticleĀ  Google ScholarĀ 

  • Sirirattanachai S (1994) Transplantation for coral rehabilitation. In: Sudara S, Wilkinson CR, Chou LM (eds) Proceedings of the third ASEAN-Australia symposium on living coastal resources, vol 2. Chulalongkorn University, Bangkok, Thailand, p 185

    Google ScholarĀ 

  • Sirirattanachai S, Boonphadee T, Singkoravat N (1994) An approach to the rehabilitation of coral reef with coral transplantation in the eastern coast of Thailand. In: Sudara S, Wilkinson CR, Chou LM (eds) Proceeding of the Third ASEAN-Australia Symposium on Living Coastal Resources, vol 2. Chulalongkorn University, Bangkok, Thailand, p 193

    Google ScholarĀ 

  • Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E et al (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835ā€“845

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Smith LD, Gilmour JP, Heyward AJ (2008) Resilience of coral communities on an isolated system of reefs following catastrophic mass-bleaching. Coral Reefs 27:197ā€“205

    ArticleĀ  Google ScholarĀ 

  • Soliman GN (1969) Ecological aspects of some coral-boring gastropods and bivalves of the northwestern Red Sea. Am Zool 9:887ā€“894

    ArticleĀ  Google ScholarĀ 

  • Sousa WP (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353ā€“391

    ArticleĀ  Google ScholarĀ 

  • Souter DW, Linden O (2000) The health and future of coral reef systems. Ocean Coast Manag 43(8-9):657ā€“688

    ArticleĀ  Google ScholarĀ 

  • Stockwell B, Jadloc CRL, Abesamis RA, Alcala AC, Russ GR (2009) Trophic and benthic responses to no-take marine reserve protection in the Philippines. Mar Ecol Progr Ser 389:1ā€“15

    ArticleĀ  Google ScholarĀ 

  • Suebpala W, Yeemin T, Pengsakun S, Samsuvan W, Chuenpagdee R, Nitithamyong C (2021) Impacts of fish trap fisheries on coral reefs. J Fish Environ 45(1):46ā€“63

    Google ScholarĀ 

  • Suraswadi P, Yeemin T (2013) Coral Reef Restoration Plan of Thailand. Galaxea J Coral Reef Stud 15(S):428ā€“433

    ArticleĀ  Google ScholarĀ 

  • Sutthacheep M, Pengsakun S, Chueliang P, Suantha P, Sakai K, Yeemin T (2012) Managing bleached coral reefs in the Gulf of Thailand. In: Proceedings of 12th International Coral Reef Symposium, Cairns, Australia, p 5

    Google ScholarĀ 

  • Sutthacheep M, Yeemin T, Samsuvan W, Niamsiri R (2014) Comparing recruitment of benthic organisms from long-term settlement panel experiments on coral reef and pinnacle. In: Proceedings of the 40th Congress on Science and Technology of Thailand (STT40), pp 742ā€“747

    Google ScholarĀ 

  • Sutthacheep M, Ruangthong C, Yeemin T, Samsuvan W, Pengsakun S, Chamchoy C (2016) Coral reef conservation and management in a Ramsar site in the Gulf of Thailand. In: Proceedings of the 13th International Coral Reef Symposium, Honolulu, pp 464ā€“473

    Google ScholarĀ 

  • Sutthacheep M, Sakai K, Yeemin T, Pensakun S, Klinthong W, Samsuvan W (2018a) Assessing coral reef resilience to climate change in Thailand. RIST 1(1):22ā€“34

    Google ScholarĀ 

  • Sutthacheep M, Yeemin T, Yucharoen M, Phantewee W, Suebpala W, Chamchoy C et al (2018b) Potential of ecotourism development at some coral reefs and underwater pinnacles in Chumphon Province. In: Proceedings of 44th Congress on Science and Technology of Thailand (STT 44). October 29ā€“31, 2018, Bangkok, Thailand, pp 375ā€“381

    Google ScholarĀ 

  • Sutthacheep M, Chamchoy C, Pengsakun S, Klinthong W, Yeemin T (2019) Assessing the resilience potential of inshore and offshore coral communities in the Western Gulf of Thailand. J Mar Sci Eng 7:408. https://doi.org/10.3390/jmse7110408

    ArticleĀ  Google ScholarĀ 

  • Suzuki GS, Arakaki K, Suzuki IY, Hayashibara T (2012) What is the optimal density of larval seeding in Acropora corals? Fish Sci 78:801ā€“808

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Suzuki G, Okada W, Yasutake Y, Yamamoto H, Tanita I, Yamashita H et al (2020) Enhancing coral larval supply and seedling production using a special bundle collection system ā€œcoral larval cradleā€ for large-scale coral restoration. Restor Ecol. https://doi.org/10.1111/rec.13178

  • Sweatman H (2008) No-take reserves protect coral reefs from predatory starfish. Curr Biol 18(14):R598ā€“R599. https://doi.org/10.1016/j.cub.2008.05.033

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • TambuttĆ© Ɖ, Venn AA, Holcomb M, Segonds N, Techer N, Zoccola D et al (2015) Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat Commun 6:7368

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Thompson DM, Kleypasa J, Castruccio F, Curchitser EN, Pinsky ML, Jƶnssond B et al (2018) Variability in oceanographic barriers to coral larval dispersal: do currents shape biodiversity? Prog Oceanogr 165(2018):110ā€“122

    ArticleĀ  Google ScholarĀ 

  • Thongtham N, Chansang H (2009) Transplantation of Porites lutea to rehabilitate degraded coral reef at Maiton Island, Phuket, Thailand. In: Proceedings of the 11th International Coral Reef Symposium, pp 1271ā€“1274

    Google ScholarĀ 

  • Tkachenko KS, Soong K (2017) Dongsha Atoll: a potential thermal refuge for reef-building corals in the South China Sea. Mar Environ Res 127:112ā€“125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Tribollet A, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422ā€“434. https://doi.org/10.1007/s00338-005-0003-7

    ArticleĀ  Google ScholarĀ 

  • Tribollet A, Golubic S (2011) Reef bioerosion: agents and processes. In: Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 435ā€“449

    ChapterĀ  Google ScholarĀ 

  • Tribollet A, Payri C (2001) Bioerosion of the coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea, French Polynesia. Oceano Acta 24:329ā€“342

    ArticleĀ  Google ScholarĀ 

  • Tribollet A, Chauvin A, Cuet P (2019) Carbonate dissolution by reef microbial borers: a biogeological process producing alkalinity under different pCO2 conditions. Facies 65(9):1ā€“10

    Google ScholarĀ 

  • Turner SJ (1994) The biology and population outbreaks of the corallivorous gastropod Drupella on 0Indo-Pacific reefs. Oceanogr Mar Biol 32:461ā€“530

    Google ScholarĀ 

  • UNEP (2004) Coral reefs in the South China sea. UNEP/GEF/SCS, Bangkok

    Google ScholarĀ 

  • UNEP (2007) Land-based pollution in the South China Sea. UNEP/GEF/SCS Technical Publication No. 10

    Google ScholarĀ 

  • van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Change 3:508ā€“511

    ArticleĀ  CASĀ  Google ScholarĀ 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Change Biol 20:103ā€“112

    ArticleĀ  Google ScholarĀ 

  • van Oppen MJH, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY et al (2017) Shifting paradigms in restoration of the worldā€™s coral reefs. Glob Change Biol 23:3437ā€“3448

    ArticleĀ  Google ScholarĀ 

  • Vaz AC, Richards KJ, Jia Y, Paris CB (2013) Mesoscale flow variability and its impact on connectivity for the island of Hawaiā€™i. J Geophys Res 40:332ā€“337. https://doi.org/10.1029/2012GL054519

    ArticleĀ  Google ScholarĀ 

  • Venegas RM, Oliver T, Liu G, Heron SF, Clark SJ, Pomeroy N et al (2019) The rarity of depth refugia from coral bleaching heat stress in the Western and Central Pacific Islands. Sci Rep 9:19710. https://doi.org/10.1038/s41598-019-56232-1

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Venegas-Lia R, Cros A, White A, Mora C (2016) Measuring conservation success with missing marine protected area boundaries: a case study in the Coral Triangle. Ecol Indic 60:119ā€“124

    ArticleĀ  Google ScholarĀ 

  • Veron JEN (2000) Corals of the world, vol 1ā€“3. Australian Institute of Marine Science, Townsville, Australia

    Google ScholarĀ 

  • Veron JEN (2008) A reef in time: the great barrier reef from beginning to end. Belknap Press, Cambridge, p 304

    Google ScholarĀ 

  • Victor S (2008) Stability of reef framework and post settlement mortality as the structuring factor for recovery of Malakal Bay Reef, Palau, Micronesia: 25 years after a severe COTS outbreak. Estuar Coast Shelf Sci 77:175ā€“180

    ArticleĀ  Google ScholarĀ 

  • Villanueva RD, Baria MVB, dela Cruz DW (2012) Growth and survivorship of juvenile corals outplanted to degraded reef areas in Bolinao-Anda Reef complex, Philippines. Mar Biol Res 8:877ā€“884

    ArticleĀ  Google ScholarĀ 

  • Vo ST, Nguyen HY, Nguyen VL (2005) Coral reefs of Viet Nam. Publishing House of Science and Technique, Ho Chi Minh City

    Google ScholarĀ 

  • Vo ST, Pernetta JC, Paterson CJ (2013) Lessons learned in coastal habitat and land-based pollution management in the South China Sea. Ocean Coast Manag 85:230ā€“243. https://doi.org/10.1016/j.ocecoaman.2013.02.005

    ArticleĀ  Google ScholarĀ 

  • Vo ST, Hua TT, Phan KH (2019) A study of coral reef resilience and implications of adaptive management and rehabilitation in Khanh Hoa Province, Vietnam. Acta Oceanol Sin 38(1):112ā€“117

    ArticleĀ  Google ScholarĀ 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190ā€“204. https://doi.org/10.1080/00241160025100053

    ArticleĀ  Google ScholarĀ 

  • Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95ā€“113

    ArticleĀ  Google ScholarĀ 

  • Wall M, Putchim L, Schmidt GM, Jantzen C, Khokiattiwong S, Richter C (2015) Large-amplitude internal waves benefit corals during thermal stress. Proc R Soc B 282:20140650. https://doi.org/10.1098/rspb.2014.0650

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang B (2018) The outlook for the establishment and management of marine protected area network in China. Int J Geoheritage Parks 6(1):32ā€“42

    ArticleĀ  Google ScholarĀ 

  • Wear SL (2016) Missing the boat: critical threats to coral reefs are neglected at global scale. Mar Policy 74:153ā€“157. https://doi.org/10.1016/j.marpol.2016.09.009

    ArticleĀ  Google ScholarĀ 

  • Weeks R, AliƱo PM, Atkinson S, Beldia PII, Binson A, Campos WL et al (2014) Developing marine protected area networks in the Coral Triangle: good practices for expanding the Coral Triangle marine protected area system. Coast Manag 42(2):183ā€“205. https://doi.org/10.1080/08920753.2014.877768

    ArticleĀ  Google ScholarĀ 

  • Weil E, Irikawa A, Casareto B, Suzuki Y (2012) Extended geographic distribution of several Indo-Pacific coral reef diseases. Dis Aquat Org 98(2):163ā€“170

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wild C, Hoegh-Guldberg O, Naumann MS, Colombo-Pallotta MF, Ateweberhan M, Fitt WK et al (2011) Climate change impedes scleractinian corals as primary reef ecosystem engineers. Mar Freshw Res 62:205ā€“215

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshw Res 50(8):867ā€“878

    Google ScholarĀ 

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol 12:2220ā€“2234

    ArticleĀ  Google ScholarĀ 

  • Wilson J, Darmawan A, Subijanto J, Green A, Sheppard S (2011) Scientific design of a resilient network of marine protected areas. Lesser Sunda Ecoregion, Coral Triangle. Asia-Pacific Marine Program, The Nature Conservancy, Sanur

    Google ScholarĀ 

  • Wood S, Paris CB, Ridgwell A, Hendy EJ (2014) Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Global Ecol Biogeogr 23:1ā€“11

    ArticleĀ  Google ScholarĀ 

  • Yamashiro H, Yamamoto M, van Woesik R (2000) Tumor formation on the coral Montipora informis. Dis Aquat Org 41:211ā€“217

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yap HT (2003) Coral reef ā€œrestorationā€ and coral transplantation. Mar Pollut Bull 46:529

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yasuda N (2018) Distribution expansion and historical population outbreak patterns of crown-of-thorns starfish, Acanthaster planci sensu lato, in Japan from 1912 to 2015. In: Iguchi A, Hongo C (eds) Coral reef studies of Japan. Coral reefs of the world, vol 13. Springer, Singapore, pp 125ā€“148

    ChapterĀ  Google ScholarĀ 

  • Yeemin T, Sutthacheep M, Pettongma R (2006) Coral reef restoration project in Thailand. Ocean Coast Manag 49:562ā€“575

    ArticleĀ  Google ScholarĀ 

  • Yeemin T, Saenghaisuk C, Sutthacheep M, Pengsakun S, Klinthong W, Saengmanee K (2009) Conditions of coral communities in the Gulf of Thailand: a decade after the 1998 severe bleaching event. Galaxea J Coral Reef Stud 11:207ā€“217

    ArticleĀ  Google ScholarĀ 

  • Yeemin T, Pengsakun S, Klinthong W, Yuchareon M, Donsomjit W, Sutthacheep M (2011) Tourism impacts on a shallow coral reef at Ao Numchai, Mu Koh Similan, the Andaman Sea. In: Proceedings of 37th Congress on Science and Technology of Thailand, p 4

    Google ScholarĀ 

  • Yeemin T, Pengsakun S, Yucharoen M, Klinthong W, Sangmanee K, Sutthacheep M (2013a) Long-term decline in Acropora species at Kut Island, Thailand, in relation to coral bleaching events. Mar Biodivers 43:23ā€“29

    ArticleĀ  Google ScholarĀ 

  • Yeemin T, Pengsakun S, Yucharoen M, Klinthong W, Sangmanee K, Sutthacheep M (2013b) Long-term changes of coral communities under stress from sediment. Deep Sea Res II 96:32ā€“40

    ArticleĀ  Google ScholarĀ 

  • Yeemin T, Sutthacheep M, Ruangthong C, Pengsakun S, Suebpala W, Samsuvan W et al (2018) Tourism carrying capacity assessment at some dive sites in Chumphon Province. In: Proceedings of 44th Congress on Science and Technology of Thailand (STT 44), October 29ā€“31, 2018, Bangkok, Thailand, pp 382ā€“387

    Google ScholarĀ 

  • Zayasu Y, Suzuki G (2019) Comparisons of population density and genetic diversity in artificial and wild populations of an arborescent coral, Acropora yongei: implications for the efficacy of ā€œartificial spawning hotspotsā€. Restor Ecol 27(2):440ā€“446

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sutthacheep, M., Yeemin, T., AliƱo, P.M. (2022). Reef Ecology in the Western Pacific for Adaptation to Global Change. In: Zhang, J., Yeemin, T., Morrison, R.J., Hong, G.H. (eds) Coral Reefs of the Western Pacific Ocean in a Changing Anthropocene. Coral Reefs of the World, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-97189-2_4

Download citation

Publish with us

Policies and ethics