Skip to main content

Reconfigurable Analog-to-Digital Converter for HySiF: Part II

  • Chapter
  • First Online:
Ultra-Thin Sensors and Data Conversion Techniques for Hybrid System-in-Foil

Part of the book series: Springer Theses ((Springer Theses))

  • 237 Accesses

Abstract

In this chapter, the circuit-level implementation of the proposed reconfigurable I-\({\Delta \Sigma }\) ADC is reported. The chapter starts with discussing few practical system-level design considerations, such as dividing the first SC integrator into scalable unit elements and the impact of mechanical stress on the ADC performance. Next, transistor-level implementation of critical building blocks are adapted to serve the power efficiency and reconfigurability of the ADC. Furthermore, considerations for the floor-planning and physical design of the ADC chip are discussed taking into account the distributed and scalable nature of the first SC integrator. Finally, measurement results are presented for the bulk and ultra-thin ADC chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Unbehauen R, Cichocki A (1989) MOS switched-capacitor and continuous-time integrated circuits and systems. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  2. Maréchal S (2014) Ultra-high resolution A/D converters: analysis, modeling and optimization tools, Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (EPFL)

    Google Scholar 

  3. Understanding delta-sigma data converters, 2nd edn. Wiley-IEEE Press (2017)

    Google Scholar 

  4. Vogelmann P, Wagner J, Haas M, Ortmanns M (2019) A dynamic power reduction technique for incremental \(\Delta \Sigma \) modulators. IEEE J Solid-State Circ 54(5):1455–1467

    Article  Google Scholar 

  5. Mahsereci Y (2018, October) An ultra-thin CMOS sensor for in-plane stress sensing. Ph.D. dissertation, University of Stuttgart

    Google Scholar 

  6. Burghartz JN (2011) Ultra-thin chip technology and applications. Springer, New York

    Book  Google Scholar 

  7. Wacker N (2013) Characterization and compact modeling of complementary metal-oxide-semiconductor transistors for flexible electronics. Ph.D. dissertation, University of Stuttgart

    Google Scholar 

  8. Hassan M-U (2017) Ultra-thin chip embedding and interconnect technology for system-in-foil applications. Ph.D. dissertation, University of Stuttgart, Shaker Verlag

    Google Scholar 

  9. Assaad RS, Silva-Martinez J (2009) The recycling folded cascode: a general enhancement of the folded cascode amplifier. IEEE J Solid State Circ 44(9):2535–2542

    Article  Google Scholar 

  10. Choksi O, Carley LR (2003) Analysis of switched-capacitor common-mode feedback circuit. IEEE Trans Circ Syst II: Anal Digital Signal Process 50(12):906–917

    Article  Google Scholar 

  11. Abo AM, Gray PR (1999) A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J Solid State Circ 34(5):599–606

    Article  Google Scholar 

  12. Mahsereci Y, Saller S, Richter H, Burghartz JN (2016) An ultra-thin flexible CMOS stress sensor demonstrated on an adaptive robotic gripper. IEEE J Solid State Circ 51(1):273–280

    Article  Google Scholar 

  13. Angelopoulos EA, Al-Shahed MS, Appel W, Endler S, Ferwana S, Harendt C, Hassan M, Rempp H, Zimmermann M, Burghartz JN (2012) Manufacturing aspects of an ultra-thin chip technology. In 2012 Proceedings of the European solid-state device research conference (ESSDERC)

    Google Scholar 

  14. Vogelmann P, Haas M, Ortmanns M (2018, February) A 1.1mW 200kS/s incremental \(\Delta \Sigma \) adc with a DR of 91.5dB using integrator slicing for dynamic power reduction. In: 2018 IEEE international solid-state circuits conference—(ISSCC), pp 236–238

    Google Scholar 

  15. Murmann B (2019) ADC performance survey 1997–2019. [Online]. Available http://www.stanford.edu/~murmann/adcsurvey.html

  16. Gönen B, Sebastiano F, van Veldhoven R, Makinwa KAA (2016, January) A 1.65 mW 0.16 mm\(^2\) dynamic zoom-ADC with 107.5 dB DR in 20 kHz BW. In: 2016 IEEE international solid-state circuits conference (ISSCC)

    Google Scholar 

  17. Chae Y, Souri K, Makinwa KAA (2013, February) A 6.3\(\mu \)W 20b incremental zoom-ADC with 6ppm INL and 1\(\mu \)V offset. In: 2013 IEEE international solid-state circuits conference digest of technical papers, pp 276–277

    Google Scholar 

  18. Chen C, Tan Z, Pertijs MAP (2013, February) A 1V 14b self-timed zero-crossing-based incremental \({\Delta \Sigma }\) ADC. In: 2013 IEEE international solid-state circuits conference digest of technical papers, pp 274–275

    Google Scholar 

  19. Yip M, Chandrakasan AP (2011, February) A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC. In: 2011 IEEE international solid-state circuits conference, pp 190–192

    Google Scholar 

  20. Harpe P, Zhang Y, Dolmans G, Philips K, De Groot H (2012, February) A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step. In: 2012 IEEE international solid-state circuits conference, pp 472–474

    Google Scholar 

  21. (2020) American semiconductor homepage. [Online]. Available https://www.americansemi.com/flex-ics.html

  22. Sterken T, Vanfleteren J, Torfs T, de Beeck MO, Bossuyt F, Van Hoof C (2011, August) Ultra-thin chip package (UTCP) and stretchable circuit technologies for wearable ECG system. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, pp 6886–6889

    Google Scholar 

  23. Elsobky M, Mahsereci Y, Yu Z, Richter H, Burghartz JN, Keck J, Klauk H, Zschieschang U (2018) Ultra-thin smart electronic skin based on hybrid system-in-foil concept combining three flexible electronics technologies. Electron Lett 54(6):338–340

    Article  Google Scholar 

  24. Lin W, Lin C, Liu S (2009, November) A CBSC second-order sigma-delta modulator in 3\(\mu \)m LTPS-TFT technology. In: 2009 IEEE Asian solid-state circuits conference, pp 133–136

    Google Scholar 

  25. Xiong W, Zschieschang U, Klauk H, Murmann B (2010, February) A 3V 6b successive-approximation ADC using complementary organic thin-film transistors on glass. In: 2010 IEEE international solid-state circuits conference—(ISSCC)

    Google Scholar 

  26. Marien H, Steyaert MSJ, van Veenendaal E, Heremans P (2011) A fully integrated \(\Delta \Sigma \) adc in organic thin-film transistor technology on flexible plastic foil. IEEE J Solid State Circ 46(1):276–284

    Article  Google Scholar 

  27. Raiteri D, Lieshout PV, Roermund AV, Cantatore E (2013, February) An organic VCO-based ADC for quasi-static signals achieving 1LSB INL at 6b resolution. In: 2013 IEEE international solid-state circuits conference digest of technical papers, pp 108–109

    Google Scholar 

  28. Garripoli C, van der Steen JPJ, Smits W, Gelinck GH, Van Roermund AHM, Cantatore E (2017, February) 15.3 an a-IGZO asynchronous delta-sigma modulator on foil achieving up to 43dB SNR and 40dB SNDR in 300Hz bandwidth. In: 2017 IEEE international solid-state circuits conference (ISSCC), pp 260–261

    Google Scholar 

  29. Papadopoulos NP, De Roose F, van der Steen JPJ, Smits ECP, Ameys M, Dehaene W, Genoe J, Myny K (2018) Toward temperature tracking with unipolar metal-oxide thin-film SAR C-2C ADC on plastic. IEEE J Solid-State Circ 53(8):2263–2272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Elsobky .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elsobky, M. (2022). Reconfigurable Analog-to-Digital Converter for HySiF: Part II. In: Ultra-Thin Sensors and Data Conversion Techniques for Hybrid System-in-Foil. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-97726-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97726-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97725-2

  • Online ISBN: 978-3-030-97726-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics