Skip to main content

Quantification of Potential Savings in Drinking Water Treatment Plants: Benchmarking Energy Efficiency

  • Chapter
  • First Online:
Industrial Wastewater Treatment

Part of the book series: Water Science and Technology Library ((WSTL,volume 106))

  • 811 Accesses

Abstract

The water industry accounts for about 30–40% of the total energy demand of the municipalities worldwide. This may vary from one facility to another based on the source, water quality, water storage, distance from the source, elevation, facility's age, and type of treatment techniques employed. Water abstraction and distribution are the highest energy consumption units among conventional water treatment facilities. Advanced treatment technologies, especially desalination (membrane and thermal) and disinfection technologies (ozone and ultraviolet), are the most energy consuming processes over the conventional treatment technologies. Various energy optimization measures such as the use of gravity for water transfer and distribution (where possible), selection of most energy and treatment efficient technologies, upgrading the treatment system and equipment (especially pumps), renewable energy generation at the facility, water conservation and restoration or protection of the potable water sources etc. can be employed to minimize the energy demand of the water treatment facilities. Application of these measures is challenging due to lack of adequate knowledge by the operational staff, lack of public awareness, investment cost involved, changes in future water treatment regulation with a growing population, pollutant load in the potable water bodies, etc. The current chapter discusses the possible energy intensive factors of the drinking water facilities with possible energy optimization measures and their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbal F, Camci S (2011) Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 269:214–222

    Article  CAS  Google Scholar 

  • Al- A, Kazmerski LL (2013) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sustain Energy Rev 24:343–356

    Article  CAS  Google Scholar 

  • Arm S, Phillips C (2011) Chemical engineering for advanced aqueous radioactive materials separations. In: Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing, pp 58–94

    Google Scholar 

  • Bajda T, Klapyta Z (2013) Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Appl Clay Sci 86:169–173

    Article  CAS  Google Scholar 

  • Bajda T, Szala B, Solecka U (2015) Removal of lead and phosphate ions from aqueous solutions by organo-smectite. Environ Technol 36:2872–2883

    Article  CAS  PubMed  Google Scholar 

  • Bennett B, Park L, Wilkinson R (2010) Embedded energy in water studies: water agency and function component study and embedded energy—water load profiles. California Public Utilities Commission

    Google Scholar 

  • Biehl JW, Inman J (2010) Am Water Works Assoc 102:50

    Google Scholar 

  • Bragg-Sitton S (2014) Hybrid energy systems (HESs) using small modular reactors (SMRs) (No. INL/JOU-14–33543). Idaho National Laboratory (INL)

    Google Scholar 

  • Brandt MJ, Middleton RA, Wang S (2012) Energy efficiency in the water industry: a compendium of best practices and case studies-global report. Iwa Publishing

    Google Scholar 

  • Bukhary S, Batista J, Ahmad S (2020) An analysis of energy consumption and the use of renewables for a small drinking water treatment plant. Water 12(1):28

    Article  CAS  Google Scholar 

  • Buckley C, Friedrich E, Von Blottnitz H (2011) Life-cycle assessments in the South African water sector: a review and future challenges. Water Sa 37(5):719–726

    Article  Google Scholar 

  • Buonomenna MG (2013) Membrane processes for a sustainable industrial growth. RSC Adv 3(17):5694–5740

    Article  ADS  CAS  Google Scholar 

  • Centre for Disease Control and Prevention (CDC) (2015) Water treatment: community water treatment. https://www.cdc.gov/healthywater/drinking/public/water_treatment.html. Accessed 20 Aug 2021

  • California Energy Commission (CEC) California’s water-energy relationship. Final staff report (2005)

    Google Scholar 

  • Capodaglio AG, Olsson G (2020) Energy issues in sustainable urban wastewater management: use, demand reduction and recovery in the urban water cycle. Sustainability 12(1):266

    Article  CAS  Google Scholar 

  • Consortium for Energy Efficiency (2010) CEE National Municipal Water and Wastewater Facility Initiative, January 1, 2010, p 8

    Google Scholar 

  • Cochrane E, Lu S, Gibb S, Villaescusa I, Gibb S (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J Hazard Mater 137:198–206

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Nelson B, Wolff G (2004) Energy down the drain: the hidden costs of California's water supply. Natural Resources Defense Council, Pacific Institute

    Google Scholar 

  • Copeland C, Carter NT (2014) Energy-water nexus: the water sector's energy use

    Google Scholar 

  • Corominas MJ (2009) Agua y energia en el riego, en la e poca de la sostenibilidad, Comunicaciones de los invitados especiales. Paper presented at Jornadas de Ingenierı a del Agua, Madrid

    Google Scholar 

  • Cramwinckel JF (2006) Water and energy nexus–Role of technology. Re-thinking Water and Food Security, p 309

    Google Scholar 

  • China Urban Water Association (CUWA) (2012). China urban water supply yearbook

    Google Scholar 

  • Davarnejad R, Panahi P (2016) Cu (II) removal from aqueous wastewaters by adsorption on the modified Henna with Fe3O4 nanoparticles using response surface methodology. Sep Purif Technol 158:286–292

    Article  CAS  Google Scholar 

  • Duffy DP (2017) Successful water leak detection and audit methods. Water World. https://www.waterworld.com/home/article/14070706/successful-water-leak-detection-and-audit-methods. Accesses 20 Oct 2021

  • Dharnaik AS, Ghosh PK (2014) Hexavalent chromium Cr(VI) removal by the electrochemical ion-exchange process. Environ Technol 35:2272–2279

    Article  CAS  PubMed  Google Scholar 

  • Electric Power Research Institute (2002) Water & Sustainability (Vol. 4): US Electricity Consumption for Water Supply & Treatment- The Next Half Century; Electric Power Research Institute Inc.: Palo Alto, CA

    Google Scholar 

  • Elimelech M, Phillip WA (2011a) The future of seawater desalination: energy, technology, and the environment. Science 333:712–717

    Article  ADS  CAS  PubMed  Google Scholar 

  • Elimelech M, Phillip WA (2011b). The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Google Scholar 

  • Eltawil MA, Zhengming Z, Yuan L (2008) Renewable energy powered desalination systems: technologies and economics-state of the art. In: Twelfth international water technology conference, IWTC12, pp 1–38

    Google Scholar 

  • EPA (2008) Energy: leveraging voluntary programs to save both water and energy. Environmental Protection Agency

    Google Scholar 

  • Friedrich E (2002) Life-cycle assessment as an environmental management tool in the production of potable water. Water Sci Technol 46(9):29–36

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Zhong L (2014) Water-energy nexus of urban water systems for Chengdu’s low-carbon blueprint. World Resources Institute, Beijing, China

    Google Scholar 

  • GAO U (2011) Energy-water nexus: amount of energy needed to supply, use and treat water is location-specific and can be reduced by certain technologies and approaches. Report to the ranking member committee on science, space and technology. US House of Representatives, Washington DC, pp 11–225

    Google Scholar 

  • Garg MC (2019) Renewable energy-powered membrane technology: cost analysis and energy consumption. In: Current trends and future developments on (bio-) membranes. Elsevier, pp 85–110

    Google Scholar 

  • Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation

    Google Scholar 

  • Gleick PH, Cooley HS (2009) Energy implications of bottled water. Environ Res Lett 4(1):014009

    Google Scholar 

  • Goldstein R, Smith WEPRI (2002) Water & sustainability (volume 4): US electricity consumption for water supply & treatment-the next half century. Electric Power Research Institute

    Google Scholar 

  • Greenberg E (2011) Energy audits for water and watsewater treatment plants and pump stations. Continuing Education and Development, Inc.

    Google Scholar 

  • Gude VG, Nirmalakhandan N, Deng S (2010) Renewable and sustainable approaches for desalination. Renew Sustain Energy Rev 14(9):2641–2654

    Article  CAS  Google Scholar 

  • Gude VG (2011) Energy consumption and recovery in reverse osmosis. Desalin Water Treat 36(1–3):239–260

    Article  CAS  Google Scholar 

  • Guillamón Álvarez J (2007) Trasvase y desalación, las cifras y las cuentas. Boletín, (3)

    Google Scholar 

  • He Y, Liu QQ, Hu J, Zhao CX, Peng CJ, Yang Q, Wang HL, Liu HL (2017) Efficient removal of Pb(II) by amine functionalized porous organic polymer through post-synthetic modification. Sep Purif Technol 180:142–148

    Article  CAS  Google Scholar 

  • Hell F, Lahnsteiner J (2002) The application of electrodialysis for drinking water treatment. In: Water resources quality. Springer, Berlin, Heidelberg, pp 315–327

    Google Scholar 

  • Hu G, Ou X, Zhang Q, Karplus VJ (2013) Analysis on energy–water nexus by Sankey diagram: the case of Beijing. Desalin Water Treat 51(19–21):4183–4193

    Article  Google Scholar 

  • International Association of Hydrogeologists (IAH) (2015) Energy generation and groundwater. International Association of Hydrogeologists—Strategic overview series. https://iah.org/wp-content/uploads/2015/11/IAH-Energy-Generation-Groundwater-Nov-2015.pdf. Accessed 22 Oct 2021

  • International Desalination Association (2013) IDA Desalination Yearbook 2012–2013

    Google Scholar 

  • IEA (2020) Introduction to the water-energy nexus, IEA, Paris. https://www.iea.org/articles/introduction-to-the-water-energy-nexus

  • Jacangelo JG, Trussell RR, Watson M (1997) Role of membrane technology in drinking water treatment in the United States. Desalination 113(2–3):119–127

    Article  CAS  Google Scholar 

  • Jain R, Camarillo MK, Stringfellow WT (2014) Drinking water security for engineers, planners, and managers. Water Distrib Syst 1–12

    Google Scholar 

  • Jiao J, Zhao JB, Pei YS (2017) Adsorption of Co(II) from aqueous solutions by water treatment residuals. J Environ Sci 52:232–239

    Article  CAS  Google Scholar 

  • Joseph L, Jun BM, Flora JR, Park CM, Yoon Y (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229:142–159

    Article  ADS  CAS  PubMed  Google Scholar 

  • Karri RR, Ravindran G, Dehghani MH (2021) Wastewater—sources, toxicity, and their consequences to human health. In: Soft computing techniques in solid waste and wastewater management, Elsevier, pp 3–33

    Google Scholar 

  • Kaur R, Talan A, Tiwari B, Pilli S, Sellamuthu B, Tyagi RD (2020) Constructed wetlands for the removal of organic micro-pollutants. In: Current developments in biotechnology and bioengineering. Elsevier, pp 87–140

    Google Scholar 

  • Kenway SJ, Priestley A, Cook S, Seo S, Inman M, Gregory A, Hall M (2008) Energy use in the provision and consumption of urban water in Australia and New Zealand. Water Services Association of Australia (WSAA), Sydney, Australia

    Google Scholar 

  • Klein G, Krebs M, Hall V, O’Brien T, Blevins B (2005a) California’s water-energy relationship; California Energy Commission: Sacramento. CA, USA

    Google Scholar 

  • Klein G, Krebs M, Hall V, O’Brien T, Blevins BB (2005b) California’s water–energy relationship. California Energy Commission, pp 1–180

    Google Scholar 

  • Kumar PS, Saravanan A (2017) Sustainable wastewater treatments in textile sector. In: Sustainable fibres and textiles. Woodhead Publishing, pp 323–346

    Google Scholar 

  • Lai Y-C, Chang Y-R, Chen M-L, Lo Y-K, Lai J-Y, Lee D-J (2016) Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters. Bioresour Technol 214:192–198

    Article  CAS  PubMed  Google Scholar 

  • Landaburu J, Pongracz E, Peramaki P, Keiski RL (2010) Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimization. J Hazard Mater 180:524–534

    Article  CAS  PubMed  Google Scholar 

  • Lertlapwasin R, Bhawawet N, Imyim A, Fuangswasdi S (2010) Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants. Sep Purif Technol 72:70–76

    Article  CAS  Google Scholar 

  • Li R, Huang H, Xin K, Tao T (2015) A review of methods for burst/leakage detection and location in water distribution systems. Water Sci Technol Water Supply 15(3):429–441

    Article  Google Scholar 

  • Lim JW, Chang YY, Yang JK, Lee SM (2009) Adsorption of arsenic on the reused sanding wastes calcined at different temperatures. Colloids Surf A Physicochem Eng Asp 345:65–70

    Article  CAS  Google Scholar 

  • Liu J, Zang C, Tian S, Liu J, Yang H, Jia S, You L, Liu B, Zhang M (2013) Water conservancy projects in China: achievements, challenges and way forward. Glob Environ Chang 23(3):633–643

    Article  Google Scholar 

  • Maas C (2010) Ontario’s water-energy nexus: will we find ourselves in hot water... or tap into opportunity? POLIS Project on Ecological Governance, University of Victoria

    Google Scholar 

  • Majid A, Cardenes I, Zorn C, Russell T, Colquhoun K, Bañares-Alcantara R, Hall JW (2020) An analysis of electricity consumption patterns in the water and wastewater sectors in South East England UK. Water 12(1):225

    Article  Google Scholar 

  • Maneechakr P, Karnjanakom S (2017) Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: surface chemistry, isotherm, kinetic and thermodynamic studies. J Chem Thermodyn 106:104–112

    Article  CAS  Google Scholar 

  • Marsh D (2008) The water-energy nexus: a comprehensive analysis in the context of New South Wales (Doctoral Dissertation). Sydney, University of Technology, Sydney, Australia, Faculty of Engineering and Information Technology

    Google Scholar 

  • McMahon JE, Price SK (2011) Water and energy interactions. Annu Rev Environ Resour 36:163–191

    Article  Google Scholar 

  • Meda A, Lensch D, Schaum C, Cornel P, Lazarova V, Choo KH (2012) Energy and water: relations and recovery potential. Water. Energy interactions in water reuse, pp 21–35

    Google Scholar 

  • Miller LA, Ramaswami A, Ranjan R (2013) Contribution of water and wastewater infrastructures to urban energy metabolism and greenhouse gas emissions in cities in India. J Environ Eng 139(5):738–745

    Article  CAS  Google Scholar 

  • Muñoz I, Milà L, Fernández AR (2010) Life cycle assessment of water supply plans in Mediterranean Spain: the Ebro River transfer versus the AGUA Programme. J Ind Ecol 14(6):902–918

    Article  CAS  Google Scholar 

  • Nakkasunchi S, Hewitt NJ, Zoppi C, Brandoni C (2021) A review of energy optimization modelling tools for the decarbonization of wastewater treatment plants. J Cleaner Product 279:123811

    Google Scholar 

  • National Groundwater Association (NGWA) (2016) Facts about global groundwater usage. National Ground Water Association, http://www.ngwa.org/Fundamentals/Documents/globalgroundwater-use-fact-sheet.pdf

  • Nelson GC, Robertson R, Msangi S, Zhu T, Liao X, Jawajar P (2009) Greenhouse gas mitigation: issues for Indian agriculture. Intl Food Policy Res Inst

    Google Scholar 

  • Northern Ireland Environment Agency (2020) Compliance with Drinking Water Quality Standards in Northern Ireland, 2019. https://www.daera-ni.gov.uk/sites/default/files/publications/daera/Compliance%20with%20Drinking%20Water%20Standards%2C%202019.pdf. Accessed 20 Aug 2021

  • Ocinski D, Jacukowicz-Sobala I, Mazur P, Raczyk J, Kociolek-Balawejder E (2016) Water treatment residuals containing iron and manganese oxides for arsenic removal from water—characterization of physicochemical properties and adsorption studies. Chem Eng J 294:210–221

    Article  CAS  Google Scholar 

  • OECD (2009) Managing water for all: an OECD perspective on pricing and financing. Organization for economic co-operation and development

    Google Scholar 

  • OHIO University (2021) The 4 steps of treating your community's water. https://onlinemasters.ohio.edu/blog/the-4-steps-of-treating-your-communitys-water/. Accessed 20 Aug 2021

  • Park M, Snyder SA (2020) Attenuation of contaminants of emerging concerns by nanofiltration membrane: rejection mechanism and application in water reuse. In Contaminants of Emerging Concern in Water and Wastewater (pp. 177–206). Butterworth-Heinemann.

    Google Scholar 

  • Petrus R, Warchol JK (2005) Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems. Water Res 39:819–830

    Google Scholar 

  • Plappally A, Leinhard J (2012) Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew Sustain Energy Rev 16:4818–4848

    Article  Google Scholar 

  • Plappally AK, Lienhard JH (2012) Renew Sustain Energy Rev 16:4818

    Article  Google Scholar 

  • Plappally AK (2012a) Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew Sustain Energy Rev 16(7):4818–4848

    Article  Google Scholar 

  • Plappally AK (2012b) Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew Sustain Energy Rev 16(7):4818–4848

    Article  Google Scholar 

  • Porse E, Mika KB, Escriva-Bou A, Fournier ED, Sanders KT, Spang E, Stokes-Draut J, Federico F, Gold M, Pincetl S (2020) Energy use for urban water management by utilities and households in Los Angeles. Environ Res Commun 2(1):015003

    Google Scholar 

  • Rahmanian B, Pakizeh M, Esfandyari M, Heshmatnezhad F, Maskooki A (2011) Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF). J Hazard Mater 192:585–592

    Google Scholar 

  • Raluy RG, Serra L, Uche J, Valero A (2005) Life cycle assessment of water production technologies-Part 2: reverse osmosis desalination versus the Ebro river water transfer (9 pp). Int J Life Cycle Assess 10(5):346–354

    Article  CAS  Google Scholar 

  • Reardon DJ, Newell PL, Roohk DL (2012) Recycling conserves both water and energy. Proc Water Environ Fed 2012(13):3557–3564

    Article  Google Scholar 

  • Reif R, Omil F, Lema JM (2013) Removal of pharmaceuticals by membrane bioreactor (MBR) technology. In: Comprehensive analytical chemistry, vol 62, Elsevier, pp 287–317

    Google Scholar 

  • Rocheta E, Peirson W (2011) Urban water supply in a carbon constrained Australia. UNSW Water Research Centre

    Google Scholar 

  • Rothausen SG, Conway D (2011) Greenhouse-gas emissions from energy use in the water sector. Nat Clim Chang 1(4):210–219

    Article  ADS  CAS  Google Scholar 

  • Sala L, Serra M (2004) Towards sustainability in water recycling. Water Sci Technol 50(2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Sala L (2007) Balances energéticos del ciclo de agua y experiencias de reutilización planificada en municipios de la Costa Brava. Energīıa y Cambio Climático, Universidad Politécnica, Valencia, Seminario Agua

    Google Scholar 

  • Sattenspiel BG, Wilson W (2009) The carbon footprint of water. Report by the Energy Foundation

    Google Scholar 

  • Siddiqi A, Anadon LD (2011) The water–energy nexus in Middle East and North Africa. Energy Policy 39:4529–4540

    Article  Google Scholar 

  • Smith K, Liu S, Chang T (2016) Contribution of urban water supply to greenhouse gas emissions in China. J Ind Ecol 20(4):792–802

    Article  CAS  Google Scholar 

  • Smith K, Liu S, Liu Y, Liu Y, Wu Y (2017) Energy Build 135:119

    Article  Google Scholar 

  • Smith K, Liu S (2017) Energy for conventional water supply and wastewater treatment in urban China: a review. Global Chall 1(5):1600016

    Article  Google Scholar 

  • Sparks T, Chase G (2016) Section 5-Solid–Liquid Filtration–Examples of Processes. In: Filters and filtration handbook, pp 297–359

    Google Scholar 

  • Stokes J, Horvath A (2006) Life cycle energy assessment of alternative water supply systems. Int J Life Cycle Assess 11:335–343

    Article  Google Scholar 

  • Stokes JR, Horvath A (2009) Energy and air emission effects of water supply

    Google Scholar 

  • Vadasarukkai YS, Gagnon GA (2015) Application of low-mixing energy input for the coagulation process. Water Res 84:333–341

    Article  CAS  PubMed  Google Scholar 

  • van der Hoek JP, Mol S, Giorgi S, Ahmad JI, Liu G, Medema G (2018) Energy recovery from the water cycle: thermal energy from drinking water. Energy 162:977–987

    Article  Google Scholar 

  • Verma V, Tewari S, Rai J (2008) Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour Technol 99:1932–1938

    Google Scholar 

  • Von Medeazza GM (2005) “Direct” and socially-induced environmental impacts of desalination. Desalination 185(1–3):57–70

    Article  CAS  Google Scholar 

  • Wang J, Rothausen SG, Conway D, Zhang L, Xiong W, Holman IP, Li Y (2012) China’s water–energy nexus: greenhouse-gas emissions from groundwater use for agriculture. Environ Res Lett 7(1):014035

    Google Scholar 

  • Wang YY, Liu YX, Lu HH, Yang RQ, Yang SM (2018) Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J Solid State Chem 261:53–61

    Article  ADS  CAS  Google Scholar 

  • Wen H, Zhong L, Fu X, Spooner S (2014) Water energy nexus in the urban water source selection: a case study from Qingdao. World Resources Institute, Beijing

    Google Scholar 

  • Wołowiec M, Pruss A, Komorowska-Kaufman M, Lasocka-Gomuła I, Rzepa G, Bajda T (2019) The properties of sludge formed as a result of coagulation of backwash water from filters removing iron and manganese from groundwater. SN Appl. Sci. 1:639

    Article  CAS  Google Scholar 

  • Wu K, Liu RP, Li T, Liu HJ, Peng JM, Qu JH (2013) Qu, JH Removal of arsenic(III) from aqueous solution using a low-cost by-product in Fe-removal plants-Fe-based backwashing sludge. Chem Eng J 226:393–401

    Article  CAS  Google Scholar 

  • Ye B, Wang W, Yang L, Wei JXE (2009) J Hazard Mater 171:147

    Google Scholar 

  • Young R (2015) A survey of energy use in water companies. American Council for an Energy-Efficient Economy

    Google Scholar 

  • Zhang X, Qi Y, Wang Y, Wu J, Lin L, Peng H, Qi H, Yu X, Zhang Y (2016) Renew Sustain Energy Rev 64:660

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Thiru Sambath and Dr. Rama Rao Karri for giving them this opportunity. This publication reflects only the authors’ view and the Research Executive Agency, REA, is not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Nakkasunchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakkasunchi, S. (2022). Quantification of Potential Savings in Drinking Water Treatment Plants: Benchmarking Energy Efficiency. In: Karchiyappan, T., Karri, R.R., Dehghani, M.H. (eds) Industrial Wastewater Treatment . Water Science and Technology Library, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-98202-7_18

Download citation

Publish with us

Policies and ethics