Skip to main content

Production Techniques, Mechanism, and Application of Biochar in Remediating Soil Contaminated with Heavy Metals: A Review

  • Chapter
  • First Online:
Strategies and Tools for Pollutant Mitigation

Abstract

The ultimate goal of heavy metal contaminated soil remediation is to increase crop yields on the premise of ensuring food production safety. Soil contaminated by heavy metals threatens the quality of agricultural products and human health. Hence, it is necessary to choose appropriate economic and effective remediation techniques to control the deterioration and revive the land quality. Among the methods available, biochar application for adsorption and remediation of heavy metal contaminated soil is emerging to be a sustainable approach. Biochar introduction to the soil provides organic matter and essential macro and micronutrients like C, N, P, K, Ca, Mg, etc., which enhances soil enzyme and microbial activities. Additionally, the plant root environment, soil water retention, and saturated hydraulic conductivity can be improved in the presence of biochar. This chapter is intended to present an overview of the production techniques of biochar, its properties, and characteristics required for effective heavy metal removal and the corresponding process conditions, mechanisms involved in the interaction of biochar with heavy metals, and the benefits as well as bottlenecks of biochar application in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelhafez, A. A., Li, J., & Abbas, M. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66–71.

    Article  CAS  Google Scholar 

  • Abhijeet, P., Swagathnath, G., Rangabhashiyam, S., Asok Rajkumar, M., & Balasubramanian, P. (2020). Prediction of pyrolytic product composition and yield for various grass biomass feedstocks. Biomass Conversion and Biorefinery, 10(3), 663–674.

    Article  Google Scholar 

  • Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E. and Ok, Y.S., 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, pp.536–544.

    Google Scholar 

  • Ahmad, M., Lee, S.S., Rajapaksha, A.U., Vithanage, M., Zhang, M., Cho, J.S., Lee, S.E. and Ok, Y.S., 2013. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresource Technology, 143, pp.615–622.

    Google Scholar 

  • Ahmad, M., Ok, Y. S., Kim, B. Y., Ahn, J. H., Lee, Y. H., Zhang, M., … & Lee, S. S. (2016). Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 166, 131–139.

    Article  CAS  Google Scholar 

  • Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. (2020). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 1–22.

    Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., Fellet, G., Carrijo, L. and Sizmur, T., 2015. Biochar and heavy metals.

    Google Scholar 

  • Chatterjee, R., Sajjadi, B., Chen, W. Y., Mattern, D. L., Hammer, N., Raman, V., & Dorris, A. (2020). Effect of pyrolysis temperature on physicochemical properties and acoustic-based amination of biochar for efficient CO2 adsorption. Frontiers in Energy Research, 8, 85.

    Article  Google Scholar 

  • Chen, B. and Chen, Z., 2009. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1), pp.127–133.

    Google Scholar 

  • Chen, B., Yuan, M., & Qian, L. (2012c). Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. Journal of Soils and Sediments, 12(9), 1350–1359.

    Article  CAS  Google Scholar 

  • Chen, B., Zhou, D. and Zhu, L., 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42(14), pp.5137–5143.

    Google Scholar 

  • Chen, D. M. C., Bodirsky, B. L., Krueger, T., Mishra, A., & Popp, A. (2020a). The world’s growing municipal solid waste: Trends and impacts. Environmental Research Letters, 15(7), 074021.

    Article  CAS  Google Scholar 

  • Chen, H., Yang, X., Wang, H., Sarkar, B., Shaheen, S. M., Gielen, G., … & Rinklebe, J. (2020b). Animal carcass-and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: A trial for reclamation and improvement of degraded soils. Journal of environmental management, 261, 110246.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B. and Hay, A.G., 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), pp.8877–8884.

    Google Scholar 

  • Chen, Z., Chen, B. and Chiou, C.T., 2012b. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science & Technology, 46(20), pp.11104–11111.

    Google Scholar 

  • Chen, Z., Chen, B., Zhou, D. and Chen, W., 2012a. Bisolute sorption and thermodynamic behavior of organic pollutants to biomass-derived biochars at two pyrolytic temperatures. Environmental Science & Technology, 46(22), pp.12476–12483.

    Google Scholar 

  • Cheng, S., Chen, T., Xu, W., Huang, J., Jiang, S., & Yan, B. (2020). Application research of biochar for the remediation of soil heavy metals contamination: a review. Molecules, 25(14), 3167.

    Article  CAS  Google Scholar 

  • Das, S.K., Ghosh, G.K. and Avasthe, R., 2020. Application of biochar in agriculture and environment, and its safety issues. Biomass Conversion and Biorefinery, pp.1–11.

    Google Scholar 

  • de Figueiredo, C. C., Chagas, J. K. M., da Silva, J., & Paz-Ferreiro, J. (2019). Short-term effects of a sewage sludge biochar amendment on total and available heavy metal content of a tropical soil. Geoderma, 344, 31–39.

    Article  CAS  Google Scholar 

  • Domingues, R. R., Trugilho, P. F., Silva, C. A., De Melo, I. C. N. A., Melo, L. C. A., Magriotis, Z. M., & Sánchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS ONE, 12(5), 1–19.

    Article  CAS  Google Scholar 

  • Dong, X., Ma, L.Q. and Li, Y., 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal Of Hazardous Materials, 190(1-3), pp.909–915.

    Google Scholar 

  • Duan, R., Hu, H. Q., Fu, Q. L., & Kou, C. L. (2017). Remediation of Cd/Ni contaminated soil by biochar and oxalic acid activated phosphate rock. Huan jing ke xue= Huanjing kexue, 38(11), 4836–4843.

    Google Scholar 

  • El-Naggar, A., Lee, M. H., Hur, J., Lee, Y. H., Igalavithana, A. D., Shaheen, S. M., … & Ok, Y. S. (2020). Biochar-induced metal immobilization and soil biogeochemical process: an integrated mechanistic approach. Science of the Total Environment, 698, 134112.

    Article  CAS  Google Scholar 

  • Fan, J., Cai, C., Chi, H., Reid, B. J., Coulon, F., Zhang, Y., & Hou, Y. (2020). Remediation of cadmium and lead polluted soil using thiol-modified biochar. Journal of hazardous materials, 388, 122037.

    Article  CAS  Google Scholar 

  • Gao, R., Hu, H., Fu, Q., Li, Z., Xing, Z., Ali, U., Zhu, J., & Liu, Y. (2020). Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. The Science of the Total Environment, 730, 139119.

    Article  CAS  Google Scholar 

  • Godlewska, P., Ok, Y. S., & Oleszczuk, P. (2021). The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. Journal of hazardous materials, 403, 123833.

    Article  CAS  Google Scholar 

  • He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental pollution, 252, 846–855.

    Article  CAS  Google Scholar 

  • Hilber, I., Bastos, A. C., Loureiro, S., Soja, G., Marsz, A., Cornelissen, G., & Bucheli, T. D. (2017). The different faces of biochar: contamination risk versus remediation tool. Journal of Environmental Engineering and Landscape Management, 25(2), 86–104.

    Article  Google Scholar 

  • Hmid, A., Al Chami, Z., Sillen, W., De Vocht, A., & Vangronsveld, J. (2015). Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils. Environmental Science and Pollution Research, 22(2), 1444–1456.

    Google Scholar 

  • Igalavithana, A. D., Lee, S. E., Lee, Y. H., Tsang, D. C., Rinklebe, J., Kwon, E. E., & Ok, Y. S. (2017). Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere, 174, 593–603.

    Article  CAS  Google Scholar 

  • Kamali, M., Sweygers, N., Al-Salem, S., Appels, L., Aminabhavi, T. M., & Dewil, R. (2021). Biochar for soil applications-sustainability aspects, challenges and future prospects. Chemical Engineering Journal, 131189.

    Google Scholar 

  • Kim, W.K., Shim, T., Kim, Y.S., Hyun, S., Ryu, C., Park, Y.K. and Jung, J., 2013. Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138, pp.266–270.

    Google Scholar 

  • Kumar, S., Loganathan, V.A., Gupta, R.B. and Barnett, M.O., 2011. An assessment of U (VI) removal from groundwater using biochar produced from hydrothermal carbonization. Journal Of Environmental Management, 92(10), pp.2504–2512.

    Google Scholar 

  • Lebrun, M., Miard, F., Nandillon, R., Morabito, D., & Bourgerie, S. (2021). Biochar Application Rate: Improving Soil Fertility and Linum usitatissimum Growth on an Arsenic and Lead Contaminated Technosol. International Journal of Environmental Research, 15(1), 125–134.

    Article  CAS  Google Scholar 

  • Lei, S., Shi, Y., Qiu, Y., Che, L., & Xue, C. (2019). Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Science of the Total Environment, 646, 1281–1289.

    Article  CAS  Google Scholar 

  • Li, J., Xia, C., Cheng, R., Lan, J., Chen, F., Li, X., … & Hou, H. (2022). Passivation of multiple heavy metals in lead–zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles: Mechanisms and microbial community evolution. Science of The Total Environment, 803, 149866.

    Article  CAS  Google Scholar 

  • Li, M., Liu, Q., Guo, L., Zhang, Y., Lou, Z., Wang, Y. and Qian, G., 2013. Cu (II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresource Technology, 141, pp.83–88.

    Google Scholar 

  • Li, M., Ren, L., Zhang, J., Luo, L., Qin, P., Zhou, Y., Huang, C., Tang, J., Huang, H., & Chen, A. (2019). Population characteristics and influential factors of nitrogen cycling functional genes in heavy metal contaminated soil remediated by biochar and compost. Science of the Total Environment, 651, 2166–2174.

    Article  CAS  Google Scholar 

  • Liang, Y., Cao, X., Zhao, L., & Arellano, E. (2014). Biochar-and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater. Environmental Science and Pollution Research, 21(6), 4665–4674.

    Google Scholar 

  • Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S., & Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, 495–503.

    Article  CAS  Google Scholar 

  • Liu, Z. and Zhang, F.S., 2009. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167(1–3), pp.933–939.

    Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S. and Qiu, R., 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3), pp.854–862.

    Google Scholar 

  • Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., … & Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of environmental management, 186, 285–292.

    Article  CAS  Google Scholar 

  • Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., … & Wang, H. (2014). Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agriculture, Ecosystems & Environment, 191, 124–132.

    Article  CAS  Google Scholar 

  • Maji, S., Dwivedi, D. H., Singh, N., Kishor, S., Gond, M., & Bharagava, R. N. (2020). Agricultural waste: Its impact on environment and management approaches. In Emerging Eco-friendly Green Technologies for Wastewater Treatment (pp. 329–351). Springer Singapore.

    Google Scholar 

  • Mandal, S., Pu, S., Adhikari, S., Ma, H., Kim, D. H., Bai, Y., & Hou, D. (2021). Progress and future prospects in biochar composites: application and reflection in the soil environment. Critical Reviews in Environmental Science and Technology, 51(3), 219–271.

    Article  CAS  Google Scholar 

  • Mohamed, B. A., Ellis, N., Kim, C. S., & Bi, X. (2017). The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environmental Pollution, 230, 329–338.

    Article  CAS  Google Scholar 

  • Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., … & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere, 200, 274–282.

    Article  CAS  Google Scholar 

  • O’Connor, D., Peng, T., Li, G., Wang, S., Duan, L., Mulder, J., … & Hou, D. (2018). Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Science of the total environment, 621, 819–826.

    Article  CAS  Google Scholar 

  • Oh, T.K., Choi, B., Shinogi, Y. and Chikushi, J., 2012. Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water, Air, & Soil Pollution, 223(7), pp.3729–3738.

    Google Scholar 

  • Oliveira, I., Blöhse, D. and Ramke, H.G., 2013. Hydrothermal carbonization of agricultural residues. Bioresource Technology, 142, pp.138–146.

    Google Scholar 

  • Ornaghi, H. L., Ornaghi, F. G., Neves, R. M., Monticeli, F., & Bianchi, O. (2020). Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose, 27(9), 4949-4961.

    Article  CAS  Google Scholar 

  • Pan, H., Yang, X., Chen, H., Sarkar, B., Bolan, N., Shaheen, S. M., … & Wang, H. (2021). Pristine and iron-engineered animal-and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil. Science of The Total Environment, 763, 144218.

    Article  CAS  Google Scholar 

  • Pathy, A., Meher, S., & P, B. (2020a). Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods. Algal Research, 50(July), 102006.

    Article  Google Scholar 

  • Pathy, A., Ray, J., & Paramasivan, B. (2020b). Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar, 1–19.

    Google Scholar 

  • Pathy, A., Ray, J., & Paramasivan, B. (2021). Challenges and opportunities of nutrient recovery from human urine using biochar for fertilizer applications. Journal of Cleaner Production, 127019.

    Google Scholar 

  • Penido, E. S., Martins, G. C., Mendes, T. B. M., Melo, L. C. A., do Rosário Guimarães, I., & Guilherme, L. R. G. (2019). Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicology and Environmental Safety, 172, 326–333.

    Article  CAS  Google Scholar 

  • Puga, A. P., Abreu, C. A., Melo, L. C. A., Paz-Ferreiro, J., & Beesley, L. (2015). Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environmental Science and Pollution Research, 22(22), 17606–17614.

    Article  CAS  Google Scholar 

  • Qian, L. and Chen, B., 2013. Dual role of biochars as adsorbents for aluminum: the effects of oxygen-containing organic components and the scattering of silicate particles. Environmental Science & Technology, 47(15), pp.8759–8768.

    Google Scholar 

  • Rees, F., Simonnot, M. O., & Morel, J. L. (2014). Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. European Journal of Soil Science, 65(1), 149–161.

    Article  CAS  Google Scholar 

  • Rodriguez, J. A., Lustosa Filho, J. F., Melo, L. C. A., de Assis, I. R., & de Oliveira, T. S. (2020). Influence of pyrolysis temperature and feedstock on the properties of biochars produced from agricultural and industrial wastes. Journal of Analytical and Applied Pyrolysis, 149, 104839.

    Article  CAS  Google Scholar 

  • Selvam SM & Paramasivan, B. (2021a). Microwave assisted carbonization and activation of biochar for energy-environment nexus: A review. Chemosphere, 131631.

    Google Scholar 

  • Selvam SM & Paramasivan, B. (2021b). Evaluation of influential factors in microwave assisted pyrolysis of sugarcane bagasse for biochar production. Environmental Technology & Innovation, 24, 101939.

    Article  CAS  Google Scholar 

  • Selvam, S. M., Janakiraman, T., & Paramasivan, B. (2021). Characterization of engineered corn cob biochar produced in allothermal pyrolysis reactor. Materials Today: Proceedings.

    Google Scholar 

  • Song, J., Zhang, S., Li, G., Du, Q., & Yang, F. (2020). Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal. Journal of hazardous materials, 391, 121692.

    Article  CAS  Google Scholar 

  • Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Letters in applied NanoBioScience, 10(2), 2148–2166.

    Article  Google Scholar 

  • Sun, K., Keiluweit, M., Kleber, M., Pan, Z. and Xing, B., 2011. Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 102(21), pp.9897–9903.

    Google Scholar 

  • Sun, L., Wan, S. and Luo, W., 2013. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresource Technology, 140, pp.406–413.

    Google Scholar 

  • Swagathnath, G., Rangabhashiyam, S., Murugan, S., & Balasubramanian, P. (2019a). Influence of biochar application on growth of Oryza sativa and its associated soil microbial ecology. Biomass Conversion and Biorefinery, 9(2), 341–352.

    Article  CAS  Google Scholar 

  • Swagathnath, G., Rangabhashiyam, S., Parthsarathi, K., Murugan, S., & Balasubramanian, P. (2019b). Modeling biochar yield and syngas production during the pyrolysis of agro-residues. In Green buildings and sustainable engineering (pp. 325–336). Springer, Singapore.

    Google Scholar 

  • Tahir, A. H., Al-Obaidy, A. H. M., & Mohammed, F. H. (2020, February). Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. In IOP Conference Series: Materials Science and Engineering (Vol. 737, No. 1, p. 012171). IOP Publishing.

    Google Scholar 

  • Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y. and Yang, Z., 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, pp.70–85.

    Google Scholar 

  • Tan, Z., Wang, Y., Zhang, L., & Huang, Q. (2017). Study of the mechanism of remediation of Cd-contaminated soil by novel biochars. Environmental Science and Pollution Research, 24(32), 24844–24855.

    Article  CAS  Google Scholar 

  • Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of bioscience and bioengineering, 116(6), 653–659.

    Google Scholar 

  • Tang, J., Zhang, L., Zhang, J., Ren, L., Zhou, Y., Zheng, Y., … & Chen, A. (2020). Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Science of the Total Environment, 701, 134751.

    Article  CAS  Google Scholar 

  • Tong, X.J., Li, J.Y., Yuan, J.H. and Xu, R.K., 2011. Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2–3), pp.828–834.

    Google Scholar 

  • Tsai, W.T. and Chen, H.R., 2013. Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. International Journal of Environmental Science and Technology, 10(6), pp.1349–1356.

    Google Scholar 

  • Tsang, D. C., Zhou, F., Zhang, W., & Qiu, R. (2016). Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Chemosphere, 149, 263–271.

    Article  CAS  Google Scholar 

  • Tu, C., Wei, J., Guan, F., Liu, Y., Sun, Y., & Luo, Y. (2020). Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environment international, 137, 105576.

    Article  CAS  Google Scholar 

  • Visioli, G., Conti, F. D., Menta, C., Bandiera, M., Malcevschi, A., Jones, D. L., & Vamerali, T. (2016). Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays. Environmental monitoring and assessment, 188(3), 166.

    Article  CAS  Google Scholar 

  • Vithanage, M., Herath, I., Joseph, S., Bundschuh, J., Bolan, N., Ok, Y. S., … & Rinklebe, J. (2017). Interaction of arsenic with biochar in soil and water: a critical review. Carbon, 113, 219–230.

    Article  CAS  Google Scholar 

  • Wang, B., Jiang, Y.S., Li, F.Y. and Yang, D.Y., 2017. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresource Technology, 233, pp.159–165.

    Google Scholar 

  • Wang, D., Jiang, P., Zhang, H., & Yuan, W. (2020). Science of the Total Environment Biochar production and applications in agro and forestry systems: A review. Science of the Total Environment, 723, 137775.

    Article  CAS  Google Scholar 

  • Wang, J. and Wang, S., 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227, pp.1002–1022.

    Google Scholar 

  • Wang, J., Shi, L., Zhai, L., Zhang, H., Wang, S., Zou, J., … & Chen, Y. (2021a). Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicology and Environmental Safety, 207, 111261.

    Article  CAS  Google Scholar 

  • Wang, M., Zhu, Y., Cheng, L., Andserson, B., Zhao, X., Wang, D., & Ding, A. (2018). Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of Environmental Sciences (China), 63, 156–173.

    Article  CAS  Google Scholar 

  • Wang, S., Zhao, X., Xing, G. and Yang, L., 2013. Large-scale biochar production from crop residue: A new idea and the biogas-energy pyrolysis system. Bioresource Technology, 8(1), pp.8–11.

    Google Scholar 

  • Wang, Y., Zheng, K., Zhan, W., Huang, L., Liu, Y., Li, T., … & Wang, Z. (2021b). Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicology and Environmental Safety, 207, 111294.

    Article  CAS  Google Scholar 

  • Wang, L., Li, Z., Wang, Y., Brookes, P. C., Wang, F., Zhang, Q., ... & Liu, X. (2021). Performance and mechanisms for remediation of Cd (II) and As (III) co-contamination by magnetic biochar-microbe biochemical composite: Competition and synergy effects. Science of The Total Environment, 750, 141672.

    Google Scholar 

  • Wei, D., Li, B., Huang, H., Luo, L., Zhang, J., Yang, Y., Guo, J., Tang, L., Zeng, G. and Zhou, Y., 2018. Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs. Chemosphere, 197, pp.165–180.

    Google Scholar 

  • Weidemann, E., Buss, W., Edo, M., MaÅ¡ek, O., & Jansson, S. (2018). Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar—a screening study. Environmental Science and Pollution Research, 25(4), 3933–3940.

    Article  CAS  Google Scholar 

  • Wen, E., Yang, X., Chen, H., Shaheen, S. M., Sarkar, B., Xu, S., … & Wang, H. (2021). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of hazardous materials, 407, 124344.

    Article  CAS  Google Scholar 

  • Wu, C., Shi, L., Xue, S., Li, W., Jiang, X., Rajendran, M., & Qian, Z. (2019). Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Science of the Total Environment, 647, 1158–1168.

    Article  CAS  Google Scholar 

  • Xiao, J., Hu, R., Chen, G., & Xing, B. (2020). Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: physicochemical properties, heavy metals sorption behavior and mechanism. Journal of Hazardous Materials, 399, 123067.

    Article  CAS  Google Scholar 

  • Xu, P., Sun, C. X., Ye, X. Z., Xiao, W. D., Zhang, Q., & Wang, Q. (2016). The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and environmental safety, 132, 94–100.

    Article  CAS  Google Scholar 

  • Xu, X., Cao, X. and Zhao, L., 2013. Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere, 92(8), pp.955–961.

    Google Scholar 

  • Yang, H., Ye, S., Zeng, Z., Zeng, G., Tan, X., Xiao, R., Wang, J., Song, B., Du, L., Qin, M. and Yang, Y., 2020. Utilization of biochar for resource recovery from water: A review. Chemical Engineering Journal, p.125502.

    Google Scholar 

  • Yao, Y., Gao, B., Chen, H., Jiang, L., Inyang, M., Zimmerman, A.R., Cao, X., Yang, L., Xue, Y. and Li, H., 2012. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 209, pp.408–413.

    Google Scholar 

  • Yu, Y. qi, Li, J. xin, Liao, Y. liang, & Yang, J. Yan. (2020). Effectiveness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. Journal of Cleaner Production, 277.

    Google Scholar 

  • Yu, Z., Zhou, L., Huang, Y., Song, Z., & Qiu, W. (2015). Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of environmental management, 163, 155–162.

    Article  CAS  Google Scholar 

  • Zhang, H., Shao, J., Zhang, S., Zhang, X., & Chen, H. (2020). Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. Journal of hazardous materials, 390, 121349.

    Article  CAS  Google Scholar 

  • Zhang, W., Mao, S., Chen, H., Huang, L. and Qiu, R., 2013a. Pb (II) and Cr (VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresource Technology, 147, pp.545–552.

    Google Scholar 

  • Zhang, Z.B., Cao, X.H., Liang, P. and Liu, Y.H., 2013b. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. Journal of Radioanalytical and Nuclear Chemistry, 295(2), pp.1201–1208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moola, A.K. et al. (2022). Production Techniques, Mechanism, and Application of Biochar in Remediating Soil Contaminated with Heavy Metals: A Review. In: Aravind, J., Kamaraj, M., Karthikeyan, S. (eds) Strategies and Tools for Pollutant Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-030-98241-6_4

Download citation

Publish with us

Policies and ethics