Skip to main content

Toric Degenerations in Symplectic Geometry

  • Conference paper
  • First Online:
Interactions with Lattice Polytopes (ILP 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 386))

Included in the following conference series:

Abstract

Toric degeneration in algebraic geometry is a process of degenerating a given projective variety into a toric one. Then one can obtain information about the original variety via analyzing the toric one, which is a much easier object to study. Harada and Kaveh described how one incorporates a symplectic structure into this process, providing a very useful tool for solving certain problems in symplectic geometry. Below we present two applications of this method: questions about the Gromov width, and cohomological rigidity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A moment map is a T-invariant map \(\mu :M \rightarrow \text {Lie}(T)^*\cong \mathbb {R}^n\) such that for every \(X \in \text {Lie}(T)\) it holds that \(\iota _{X^\sharp } \omega =d\mu ^X\) where \(X^\sharp \) denotes the vector field on M induced by X and \(\mu ^X :M \rightarrow \mathbb {R}\) is defined by \(\mu ^X(p)=\langle \mu (p), X\rangle .\).

  2. 2.

    Recall that a polytope in \(\mathbb {R}^n\) is called rational if the directions of its edges are in \(\mathbb {Z}^n\). It is called smooth if for every vertex the primitive vectors in the directions of edges meeting at that vertex form a \(\mathbb {Z}\)-basis for \(\mathbb {Z}^n\).

  3. 3.

    Recall that the Plücker embedding sends a Grassmannian spanned by vectors \(v,w \in \mathbb {C}^4\) to a point \([x_{12}:\ldots :x_{34}]\in \mathbb {C}\mathbb {P}^5\) with \(x_{ij}\) equal to the determinant of the \(2\times 2\) minor of \([v^T,w^T]\) spanned by rows i and j.

  4. 4.

    Recall that for a graded algebra \(A=\oplus _{j=0}^{\infty }A_j\) the set \({{\,\mathrm{Proj}\,}}A\) is the set of homogeneous prime ideals in A that do not contain all of \(A_+:=\oplus _{j=1}^{\infty }A_j\). The topology on \({{\,\mathrm{Proj}\,}}A\) is defined by setting the closed sets to be \(V(I):=\{J;\ J \subset I\text { is a homogeneous prime ideal of }A \text { not containing all of} A_+\}\), for some homogeneous ideal I of A. For more details see, for example [17, II.2], [9, III.2], and [5, Chap. 7].

  5. 5.

    During the work on the project [18], about complex Grassmannians, Karshon and Tolman looked at various examples of other coadjoint orbits and got the impression that the above value might be the Gromov width of all coadjoint orbits. They never formulated this expectation formally as their conjecture, but they shared this idea with other mathematicians in private communications. This is how this value became to be known as the expected Gromov width for coadjoint orbits.

  6. 6.

    A coadjoint orbit through a point \(\lambda \) in the interior of a chosen positive Weyl chamber is called indecomposable in [29] if there exists a simple positive root \(\alpha \) such that for any positive root \(\alpha '\) there exists a positive integer k such that \(\langle \lambda , \alpha ' \rangle =k \langle \lambda , \alpha \rangle \).

  7. 7.

    The result about \({{\,\mathrm{SO}\,}}(2n+1,\mathbb {C})\) holds only for orbits satisfying a mild technical condition: the point \(\lambda \) of intersection of the orbit and a chosen positive Weyl chamber should not belong to a certain subset of one wall of the chamber; see [26] for more details. In particular, all generic orbits satisfy this condition.

  8. 8.

    In the standard action of \((S^1)^n\) on \((\mathbb {C}\mathbb {P}^1)^n\) each \(S^1\) in \((S^1)^n\) acts on the respective copy of \(\mathbb {C}\mathbb {P}^1\) by \(e^{it}\cdot [(z_0,z_1)]=[(z_0,e^{it}z_1)]\).

References

  1. Anderson, D.: Okounkov bodies and toric degenerations. Math. Ann. 356(3), 1183–1202 (2013)

    Article  MathSciNet  Google Scholar 

  2. Caviedes Castro, A.: Upper bound for the Gromov width of coadjoint orbits of compact Lie groups. J. Lie Theory 26(3), 821–860 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Choi, S., Masuda, M.: Classification of \(\mathbb{Q}\)-trivial Bott manifolds. J. Symplectic Geom. 10(3), 447–461 (2012)

    Article  MathSciNet  Google Scholar 

  4. Choi, S., Masuda, M., Suh, D.Y.: Rigidity problems in toric topology: a survey. Tr. Mat. Inst. Steklova 275(Klassicheskaya i Sovremennaya Matematika v Pole Deyatel’nosti Borisa Nikolaevicha Delone), 188–201 (2011)

    Google Scholar 

  5. Cox, D.A., Little, J.B., Schenck, H.K.: Toric varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence, RI (2011)

    Google Scholar 

  6. Danilov, V.I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33(2(200)), 85–134, 247 (1978)

    Google Scholar 

  7. da Silva, A.C.: Lectures on symplectic geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2001)

    Google Scholar 

  8. Eisenbud, D.: Commutative algebra. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995). With a view toward algebraic geometry

    Google Scholar 

  9. Eisenbud, D., Harris, J.: The geometry of schemes. In: Graduate Texts in Mathematics, vol. 197. Springer, New York (2000)

    Google Scholar 

  10. Fang, X., Fourier, G., Littelmann, P.: Essential bases and toric degenerations arising from birational sequences. Adv. Math. 312, 107–149 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fang, X., Littelmann, P., Pabiniak, M.: Simplices in Newton-Okounkov bodies and the Gromov width of coadjoint orbits. Bull. Lond. Math. Soc. 50(2), 202–218 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton, NJ (1993). The William H. Roever Lectures in Geometry

    Google Scholar 

  13. Grossberg, M., Karshon, Y.: Bott towers, complete integrability, and the extended character of representations. Duke Math. J. 76(1), 23–58 (1994)

    Article  MathSciNet  Google Scholar 

  14. Halacheva, I., Pabiniak, M.: The Gromov width of coadjoint orbits of the symplectic group. Pacific J. Math. 295(2), 403–420 (2018)

    Article  MathSciNet  Google Scholar 

  15. Hamilton, M.D.: The quantization of a toric manifold is given by the integer lattice points in the moment polytope. In: Toric topology, Contemporary Mathematics, vol. 460, pp. 131–140. American Mathematical Society, Providence, RI (2008)

    Google Scholar 

  16. Harada, M., Kaveh, K.: Integrable systems, toric degenerations and Okounkov bodies. Invent. Math. 202(3), 927–985 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hartshorne, R.: Algebraic Geometry. Springer, New York, Heidelberg (1977). Graduate Texts in Mathematics, No. 52

    Google Scholar 

  18. Karshon, Y., Tolman, S.: The Gromov width of complex Grassmannians. Algebr. Geom. Topol. 5, 911–922 (2005)

    Article  MathSciNet  Google Scholar 

  19. Kaveh, K.: Crystal bases and Newton-Okounkov bodies. Duke Math. J. 164(13), 2461–2506 (2015)

    Article  MathSciNet  Google Scholar 

  20. Kaveh, K.: Toric degenerations and symplectic geometry of smooth projective varieties. J. Lond. Math. Soc. (2) 99(2), 377–402 (2019)

    Google Scholar 

  21. Lane, J.: A Completely Integrable System on \(g_2\) Coadjoint Orbits (2016). arXiv:1605.01676

  22. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MathSciNet  Google Scholar 

  23. Lu, G.: Gromov-Witten invariants and pseudo symplectic capacities. Israel J. Math. 156, 1–63 (2006)

    Article  MathSciNet  Google Scholar 

  24. Lu, G.: Symplectic capacities of toric manifolds and related results. Nagoya Math. J. 181, 149–184 (2006)

    Article  MathSciNet  Google Scholar 

  25. Nishinou, T., Nohara, Y., Ueda, K.: Toric degenerations of Gelfand-Cetlin systems and potential functions. Adv. Math. 224(2), 648–706 (2010)

    Article  MathSciNet  Google Scholar 

  26. Pabiniak, M.: Gromov width of non-regular coadjoint orbits of \(U(n), SO(2n) \,\text{and}\, SO(2n+1)\). Math. Res. Lett. 21(1), 187–205 (2014)

    Article  MathSciNet  Google Scholar 

  27. Pabiniak, M., Tolman, S.: Symplectic cohomological rigidity via toric degnerations. In preparation

    Google Scholar 

  28. Schlenk, F.: Embedding problems in symplectic geometry. In: De Gruyter Expositions in Mathematics, vol. 40. Walter de Gruyter GmbH & Co. KG, Berlin (2005)

    Google Scholar 

  29. Zoghi, M.: The Gromov Width of Coadjoint Orbits of Compact Lie Groups. ProQuest LLC, Ann Arbor, MI (2010). Thesis (Ph.D.)–University of Toronto (Canada)

    Google Scholar 

Download references

Acknowledgements

First of all, the author would like to thank her collaborators: Xin Fang, Iva Halacheva, Peter Littelmann and Sue Tolman. Results contained in this manuscript were obtained in collaboration with the above mathematicians [11, 14, 27], and therefore all of them could also be considered as the authors of this paper. The author also thanks the organisers of the workshops “Interactions with Lattice Polytopes” for giving her the opportunity to participate and present her results at these workshops. The author is supported by the DFG (Die Deutsche Forschungsgemeinschaft) grant CRC/TRR 191 “Symplectic Structures in Geometry, Algebra and Dynamics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Pabiniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pabiniak, M. (2022). Toric Degenerations in Symplectic Geometry. In: Kasprzyk, A.M., Nill, B. (eds) Interactions with Lattice Polytopes. ILP 2017. Springer Proceedings in Mathematics & Statistics, vol 386. Springer, Cham. https://doi.org/10.1007/978-3-030-98327-7_13

Download citation

Publish with us

Policies and ethics