Skip to main content

Some Aspects of Affleck–Kennedy–Lieb–Tasaki Models: Tensor Network, Physical Properties, Spectral Gap, Deformation, and Quantum Computation

  • Chapter
  • First Online:
Entanglement in Spin Chains

Part of the book series: Quantum Science and Technology ((QST))

Abstract

Affleck, Kennedy, Lieb, and Tasaki constructed a spin-1 model that is isotropic in spins and possesses a provable finite gap above the ground state more than three decades ago. They also constructed models in two dimensions. Their construction has impacted subsequent research that is still active. In this review article, we review some selected progresses, such as magnetic ordering of the AKLT models, emerging phases under deforming the AKLT Hamiltonians, symmetry-protected topological order in several AKLT models, their spectral gap, and applications for quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This operation is in fact the starting point of both proofs [36] and [32].

References

  1. I. Affleck, T. Kennedy, E. Lieb, H. Tasaki, Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59, 799–802 (1987); Valence bond ground states in isotropic quantum antiferromagnets. Comm. Math. Phys. 115, 477–528 (1988)

    Google Scholar 

  2. F.D.M. Haldane, Continuum dynamics of the 1-d Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. 93, 464 (1983)

    Article  MathSciNet  Google Scholar 

  3. F.D.M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solutions of the one-dimensional easy-axis Neel state. Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Kennedy, Exact diagonalisations of open spin-1 chains. J. Phys. Cond. Mat. 2, 5737 (1990)

    Article  ADS  Google Scholar 

  5. I. Hagiwara, K. Katsumata, I. Affleck, B.J. Halperin, J.P. Renard, Observation of S = 1∕2 degrees of freedom in an S = 1 linear-chain Heisenberg antiferromagnet. Phys. Rev. Lett. 65, 3181–3184 (1990)

    Article  ADS  Google Scholar 

  6. W.J. Buyers, R.M. Morra, R.L. Armstrong, M.J. Hogan, P. Gerlach, A.K. Hirakawa, Experimental evidence for the Haldane gap in a spin-1 nearly isotropic antiferromagnetic chain. Phys. Rev. Lett. 56, 371 (1986)

    Article  ADS  Google Scholar 

  7. J.P. Renard, L.P. Regnault, M. Verdaguer, Experimental evidence for an Haldane gap in quasi-one dimensional antiferromagnets. J. Phys. Colloques 49, C8 (1988)

    Article  Google Scholar 

  8. M. Fannes, B. Nachtergaele, R.F. Werner, Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Perez-Garcia, F. Verstraete, M.M. Wolf, J.I. Cirac, Matrix product state representations. Quantum Inf. Comput. 7, 401 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Z.-C. Gu, X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry protected topological order. Phys. Rev. B 80 155131 (2009)

    Article  ADS  Google Scholar 

  11. F. Pollmann, E. Berg, A.M. Turner, M. Oshikawa, Symmetry protection of topological order in one-dimensional quantum spin systems. Phys. Rev. B 85, 075125 (2012)

    Article  ADS  Google Scholar 

  12. X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Symmetry-protected topological orders in interacting bosonic systems. Science 338, 1604 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. I. Affleck, Quantum spin chains and the Haldane gap. J. Phys. Condens. Matt. 1, 3047 (1989)

    Article  ADS  Google Scholar 

  14. F. Verstraete, J.I. Cirac, Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions (2004). arXiv:cond-mat/0407066v1

    Google Scholar 

  15. D.P. Arovas, A. Auberbach, F.D.M. Haldane, Extended Heisenberg models of antiferromagnetism: analogies to the fractional quantum Hall effect. Phys. Rev. Lett. 60, 531 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. T.-C. Wei, Quantum spin models for measurement-based quantum computation. Adv. Phys. X 3, 1 (2018)

    Google Scholar 

  17. T. Kennedy, E.H. Lieb, H. Tasaki, A two-dimensional isotropic quantum antiferromagnet with unique disordered ground state. J. Stat. Phys. 53, 383 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Pomata, T.-C. Wei, Demonstrating the Affleck-Kennedy-Lieb-Tasaki spectral gap on 2D degree-3 lattices. Phys. Rev. Lett. 124, 177203 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Pomata, Order, disorder, and transitions in decorated AKLT states on bethe lattices. e-print. arXiv:2103.11819

    Google Scholar 

  20. S.A. Parameswaran, S.L. Sondhi, D.P. Arovas, Order and disorder in AKLT antiferromagnets in three dimensions. Phys. Rev. B 79, 024408 (2009)

    Article  ADS  Google Scholar 

  21. M. den Nijs, K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709 (1989)

    Article  ADS  Google Scholar 

  22. T. Kennedy, H. Tasaki, Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. C. Xu, T. Senthil, Wave functions of bosonic symmetry protected topological phases. Phys. Rev. B 87, 174412 (2013)

    Article  ADS  Google Scholar 

  24. Y.-Z. You, Z. Bi, A. Rasmussen, K. Slagle, C. Xu, Wave function and strange correlator of short-range entangled states. Phys. Rev. Lett. 112, 247202 (2014)

    Article  ADS  Google Scholar 

  25. X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013)

    Article  ADS  Google Scholar 

  26. D.V. Else, C. Nayak, Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge. Phys. Rev. B 90, 235137 (2014)

    Article  ADS  Google Scholar 

  27. K. Wierschem, K.S.D. Beach, Detection of symmetry-protected topological order in AKLT states by exact evaluation of the strange correlator. Phys. Rev. B 93, 245141 (2016)

    Article  ADS  Google Scholar 

  28. F.D.M. Haldane, O(3) Nonlinear σ Model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions. Phys. Rev. Lett. 61, 1029 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Oshikawa, Hidden Z2 × Z2 symmetry in quantum spin chains with arbitrary integer spin. J. Phys. Condens. Matter 4, 7469 (1992)

    Article  ADS  Google Scholar 

  30. F. Pollmann, A.M. Turner, Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012)

    Article  ADS  Google Scholar 

  31. H.J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting qubits. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  32. T.-C. Wei, I. Affleck, R. Raussendorf, Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. Phys. Rev. Lett. 106, 070501 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  33. T.-C. Wei, Quantum computational universality of spin-3/2 Affleck-Kennedy-Lieb-Tasaki states beyond the honeycomb lattice. Phys. Rev. A 88, 062307 (2013)

    Article  ADS  Google Scholar 

  34. R. Raussendorf, H.J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  MATH  Google Scholar 

  35. D. Gross, S. Flammia, J. Eisert, Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Miyake, Quantum computational capability of a 2D valence bond solid phase. Ann. Phys. 326, 1656 (2011)

    Article  ADS  MATH  Google Scholar 

  37. T.-C. Wei, P. Haghnegahdar, R. Raussendorf, Hybrid valence-bond states for universal quantum computation. Phys. Rev. A 90, 042333 (2014)

    Article  ADS  Google Scholar 

  38. T.-C. Wei, R. Raussendorf, Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states. Phys. Rev A 92, 012310 (2015)

    Article  ADS  Google Scholar 

  39. R. Raussendorf, D. Wang, A. Prakash, T.-C. Wei, D. Stephen, Phys. Rev. A 96, 012302 (2017)

    Article  ADS  Google Scholar 

  40. D. Gross, J. Eisert, Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007)

    Article  ADS  Google Scholar 

  41. D.V. Else, I. Schwarz, S.D. Bartlett, A.C. Doherty,.Phys. Rev. Lett. 108, 240505 (2012)

    Article  ADS  Google Scholar 

  42. D.T. Stephen, D.-S. Wang, A. Prakash, T.-Ch. Wei, R. Raussendorf, Computational power of symmetry-protected topological phases. Phys. Rev. Lett. 119, 010504 (2017)

    Article  ADS  Google Scholar 

  43. X. Chen, R. Duan, Z. Ji, B. Zeng, Quantum state reduction for universal measurement based computation. Phys. Rev. Lett. 105, 020502 (2010)

    Article  ADS  Google Scholar 

  44. M. Hein, J. Eisert, H.J. Briegel, Multi-party entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. D. Gottesman, Proceedings of the XXII International Colloquium on Group Theoretical Methods in Physics (International Press, Cambridge, 1999), pp. 32–43

    Google Scholar 

  46. T.-C. Wei, I. Affleck, R. Raussendorf, The 2D AKLT state on the honeycomb lattice is a universal resource for quantum computation. Phys. Rev. A 86, 032328 (2012)

    Article  ADS  Google Scholar 

  47. H. Niggemann, A. Klümper, J. Zittartz, Quantum phase transition in spin-3/2 systems on the hexagonal lattice–optimum ground state approach. Z. Phys. B 104, 103 (1997)

    Article  ADS  Google Scholar 

  48. A.S. Darmawan, G.K. Brennen, S.D. Bartlett, Measurement-based quantum computation in a two-dimensional phase of matter. New J. Phys. 14, 013023 (2012)

    Article  ADS  Google Scholar 

  49. A. Miyake, Quantum computation on the edge of a symmetry-protected topological order. Phys. Rev. Lett. 105, 040501 (2010)

    Article  ADS  Google Scholar 

  50. J. Miller, A. Miyake, Resource quality of a symmetry-protected topologically ordered phase for quantum computation. Phys. Rev. Lett. 114, 120506 (2015)

    Article  ADS  Google Scholar 

  51. R. Raussendorf, C. Okay, D.S. Wang, D.T. Stephen, H.P. Nautrup, A computationally universal quantum phase of matter. Phys. Rev. Lett. 122, 090501 (2019)

    Article  ADS  Google Scholar 

  52. D.T. Stephen, H.P. Nautrup, J. Bermejo-Vega, J. Eisert, R. Raussendorf, Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter. Quantum 3, 162 (2019)

    Article  Google Scholar 

  53. T. Devakul, D.J. Williamson, Universal quantum computation using fractal symmetry-protected cluster phases. Phys. Rev. A 98, 022332 (2018)

    Article  ADS  Google Scholar 

  54. A.K. Daniel, R.N. Alexander, A. Miyake, Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices. Quantum 4, 228 (2020)

    Article  Google Scholar 

  55. S. Knabe, Energy gaps and elementary excitations for certain VBS-quantum antiferromagnets. J. Stat. Phys. 52, 627 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. D. Gosset, E. Mozgunov, Local gap threshold for frustration-free spin systems. J. Math. Phys. 57, 091901 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. M. Lemm, E. Mozgunov, Spectral gaps of frustration-free spin systems with boundary. J. Math. Phys. 60, 051901 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. M. Lemm, Finite-size criteria for spectral gaps in D-dimensional quantum spin systems. Contemp. Math. 741, 121–132 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Garcia-Saez, V. Murg, T.-C. Wei, Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using tensor network methods. Phys. Rev. B 88, 245118 (2013)

    Article  ADS  Google Scholar 

  60. L. Vanderstraeten, M. Mariën, F. Verstraete, J. Haegeman, Excitations and the tangent space of projected entangled-pair states. Phys. Rev. B 92, 201111(R) (2015)

    Google Scholar 

  61. H. Abdul-Rahman, M. Lemm, A. Lucia, B. Nachtergaele, A. Young, A class of two-dimensional AKLT models with a gap, in Analytic Trends in Mathematical Physics, ed. by H. Abdul-Rahman, R. Sims, A. Young, Contemporary Mathematics, vol. 741 (American Mathematical Society, Providence, 2020), pp. 1–21

    Google Scholar 

  62. N. Pomata, T.-C. Wei, AKLT models on decorated square lattices are gapped. Phys. Rev. B 100, 094429 (2019)

    Article  ADS  Google Scholar 

  63. M. Lemm, A.W. Sandvik, L. Wang, Existence of a spectral gap in the Affleck-Kennedy-Lieb-Tasaki model on the hexagonal lattice. Phys. Rev. Lett. 124, 177204 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  64. W. Guo, N. Pomata, T.-C. Wei, Nonzero spectral gap in several uniformly spin-2 and hybrid spin-1 and spin-2 AKLT models. Phys. Rev. Res. 3, 013255 (2021)

    Article  Google Scholar 

  65. F. Verstraete, M.A. Martín-Delgado, J.I. Cirac, Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92, 087201 (2004)

    Article  ADS  Google Scholar 

  66. F. Verstraete, M. Popp, J.I. Cirac, Entanglement versus correlations in spin systems. Phys. Rev. Lett. 92, 027901 (2004)

    Article  ADS  Google Scholar 

  67. N. Pomata, C.-Y Huang, T.-C. Wei, Phase transitions of a two-dimensional deformed Affleck-Kennedy-Lieb- Tasaki model. Phys. Rev. B 98, 014432 (2018)

    Google Scholar 

  68. H. Niggemann, A. Klümper, J. Zittartz, Ground state phase diagram of a spin-2 antiferromagnet on the square lattice. Eur. Phys. J. B 13, 15 (2000)

    Article  ADS  Google Scholar 

  69. Y. Hieida, K. Okunishi, Y. Akutsu, Numerical renormalization approach to two-dimensional quantum antiferromagnets with valence-bond-solid type ground state. New J. Phys. 1, 7 (1999)

    Article  ADS  MATH  Google Scholar 

  70. C.-Y. Huang, M.A. Wagner, T.-C. Wei, Emergence of the XY-like phase in the deformed spin-3/2 AKLT systems. Phys. Rev. B 94, 165130 (2016)

    Article  ADS  Google Scholar 

  71. H. Niggemann, J. Zittartz, Ground state properties of a spin-3/2 model on a decorated square lattice. Eur. Phys. J. B 13, 377–379 (2000)

    Article  ADS  Google Scholar 

  72. R. Kaltenbaek, J. Lavoie, B. Zeng, S.D. Bartlett, K.J. Resch, Optical one-way quantum computing with a simulated valence-bond solid. Nat. Phys. 6, 85 (2010)

    Article  Google Scholar 

  73. C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, C. Monroe, Realization of a quantum integer-spin chain with controllable interactions. Phys. Rev. X 5, 021026 (2015)

    Google Scholar 

  74. S. Mishra, G. Catarina, F. Wu, R. Ortiz, D. Jacob, K. Eimre, J. Ma, C.A. Pignedoli, X. Feng, P. Ruffieux, J. Fernández-Rossier, R. Fasel, Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021)

    Article  ADS  Google Scholar 

  75. S. Roy, J.T.Chalker, I.V. Gornyi, Y. Gefen, Measurement-induced steering of quantum systems. Phys. Rev. Res. 2, 033347 (2020)

    Article  Google Scholar 

  76. V. Sharma, E.J. Mueller, Driven-dissipative control of cold atoms in tilted optical lattices. Phys. Rev. A 103, 043322 (2021)

    Article  ADS  Google Scholar 

  77. M. Koch-Janusz, D.I. Khomskii, E. Sela, Two-dimensional Valence Bond Solid (AKLT) states from t2g electrons. Phys. Rev. Lett. 114, 247204 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.-C.W. acknowledges support from National Science Foundation under Grants No. PHY 1314748, No. PHY 1620252, and No. PHY 1915165 on subjects related to AKLT models. R.R. is supported by the Canada First Research Excellence Fund, Quantum Materials, and Future Technologies Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Affleck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, TC., Raussendorf, R., Affleck, I. (2022). Some Aspects of Affleck–Kennedy–Lieb–Tasaki Models: Tensor Network, Physical Properties, Spectral Gap, Deformation, and Quantum Computation. In: Bayat, A., Bose, S., Johannesson, H. (eds) Entanglement in Spin Chains. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-03998-0_5

Download citation

Publish with us

Policies and ethics