Skip to main content

Antigens and Allergens

  • Chapter
  • First Online:
Textbook of Allergen Tolerance

Abstract

This chapter focuses on the main definitions of antigens, allergens, immunogenicity, allergenicity, and adaptive immune responses. Depending on an allergen’s structure and essential features, biogenic cofactors, and macroorganism itself, we consider the factors of allergenicity. Allergens have been categorized according to their typical structural, biochemical, and functional peculiarities as a small group of all known protein families. The major allergens, particularly house dust mites (HDM), are of particular interest because they cause the potent sensitization and allergic manifestation of most atopic diseases and allow the choice of the allergen-specific immunotherapy (AIT) medication. In the spotlight, the concept of atopy in the context of an evolutionary vestige is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klimov VV. Functional organization of the immune system. In: From basic to clinical immunology. Cham: Springer; 2019. https://doi.org/10.1007/978-3-030-0332301_1.

    Chapter  Google Scholar 

  2. Zhang J, Tao A. Antigenicity, immunogenicity, allergenicity. In: Tao A, Raz E, editors. Allergy bioinformatics, Chapter 11. Cham: Springer; 2015. https://doi.org/10.1007/978-94-017-7444-4_11.

  3. Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. J Allergy Clin Immunol. 2009;123:558–66. https://doi.org/10.1016/j.jaci.2008.12.003.

    Article  CAS  PubMed  Google Scholar 

  4. Caraballo L, Valenta R, Acevedo N, Zakzuk J. Are the terms major and minor allergens useful for precision allergology? Front Immunol. 2021;12:651500. https://doi.org/10.3389/fimmu.2021.651500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zouali M. Immunological tolerance: mechanisms. In: eLS. Paris: Wiley; 2007. p. 1–9. https://doi.org/10.1002/9780470015902.a0000950.pub2.

    Chapter  Google Scholar 

  6. Wisniewski J, Agrawal R, Woodfolk JA. Mechanisms of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy. 2013;43(2):164–76. https://doi.org/10.1111/cea.12016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scheurer S, Toda M, Vieths S. What makes an allergen? Clin Exp Allergy. 2015;45(7):1150–61. https://doi.org/10.1111/cea.12571.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas WR. Allergen ligands in the initiation of allergic sensitization. Curr Allergy Asthma Rep. 2014;14(5):432–54. https://doi.org/10.1007/s11882-014-0432-x.

    Article  CAS  PubMed  Google Scholar 

  9. Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol. 2014;134(3):499–507. https://doi.org/10.1016/j.jaci.2014.06.036.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng H, Zhang Y, Pan J, Liu N, Qin L, Liu M, Wang T. The role of type 2 innate lymphoid cells in allergic diseases. Front Immunol. 2021;12:586078. https://doi.org/10.3389/fimmu.2021.586078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour RE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549:351–6. https://doi.org/10.1038/nature24029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pasha MA, Patel G, Hopp R, Yang Q. Role of innate lymphoid cells in allergic diseases. Allergy Asthma Proc. 2019;40:138–45. https://doi.org/10.2500/aap.2019.40.4217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour RE, et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity. 2019;51:709–23.e6. https://doi.org/10.1016/j.immuni.2019.09.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagashima H, Mahlakoiv T, Shih HY, Davis FP, Meylan F, Huang Y, et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity. 2019;51:682–95.e6. https://doi.org/10.1016/j.immuni.2019.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamauchi K, Ogasawara M. The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. Int J Mol Sci. 2019;20:1733. https://doi.org/10.3390/ijms20071733.

    Article  CAS  PubMed Central  Google Scholar 

  16. Drazdauskaitè G, Layhadi JA, Shamji MH. Mechanisms of allergen immunotherapy in allergic rhinitis. Curr Allergy Asthma Rep. 2021;21:2. https://doi.org/10.1007/s11882-020-00977-7.

    Article  Google Scholar 

  17. Schoos A-MM, Bullens D, Chawes BL, De Vlieger L, DunnGalvin A, Epstein MM, et al. Immunological outcomes of allergen-specific immunotherapy in food allergy. Front Immunol. 2020;11:568598. https://doi.org/10.3389/fimmu.2020.568598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jacquet A. Characterization of innate immune responses to house dust mite allergens: pitfalls and limitations. Front Allergy. 2021;2:662378. https://doi.org/10.3389/falgy.2021.662378.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445–54. https://doi.org/10.1038/nature07204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbas M, Moussa M, Akel H. Type I hypersensitivity reaction. In: StatPearls. Treasure Island: StatPearls Publishing; 2021. Access at: https://www.ncbi.nlm.nih.gov/books/NBK560561/

  21. Krystel-Whittemore M, Dileepan KN, Wood JG. Mast cell: a multi-functional master cell. Front Immunol. 2016;6:620. https://doi.org/10.3389/fimmu.2015.00620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, et al. Physiological roles of mast cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol. 2019;179:247–61. https://doi.org/10.1159/000500088.

    Article  CAS  PubMed  Google Scholar 

  23. Komi DEA, Wohrl S, Bielory L. Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol. 2020;58(3):342–65. https://doi.org/10.1007/s12016-019-08769-2.

    Article  Google Scholar 

  24. da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738. https://doi.org/10.1369/0022155414545334.

    Article  CAS  PubMed  Google Scholar 

  25. Nadif R, Zerimech F, Bouzigon E, Matran R. The role of eosinophils and basophils in allergic diseases considering genetic findings. Curr Opin Allergy Clin Immunol. 2013;13(5):507–13. https://doi.org/10.1097/ACI.0b013e328364e9c0.

    Article  CAS  PubMed  Google Scholar 

  26. Bochner BS. The eosinophil: for better or worse, in sickness and in health. Ann Allergy Asthma Immunol. 2018;121(2):150–5. https://doi.org/10.1016/j.anai.2018.02.031.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The importance of metabolism for immune homeostasis in allergic diseases. Front Immunol. 2021;12:692004. https://doi.org/10.3389/fimmu.2021.692004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stewart FA, Robinson C. Indoor and outdoor allergens and pollutants. In: O'Hehir RE, Holgate ST, Sheikh A, editors. Middleton's allergy essentials, Chapter 4. Amsterdam: Elsevier; 2017. p. 73-116. https://doi.org/10.1016/B978-0-323-37579-5.00004-0.

  29. Costa J, Villa C, Verhoeckx K, Circovic-Velickovic T, Schrama D, Roncada P, Rodriguez PM. Are physicochemical properties shaping the allergenic potency of animal allergens? Clin Rev Allergy Immunol. 2022;62(1):1–36. https://doi.org/10.1007/s12016-020-08826-1.

    Article  CAS  PubMed  Google Scholar 

  30. Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol. 2014;5:179. https://doi.org/10.3389/fimmu.2014.00179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waserman S, Beegin P, Watson W. IgE-mediated food allergy. Allergy Asthma Clin Immunol. 2018;14(2):71–81. https://doi.org/10.1186/s13223-018-0284-3.

    Article  CAS  Google Scholar 

  32. Lei D, Grammer LC. An overview of allergens. Allergy Asthma Proc. 2019;40(6):362–5. https://doi.org/10.2500/aap.2019.40.4247.

    Article  CAS  PubMed  Google Scholar 

  33. Huby RDJ, Dearman RJ, Kimber I. Why are some proteins allergens? Toxicol Sci. 2000;55:235–46. https://doi.org/10.1093/toxsci/55.2.235.

    Article  CAS  PubMed  Google Scholar 

  34. Fu L, Cherayil BJ, Shi H, Wang Y, Zhu Y. Allergenicity evaluation of food proteins. In: Food allergy. Singapore: Springer; 2019. p. 93–122. https://doi.org/10.1007/978-981-13-6928-5_5.

    Chapter  Google Scholar 

  35. Hayes M. Allergenicity of food proteins. In: Hayes M, editor. Novel proteins for food, pharmaceuticals and agriculture: sources, applications and advances, Chapter 14. Chichester: Wiley; 2018. https://doi.org/10.1002/9781119385332.ch14.

  36. Aalberse RC. Structural biology of allergens. J Allergy Clin Immunol. 2000;106(2):228–38. https://doi.org/10.1067/mai.2000.108434.

    Article  CAS  PubMed  Google Scholar 

  37. Pali-Schöll I, Jensen-Jarolim E. The concept of allergen-associated molecular patterns (AAMP). Curr Opin Immunol. 2016;42:113–8. https://doi.org/10.1016/j.coi.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  38. Custis NJ, Woodfolk JA, Vaughan JW, Platts-Mills TAE. Quantitative measurement of airborne allergens from dust mites, dogs, and cats using an ion-charging device. Clin Exp Allergy. 2003;33(7):986–91. https://doi.org/10.1046/j.1365-2222.2003.01706.x.

    Article  CAS  PubMed  Google Scholar 

  39. Comstock SS, Maleki SJ, Teuber SS. Boiling and frying peanuts decreases soluble peanut (Arachis Hypogaea) allergens Ara h 1 and Ara h 2 but does not generate hypoallergenic peanuts. PLoS One. 2016;11(6):e0157849. https://doi.org/10.1371/journal.pone.0157849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heuberger DM, Schepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J. 2019;17(4):1–24. https://doi.org/10.1186/s12959-019-0194-8.

    Article  CAS  Google Scholar 

  41. Emanuelsson С, Spangfort MD. Allergens as eukaryotic proteins lacking bacterial homologues. Mol Immunol. 2007;44(12):3256–60. https://doi.org/10.1016/j.molimm.2007.01.019.

    Article  CAS  PubMed  Google Scholar 

  42. Reese TA, Liang HE, Tager ANM, Luster AD, Van Rooijen N, Voehringer D, Locksley RM. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature. 2007;447:92–6. https://doi.org/10.1038/nature05746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: the basics. Gastroenterology. 2015;148(6):1120–31. https://doi.org/10.1053/j.gastro.2015.02.006.

    Article  CAS  PubMed  Google Scholar 

  44. Banks TA, Gada SM. Filaggrin mutations as an archetype for understanding the pathophysiology of atopic dermatitis. J Am Acad Dermatol. 2014;71(3):592–3. https://doi.org/10.1016/j.jaad.2014.04.075.

    Article  PubMed  Google Scholar 

  45. Pintye J, Baeten JM. Benefits of male circumcision for MSM: evidence for action. Lancet Glob Health. 2019;7:e388–9. https://doi.org/10.1016/S2214-109X(19)30038-5.

    Article  PubMed  Google Scholar 

  46. Shade KTC, Conroy ME, Washburn N, Kitaoka M, Huynh DJ, Laprise E, et al. Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature. 2020;582:265–70. https://doi.org/10.1038/s41586-020-2311-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeong KY, Hong C-S, Lee J-S, Park J-W. Optimization of allergen standardization. Yonsei Med J. 2011;52(3):393–400. https://doi.org/10.3349/ymj.2011.52.3.393.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zimmer J, Bridgewater J, Ferreira F, van Ree R, Rabin RL, Vieths S. The history, present and future of allergen standardization in the United States and Europe. Front Immunol. 2021;12:725831. https://doi.org/10.3389/fimmu.2021.725831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brusca I, Barrale M, Onida R, La Chiusa SM, Gjomarkaj M, Uasuf CG. The extract, the molecular allergen or both for the in vitro diagnosis of peach and peanut sensitization? Clin Chim Acta. 2019;493:25–30. https://doi.org/10.1016/j.cca.2019.01.016.

    Article  CAS  PubMed  Google Scholar 

  50. Kadam K, Sawant S, Jayaraman VK, Kulkarni-Kale U. Databases and algorithms in allergen informatics. In: Abdurakhmonov IY, editor. Bioinformatics. London: IntechOpen; 2016. https://doi.org/10.5772/63083.

    Google Scholar 

  51. Breiteneder H, Diamant Z, Eiwegger T, Fokkens WJ, Traidl-Hoffmann C, Nadeau K, et al. Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy. 2019;74:2293–311. https://doi.org/10.1111/all.13851.

    Article  PubMed  Google Scholar 

  52. Coca AF, Cooke RA. On the classification of the phenomenon of hypersensitiveness. J Immunol. 1923;8:163–82.

    CAS  Google Scholar 

  53. Bellanti JA, Settipane RA. The atopic disorders and atopy... "strange diseases" now better defined! Allergy Asthma Proc. 2017;38(4):241–2. https://doi.org/10.2500/aap.2017.38.4074.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ishizaka K, Ishizaka T, Hornbrook MM. Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity. J Immunol. 1966;97(1):75–85.

    CAS  PubMed  Google Scholar 

  55. Gell PGH, Coombs RRA. Clinical aspects of immunology. London: Blackwell; 1963.

    Google Scholar 

  56. Gross M. Why did evolution give us allergies? Curr Biol. 2015;25(2):53–5. https://doi.org/10.1016/j.cub.2015.01.002.

    Article  CAS  Google Scholar 

  57. Tyagi N, Farnell EJ, Fitzsimmons CM, et al. Comparisons of allergenic and metazoan parasite proteins: allergy the price of immunity. PLoS Comput Biol. 2015;11:e1004546. https://doi.org/10.1371/journal.pcbi.1004546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klimov PB, O'Connor B. Is permanent parasitism reversible? - critical evidence from early evolution of house dust mites. Syst Biol. 2013;62(3):411–23. https://doi.org/10.1093/sysbio/syt008.

    Article  PubMed  Google Scholar 

  59. Mondal M, Klimov P, Flynt AS. Rewired RNAi-mediated genome surveillance in house dust mites. PLoS Genet. 2018;14(1):e1007183. https://doi.org/10.1371/journal.pgen.1007183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tamari M, Tanaka S, Hirota T. Genome-wide association studies of allergic diseases. Allergol Int. 2013;62(1):21–8. https://doi.org/10.2332/allergolint.13-RAI-0539.

    Article  CAS  PubMed  Google Scholar 

  61. Lyons JJ, Milner JD. Primary atopic disorders. J Exp Med. 2018;215(4):1009–22. https://doi.org/10.1084/jem.20172306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Castagnoli R, Lougaris V, Giardino G, Volpi S, Leonardi L, La Torre F, et al. Inborn errors of immunity with atopic phenotypes: a practical guide for allergists. World Allergy Organ J. 2021;14(2):100513. https://doi.org/10.1016/j.waojou.2021.100513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tezza G, Mazzei F, Boner A. Epigenetics of allergy. Early Hum Dev. 2013;89(Suppl 1):S20–1. https://doi.org/10.1016/S0378-3782(13)70007-0.

    Article  CAS  PubMed  Google Scholar 

  64. Thomas WR. Hierarchy and molecular properties of house dust mite allergens. Allergol Int. 2015;64:304–11. https://doi.org/10.1016/j.alit.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  65. Calderón MA, Linnberg A, Kleine-Tebble J, De Bay F, de Rojas DHF, Virchow JC. Respiratory allergy caused by house dust mites: what do we really know? J Allergy Clin Immunol. 2015;136(1):38–48. https://doi.org/10.1016/j.jaci.2014.10.012.

    Article  PubMed  Google Scholar 

  66. Testera-Montes A, Salas M, Palomares F, Ariza A, Torres MJ, RondĂłn C, Eguiluz-Gracia I. Local respiratory allergy: from rhinitis phenotype to disease spectrum. Front Immunol. 2021;12:691964. https://doi.org/10.3389/fimmu.2021.691964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aggarwal P, Senthikumaran S. Dust mite allergy. In: StatPearls. Treasure Island: StatPearls Publishing; 2021. Access at: https://www.ncbi.nlm.nih.gov/books/NBK560718/

  68. d'Alessandro M, Bergantini L, Perrone A, Cameli P, Beltrami V, Alderighi L, et al. House dust mite allergy and the Der p1 conundrum: a literature review and case series. Allergie. 2021;1:108–14. https://doi.org/10.3390/allergies1020008.

    Article  Google Scholar 

  69. Miller JD. The role of dust mites in allergy. Clin Rev Allergy Immunol. 2019;57(3):312–29. https://doi.org/10.1007/s12016-018-8693-0.

    Article  CAS  PubMed  Google Scholar 

  70. Reddy VB, Lerner EA. Activation of mas-related G-protein–coupled receptors by the house dust mite cysteine protease Der p1 provides a new mechanism linking allergy and inflammation. J Biol Chem. 2017;292(42):P17399–406. https://doi.org/10.1074/jbc.M117.787887.

    Article  Google Scholar 

  71. Carlton SM. Nociceptive primary afferents: they have a mind of their own. J Physiol. 2014;592(16):3403–11. https://doi.org/10.1113/jphysiol.2013.269654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Waldron R, McGowan J, Gordon N, McCarthy C, Mitchell EB, Fitzpatrick DA. Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus. PLoS One. 2019;14(5):e0216171. https://doi.org/10.1371/journal.pone.0216171.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sarwar M. House dust mites: ecology, biology, prevalence, epidemiology and elimination. In: Pacheco GAB, Kamboh AA, editors. Parasitology and microbiology research. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.91891.

    Chapter  Google Scholar 

  74. Leoni C, Volpicella M, Dileo MCD, Gattulli BAR, Ceci LR. Chitinases as food allergens. Molecules. 2019;24(11):2087. https://doi.org/10.3390/molecules24112087.

    Article  CAS  PubMed Central  Google Scholar 

  75. Stranzl T, Ipsen H, Christensen LH, Eiwegger T, Johansen N, Lund K, Andersen PS. Limited impact of Der p 23 IgE on treatment outcomes in tablet allergy immunotherapy phase III study. Allergy. 2020;76(4):1235–8. https://doi.org/10.1111/all.14200.

    Article  CAS  PubMed  Google Scholar 

  76. Carnés J, Iraola V, Cho SH, Esch RE. Mite allergen extracts and clinical practice. Ann Allergy Asthma Immunol. 2017;118:249–56. https://doi.org/10.1016/j.anai.2016.08.018.

    Article  CAS  PubMed  Google Scholar 

  77. Arroabarren E, Echechipía S, Galbete A, Lizaso MT, Olaguibel JM, Tabar AI. Association between component-resolved diagnosis of house dust mite allergy and efficacy and safety of specific immunotherapy. J Investig Allergol Clin Immunol. 2019;29(2):164–7. https://doi.org/10.18176/jiaci.0359.

    Article  CAS  PubMed  Google Scholar 

  78. Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy. 2018;73:2274–89. https://doi.org/10.1111/all/13652.

    Article  PubMed  Google Scholar 

  79. Valenta R, Karaulov A, Niederberger V, Zhernov Y, Elisyutina O, Campana R, et al. Allergen extracts for in vivo diagnosis and treatment of allergy: is there a future? J Allergy Clin Immunol Pract. 2018;6(6):1845–55.e2. https://doi.org/10.1016/j.jaip.2018.08.032.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Klimov .

1.1 Electronic Supplementary Material

Audio 1.1

(MP3 14430 kb)

Audio 1.2

(MP3 13780 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimov, V.V. (2022). Antigens and Allergens. In: Textbook of Allergen Tolerance . Springer, Cham. https://doi.org/10.1007/978-3-031-04309-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04309-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04308-6

  • Online ISBN: 978-3-031-04309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics