Skip to main content

Abstract

This work is the next of a series on vibrations of non-homogeneous structures. It addresses the lateral harmonic forcing, with spatial dependencies, of a two-segment damped Timoshenko beam. In the series, frequency response functions (FRFs) were determined for segmented structures, such as rods and beams, using analytic and numerical approaches. These structures are composed of stacked cells, which are made of different materials and may have different geometric properties. The goal is the determination of frequency response functions (FRFs). Two approaches are employed. The first approach uses displacement differential equations for each segment, where boundary and interface continuity conditions are used to determine the constants involved in the solutions. Then the response, as a function of forcing frequency, can be obtained. This procedure is unwieldy, and determining particular integrals can become difficult for arbitrary spatial variations. The second approach uses logistic functions to model segment discontinuities. The result is a system of partial differential equations with variable coefficients. Numerical solutions are developed with the aid of MAPLEĀ® software. For free/fixed boundary conditions, spatially constant force, and viscous damping, excellent agreement is found between the methods. The numerical approach is then used to obtain FRFs for cases including spatially varying load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.maplesoft.com

  2. 2.

    www.efunda.com/math/areas/RolledSteelBeamsS.cfm

Abbreviations

A :

Cross-section area (A i, cross-section area for i-th material)

C Ti, C Ri :

Viscous damping coefficients per unit length

C i :

Non-dimensional damping coefficients

D ij :

Proportional damping matrix coefficients

E :

Youngā€™s modulus (E i, Youngā€™s modulus for i-th material)

f i :

Non-dimensional logistic functions

G i :

Beam segment material shear modulus

I :

Area moment of inertia of the beam cross-section (I i, moment of inertia of i-cell)

k :

Shear coefficient (k i, shear coefficient of i-cell)

K :

Non-dimensional logistic function parameter

K ij :

Stiffness matrix coefficients

L :

Length of beam (L i, length of i-th cell)

M :

Bending moment

M ij :

Mass matrix coefficients

P i :

Generalized external forces

p i :

Force acting on the i-segment

Q :

Non-dimensional forcing function

q :

External force per unit length acting on the beam

q 1 :

Spatial forcing function for harmonic solution

r 1, s 1 :

Shape function constants

t :

Time

\( {\hat{U}}_i \), \( {\hat{V}}_i \):

Generalized coordinates

V :

Shear force

x :

Longitudinal coordinate

w :

Transverse displacement of the beam

Y :

Non-dimensional transverse displacement of the beam, YĀ =Ā w/L

Z, Ļ• :

Spatial functions for harmonic solution

Ī±, Ī² :

Constants of mass and stiffness proportionality

Ī± 1, Ī³ 1 :

Non-dimensional parameters

Ī³ :

Shear strain

Ī“ j :

Cell properties

Ī¶ i :

Modal damping ratio

Īø :

Rotational angle of the beam cross-section

\( \hat{\lambda} \) :

Complex frequency, \( \hat{\lambda}=\left(a+ bI\right) \)

Ī» i, Ī· i:

Shape functions

Ī½ :

Non-dimensional frequency, Ī½Ā =Ā Ī©/Ī©0

Ī¾ :

Non-dimensional spatial coordinate, Ī¾Ā =Ā x/L

Ļ :

Mass density (Ļ i, density value for i-th material)

Ļ„ :

Non-dimensional time, Ļ„Ā =Ā Ī©0 t

Ļ… i :

Beam segment material Poissonā€™s ratio

Ī©0 :

Reference frequency

References

  1. Mazzei, A.J., Scott, R.A.: Harmonic forcing of a two-segment Euler-Bernoulli beam. In: Dervilis, N. (ed.) Special Topics in Structural Dynamics, Volume 6: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 1ā€“15. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-53841-9_1

    ChapterĀ  Google ScholarĀ 

  2. Mazzei, A.J., Scott, R.A.: Harmonic forcing of a two-segment Timoshenko beam. In: Dervilis, N. (ed.) Special Topics in Structural Dynamics, vol. 5, pp. 1ā€“15. Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-12676-6_3

    ChapterĀ  Google ScholarĀ 

  3. Mazzei, A.J., Scott, R.A.: Harmonic forcing of damped non-homogeneous Euler-Bernoulli beams. In: Epp, D.S. (ed.) Special Topics in Structural Dynamics & Experimental Techniques, vol. 5, pp. 11ā€“23. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-47709-7_2

    ChapterĀ  Google ScholarĀ 

  4. Lee, E.H., Yang, W.H.: On waves in composite materials with periodic structure. SIAM J. Appl. Math. 25, 492ā€“499 (1973). https://doi.org/10.1137/0125049

    ArticleĀ  MATHĀ  Google ScholarĀ 

  5. Hussein, M.I., Hulbert, G.M., Scott, R.A.: Dispersive elastodynamics of 1D banded materials and structures: analysis. J. Sound Vib. 289, 779ā€“806 (2006). https://doi.org/10.1016/j.jsv.2005.02.030

    ArticleĀ  Google ScholarĀ 

  6. Hussein, M.I., Hulbert, G.M., Scott, R.A.: Dispersive elastodynamics of 1D banded materials and structures: design. J. Sound Vib. 307, 865ā€“893 (2007). https://doi.org/10.1016/j.jsv.2007.07.021

    ArticleĀ  Google ScholarĀ 

  7. Vasseur, J.O., Deymier, P., Sukhovich, A., Merheb, B., Hladky-Hennion, A.C., Hussein, M.I.: Phononic band structures and transmission coefficients: methods and approaches. In: Deymier, P.A. (ed.) Acoustic Metamaterials and Phononic Crystals, pp. 329ā€“372. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-31232-8_10

    ChapterĀ  Google ScholarĀ 

  8. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802-040802ā€“38 (2014). https://doi.org/10.1115/1.4026911

  9. Capsoni, A., Maria ViganĆ², G., Bani-Hani, K.: On damping effects in Timoshenko beams. Int. J. Mech. Sci. 73, 27ā€“39 (2013). https://doi.org/10.1016/j.ijmecsci.2013.04.001

    ArticleĀ  Google ScholarĀ 

  10. Samuels, J.C., Eringen, A.C.: Response of a Simply Supported Timoshenko Beam to a Purely Random Gaussian Process. Purdue Univ Lafayette in Div of Engineering Sciences (1957). https://apps.dtic.mil/dtic/tr/fulltext/u2/134729.pdf

  11. Bishop, R.E.D., Price, W.G.: The vibration characteristics of a beam with an axial force. J. Sound Vib. 59, 237ā€“244 (1978)

    ArticleĀ  Google ScholarĀ 

  12. Kobayashi, K., Yoshida, N.: Unboundedness of Solutions of Timoshenko Beam Equations with Damping and Forcing Terms. https://doi.org/10.1155/2013/435456

  13. Lei, Y., Adhikari, S., Friswell, M.I.: Vibration of nonlocal Kelvinā€“Voigt viscoelastic damped Timoshenko beams. Int. J. Eng. Sci. 66ā€“67, 1ā€“13 (2013). https://doi.org/10.1016/j.ijengsci.2013.02.004

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Bozyigit, B., Yesilce, Y., Catal, H.H.: Free flexural vibrations of axially loaded Timoshenko beams with internal viscous damping using dynamic stiffness formulation and differential transformation. In: Kasimzade, A.A., Şafak, E., Ventura, C.E., Naeim, F., Mukai, Y. (eds.) Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering: Recent Developments, pp. 307ā€“328. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-93157-9_15

    ChapterĀ  Google ScholarĀ 

  15. Chen, W.-R.: Parametric studies on bending vibration of axially-loaded twisted Timoshenko beams with locally distributed Kelvinā€“Voigt damping. Int. J. Mech. Sci. 88, 61ā€“70 (2014). https://doi.org/10.1016/j.ijmecsci.2014.07.006

    ArticleĀ  Google ScholarĀ 

  16. Esmailzadeh, E., Ohadi, A.R.: Vibration and stability analysis of non-uniform Timoshenko beams under axial and distributed tangential loads. J. Sound Vib. 236, 443ā€“456 (2000). https://doi.org/10.1006/jsvi.2000.2999

    ArticleĀ  Google ScholarĀ 

  17. Cowper, G.R.: The shear coefficient in Timoshenkoā€™s beam theory. J. Appl. Mech. 33, 335ā€“340 (1966)

    ArticleĀ  Google ScholarĀ 

  18. Mazzei, A.J., Scott, R.A.: On the effects of non-homogeneous materials on the vibrations and static stability of tapered shafts. J. Vib. Control. 19, 771ā€“786 (2013). https://doi.org/10.1177/1077546312438429

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. Chiu, T.C., Erdogan, F.: One-dimensional wave propagation in a functionally graded elastic medium. J. Sound Vib. 222, 453ā€“487 (1999). https://doi.org/10.1006/jsvi.1998.2065

    ArticleĀ  Google ScholarĀ 

  20. Chopra, A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Pearson, Hoboken (2017)

    Google ScholarĀ 

  21. Craig, R.R., Kurdila, A., Craig, R.R.: Fundamentals of Structural Dynamics. John Wiley, Hoboken (2006)

    MATHĀ  Google ScholarĀ 

  22. Kelly, S.G.: Advanced Vibration Analysis. CRC/Taylor & Francis, Boca Raton (2007)

    MATHĀ  Google ScholarĀ 

  23. Eslami, M.R.: Finite Elements Methods in Mechanics. Springer, Cham (2014)

    BookĀ  Google ScholarĀ 

  24. Schwarz, B., Richardson, M.: Proportional damping from experimental data. In: Allemang, R., De Clerck, J., Niezrecki, C., Wicks, A. (eds.) Topics in Modal Analysis, vol. 7, pp. 179ā€“186. Springer New York, New York (2014)

    Google ScholarĀ 

  25. Chihara, T.S.: Introduction to Orthogonal Polynomials. Gordon and Breach, London (1978). https://doi.org/10.1007/978-1-4614-6585-0_17

    BookĀ  MATHĀ  Google ScholarĀ 

  26. Bhat, R.B.: Transverse vibrations of a rotating uniform cantilever beam with tip mass as predicted by using beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. J. Sound Vib. 105, 199ā€“210 (1986). https://doi.org/10.1016/0022-460X(86)90149-5

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaldo J. Mazzei Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazzei, A.J. (2023). Forced Vibrations of Damped Non-homogeneous Timoshenko Beams. In: Walber, C., Stefanski, M., Harvie, J. (eds) Sensors and Instrumentation, Aircraft/Aerospace and Dynamic Environments Testing, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-031-05415-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05415-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05414-3

  • Online ISBN: 978-3-031-05415-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics