Skip to main content

Fibre-Based Supercontinuum

  • Chapter
  • First Online:
The Supercontinuum Laser Source
  • 715 Accesses

Abstract

We comprehensively review the historical development, fundamental physical processes, numerical modelling, practical implementation and recent progress in supercontinuum generation in optical fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolvand, A., Nazarkin, A., Chugreev, A. V., Kaminski, C. F., & Russell, P. S. J. (2009). Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers. Physical Review Letters, 103(18), 183902.

    Article  ADS  Google Scholar 

  • Abdolvand, A., Walser, A. M., Ziemienczuk, M., Nguyen, T., & Russell, P. S. J. (2012). Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber. Optics Letters, 37(21), 4362.

    Article  ADS  Google Scholar 

  • Abeeluck, A. K., & Headley, C. (2004). Supercontinuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser. Applied Physics Letters, 85, 4863–4865.

    Article  ADS  Google Scholar 

  • Abeeluck, A. K., & Headley, C. (2005). Continuous-wave pumping in the anomalous-and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. Optics Letters, 30, 61–63.

    Article  ADS  Google Scholar 

  • Abeeluck, A. K., Headley, C., & Jørgensen, C. G. (2004). High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. Optics Letters, 29, 2163–2165.

    Article  ADS  Google Scholar 

  • Agrawal, G. P. (2012). Nonlinear fiber optics (5th ed.). Academic Press. ISBN 9780123970237.

    MATH  Google Scholar 

  • Agrawal, G. P., & Potasek, M. J. (1986). Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Physical Review A, 33(3), 1765.

    Article  ADS  Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970a). Emission in region 4000 to 7000 Å via 4-photon coupling in glass. Physical Review Letters, 24, 584–587.

    Article  ADS  Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970b). Observation of self-phase modulation and small-scale filaments in crystals and glasses. Physical Review Letters, 24, 592–584.

    Article  ADS  Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970c). Direct distortion of electronic clouds of rare-gas atoms in intense electric fields. Physical Review Letters, 24, 1217–1220.

    Article  ADS  Google Scholar 

  • Alfano, R. R., & Shapiro, S. L. (1970d). Picosecond spectroscopy using the inverse Raman effect. Chemical Physics Letters, 8, 631–633.

    Article  ADS  Google Scholar 

  • Anderson, D., & Lisak, M. (1983). Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Physical Review A, 27(3), 1393.

    Article  ADS  Google Scholar 

  • Avdokhin, A. V., Popov, S. V., & Taylor, J. R. (2003). Continuous-wave, high- power, Raman continuum generation in holey fibers. Optics Letters, 28, 1353–1355.

    Article  ADS  Google Scholar 

  • Beaud, P., Hodel, W., Zysset, B., & Weber, H. P. (1987). Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single mode optical fiber. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1938–1946.

    Article  Google Scholar 

  • Belli, F., Abdolvand, A., Chang, W., Travers, J. C., & Russell, P. S. J. (2015). Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica, 2, 292–300.

    Article  ADS  Google Scholar 

  • Benabid, F., Knight, J. C., Antonopoulos, G., St, P., & Russell, J. (2002). Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298(5592), 399–402.

    Article  ADS  Google Scholar 

  • Benabid, F., Bouwmans, G., Knight, J. C., St, P., Russell, J., & Couny, F. (2004). Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen. Physical Review Letters, 93(12), 123903.

    Article  ADS  Google Scholar 

  • Birks, T. A., Knight, J. C., & Russell, P. S. J. (1997). Endlessly single-mode photonic crystal fiber. Optics Letters, 22(13), 961–963.

    Article  ADS  Google Scholar 

  • Birks, T. A., Wadsworth, W. J., & Russell, P. S. J. (2000). Supercontinuum generation in tapered fibers. Optics Letters, 25, 1415–1417.

    Article  ADS  Google Scholar 

  • Blow, K. J., & Wood, D. (1989). Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE Journal of Quantum Electronics, 25(12), 2665–2673.

    Article  ADS  Google Scholar 

  • Boyer, G. (1999). High-power femtosecond-pulse reshaping near the zero-dispersion wavelength of an optical fiber. Optics Letters, 24, 945–947.

    Article  ADS  Google Scholar 

  • Champert, P. A., Couderc, V., Leproux, P., Février, S., Tombelaine, V., Labonté, L., Roy, P., & Froehly, C. (2004). White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Optics Express, 12, 4366–4371.

    Article  ADS  Google Scholar 

  • Chang, W., Nazarkin, A., Travers, J. C., Nold, J., Hölzer, P., Joly, N. Y., & Russell, P. S. J. (2011). Influence of ionization on ultrafast gas-based nonlinear fiber optics. Optics Express, 19(21), 21018–21027.

    Article  ADS  Google Scholar 

  • Chen, K. K., Alam, S.-u., Price, J. H. V., Hayes, J. R., Lin, D., Malinowski, A., Codemard, C., Ghosh, D., Pal, M., Bhadra, S. K., & Richardson, D. J. (2010). Picosecond fiber MOPA pumped supercontinuum source with 39 W output power. Optics Express, 18, 5426–5432.

    Article  ADS  Google Scholar 

  • Chernikov, S. V., Zhu, Y., Taylor, J. R., & Gapontsev, V. P. (1997). Supercontinuum self-Q switched ytterbium fiber laser. Optics Letters, 22, 298–300.

    Article  ADS  Google Scholar 

  • Coen, S., Chau, A. H. L., Leonhardt, R., Harvey, J. D., Knight, J. C., Wadsworth, W. J., & Russell, P. S. J. (2001). White light supercontinuum generation with 60 ps pump pulses in a photonic crystal fiber. Optics Letters, 26, 1356–1538.

    Article  ADS  Google Scholar 

  • Coen, S., Chau, A. H. L., Leonhardt, R., Harvey, J. D., Knight, J. C., Wadsworth, W. J., & Russell, P. S. J. (2002). Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. Journal of the Optical Society of America B: Optical Physics, 19, 7533764.

    Article  Google Scholar 

  • Cohen, L. G., & Lin, C. (1977). Pulse delay measurements in the zero dispersion wavelength region for optical fibers. Applied Optics, 16, 3136–3139.

    Article  ADS  Google Scholar 

  • Cohen, L. G., & Lin, C. (1978). A universal fiber-optic (UFO) measurement system based upon a near-IR fiber Raman laser. IEEE Journal of Quantum Electronics, QE14, 855–859.

    Article  ADS  Google Scholar 

  • Collings, B. C., Mitchell, M. I., Brown, L., & Knox, W. H. (2000). A 1021 channel WDM system. IEEE Photonics Technology Letters, 12, 906–908.

    Article  ADS  Google Scholar 

  • Conforti, M., Marini, A., Tran, T. X., Faccio, D., & Biancalana, F. (2013). Interaction between optical fields and their conjugates in nonlinear media. Optics Express, 21(25), 31239–31252.

    Article  ADS  Google Scholar 

  • Corwin, K. L., Newbury, N. R., Dudley, J. M., Coen, S., Diddams, S. A., Weber, K., & Windeler, R. S. (2003). Fundamental noise limitations to supercontinuum generation in microstructure fiber. Physical Review Letters, 90(11), 113904.

    Article  ADS  Google Scholar 

  • Couny, F., Benabid, F., & Light, P. S. (2006). Large-pitch kagome-structured hollow-core photonic crystal fiber. Optics Letters, 31, 3574–3576.

    Article  ADS  Google Scholar 

  • Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. S. J., Roberts, P. J., & Allan, D. C. (1999). Single mode photonic bandgap guidance of light in air. Science, 285, 1537–1539.

    Article  Google Scholar 

  • Cristiani, I., Tediosi, R., Tartara, L., & Degiorgio, V. (2004). Dispersive wave generation by solitons in microstructured optical fibers. Optics Express, 12, 124–135.

    Article  ADS  Google Scholar 

  • Cumberland, B. A., Travers, J. C., Popov, S. V., & Taylor, J. R. (2008a). 29 W High power CW supercontinuum source. Optics Express, 16, 5954–5962.

    Article  ADS  Google Scholar 

  • Cumberland, B. A., Travers, J. C., Popov, S. V., & Taylor, J. R. (2008b). Toward visible cw-pumped supercontinuua. Optics Letters, 33, 2122–2124.

    Article  ADS  Google Scholar 

  • De Maria, A. J., Ferrar, C. M., & Danielsonn, G. E. (1966). Mode locking of a Nd3+ doped glass laser. Applied Physics Letters, 8, 22–24.

    Article  ADS  Google Scholar 

  • de Matos, C. J. S., Popov, S. V., & Taylor, J. R. (2004). Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm. Applied Physics Letters, 85, 2706–2707.

    Article  ADS  Google Scholar 

  • de Matos, C. J. S., Kennedy, R. E., Popov, S. V., & Taylor, J. R. (2005). 20-kW peak power all-fiber 1.57-μm source based on compression in air-core photonic bandgap fiber, its frequency doubling and broadband generation from 430 nm to 1450 nm. Optics Letters, 30, 436–438.

    Article  ADS  Google Scholar 

  • DeMartini, F., Townes, C. H., Gustafson, T. K., & Kelley, P. L. (1967). Self-steepening of light pulses. Physical Review, 164(2), 312.

    Article  ADS  Google Scholar 

  • Dianov, E. M., Karasik, A. Y., Mamyshev, P. V., Prokhorov, A. M., Serkin, V. N., Stelmakh, M. F., & Fomichev, A. A. (1985). Stimulated –Raman conversion of multisoliton pulses in quartz optical fibers. JETP Letters, 41, 294–297.

    ADS  Google Scholar 

  • Dianov, E. M., Nikonova, Z. S., Prokhorov, A. M., Podshivalov, A. A., & Serkin, V. N. (1986). Optimal compression of multi-soliton pulses. Soviet Technical Physics Letters (JETP), 12, 311–313.

    Google Scholar 

  • Dianov, E. M., Grudinin, A. B., Khaidarov, D. V., Korobkin, D. V., Prokhorov, A. M., & Serkin, V. N. (1989). Nonlinear dynamics of femtosecond pulse propagation through single mode optical fiber. Fiber and Integrated Optics, 8(1), 61–69.

    Article  ADS  Google Scholar 

  • Domachuk, P., Wolchover, N. A., Cronin-Colomb, M., Wang, A., George, A. K., Cordeiro, C. M. B., Knight, J. C., & Omenetto, F. G. (2008). Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Optics Express, 16, 7161–7168.

    Article  ADS  Google Scholar 

  • Drummond, P. D., & Corney, J. F. (2001). Quantum noise in optical fibers. I. Stochastic equations. Journal of the Optical Society of America B, 18(2), 139–152.

    Article  ADS  Google Scholar 

  • Dudley, J. M., & Coen, S. (2002). Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Optics Letters, 27(13), 1180–1182.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Gu, X., Xu, L., Kimmel, M., Zeek, E., O’Shea, P., Trebino, R., Coen, S., & Windeler, R. S. (2002). Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: Simulations and experiments. Optics Express, 10, 1215–1221.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Genty, G., & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135–1184.

    Article  ADS  Google Scholar 

  • Dudley, J. M., Dias, F., Erkintalo, M., & Genty, G. (2014). Instabilities, breathers and rogue waves in optics. Nature Photonics, 8, 755–764.

    Article  ADS  Google Scholar 

  • Duhant, M., Renard, W., Canat, G., Nguyen, T. N., Smektala, F., Troles, J., Coulombier, Q., Toupin, P., Brilland, L., Bourdon, P., & Renversez, G. (2011). Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm. Optics Letters, 36, 2859–2861.

    Article  ADS  Google Scholar 

  • Emaury, F., Dutin, C. F., Saraceno, C. J., Trant, M., Heckl, O. H., Wang, Y. Y., Schriber, C., et al. (2013). Beam delivery and pulse compression to sub-50 Fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. Optics Express, 21(4), 4986–4994.

    Article  ADS  Google Scholar 

  • Erkintalo, M., Genty, G., & Dudley, J. M. (2010). On the statistical interpretation of optical rogue waves. The European Physical Journal - Special Topics, 185(1), 135–144.

    Article  ADS  Google Scholar 

  • Ermolov, A., Mak, K. F., Frosz, M. H., Travers, J. C., & Russell, P. S. J. (2015). Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Physical Review A, 92, 033821.

    Article  ADS  Google Scholar 

  • Fedotov, A. B., Serebryannikov, E. E., & Zheltikov, A. M. (2007). Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers. Physical Review A, 76(5), 053811.

    Article  ADS  Google Scholar 

  • Fisher, R. A., & Bischel, W. (1973). The role of linear dispersion in plane-wave self-phase modulation. Applied Physics Letters, 23(12), 661–663.

    Article  ADS  Google Scholar 

  • Fisher, R. A., & Bischel, W. K. (1975). Numerical studies of the interplay between self-phase modulation and dispersion for intense plane-wave laser pulses. Journal of Applied Physics, 46(11), 4921–4934.

    Article  ADS  Google Scholar 

  • Frosz, M. H. (2010). Validation of input-noise model for simulations of supercontinuum generation and rogue waves. Optics Express, 18(14), 14778–14787.

    Article  ADS  Google Scholar 

  • Frosz, M. H., Bang, O., & Bjarklev, A. (2006). Soliton collisions and Raman gain regimes in continuous-wave pumped supercontinuum generation. Optics Express, 14, 9391–9407.

    Article  ADS  Google Scholar 

  • Fuji, Y., Kawasaki, B. S., Hill, K. O., & Johnson. (1980). Sum-frequency light generation in optical fibres. Optics Letters, 5, 48–50.

    Article  ADS  Google Scholar 

  • Gabriagues, J. M. (1983). Third-harmonic and three wave sum-frequency light generation in an elliptical-core optical fiber. Optics Letters, 8, 183–185.

    Article  ADS  Google Scholar 

  • Gaeta, A. L. (2002). Nonlinear propagation and continuum generation in microstructured optical fibers. Optics Letters, 27(11), 924–926.

    Article  ADS  Google Scholar 

  • Genty, G., Lehtonen, M., & Ludvigsen, H. (2004). Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 f. pulses. Optics Express, 12, 4614–4624.

    Article  ADS  Google Scholar 

  • Genty, G., Coen, S., & Dudley, J. M. (2007a). Fiber supercontinuum sources. Journal of the Optical Society of America B: Optical Physics, 24, 1771–1785.

    Article  ADS  Google Scholar 

  • Genty, G., Kinsler, P., Kibler, B., & Dudley, J. M. (2007b). Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides. Optics Express, 15(9), 5382–5387.

    Article  ADS  Google Scholar 

  • Genty, G., de Sterke, C. M., Bang, O., Dias, F., Akhmediev, N., & Dudley, J. M. (2010). Collisions and turbulence in optical rogue wave formation. Physics Letters A, 374(7), 989–996.

    Article  ADS  MATH  Google Scholar 

  • Gérôme, F., Dupriez, P., Clowes, J., Knight, J. C., & Wadsworth, W. J. (2008). High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling. Optics Express, 16(4), 2381–2386.

    Article  ADS  Google Scholar 

  • Ghosh, S., Bhagwat, A. R., Renshaw, C. K., Goh, S., Gaeta, A. L., & Kirby, B. J. (2006). Low-light-level optical interactions with Rubidium vapor in a photonic band-gap fiber. Physical Review Letters, 97, 023603.

    Article  ADS  Google Scholar 

  • Goda, K., & Jalali, B. (2013). Dispersive Fourier transformation for fast continuous single-shot measurements. Nature Photonics, 7, 102–112.

    Article  ADS  Google Scholar 

  • Godin, T., Wetzel, B., Sylvestre, T., Larger, L., Kudlinski, A., Mussot, A., Ben Salem, A., Zghal, M., Genty, G., Dias, F., & Dudlety, J. M. (2013). Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Optics Express, 21, 18452–18460.

    Article  ADS  Google Scholar 

  • Golovchenko, E. A., Dianov, A. N., Prokhorov, A. M., & Serkin, V. N. (1985). Decay of optical solitons. JETP Letters, 42, 74–77.

    Google Scholar 

  • Golovchenko, E. A., Dianov, E. M., Pilipetski, A. N., Prokhorov, A. M., & Serkin, V. N. (1987a). Self-effect and maximum contraction of optical femtosecond wave packets in a nonlinear dispersive medium. JETP Letters, 45, 91–95.

    ADS  Google Scholar 

  • Golovchenko, E. A., Dianov, E. M., Karasik, A. Y., Pilipetski, A. N., & Prokhorov, A. M. (1987b). Stimulated Raman self-scattering of laser pulses. Soviet Journal of Quantum Electronics, 19, 391–392.

    Article  Google Scholar 

  • Golovchenko, E. A., Mamyshev, P. V., Pilipetski, A. N., & Dianov, E. M. (1991). Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single mode fibers. Journal of the Optical Society of America B: Optical Physics, 8, 1626–1632.

    Article  ADS  Google Scholar 

  • González-Herráez, M., Martín-López, S., Corredera, P., Hernanz, M. L., & Horche, P. R. (2003). Supercontinuum generation using a continuous-wave Raman fiber laser. Optics Communication, 226, 323–328.

    Article  ADS  Google Scholar 

  • Gorbach, A. V., & Skyrabin, D. V. (2007). Theory of radiation trapping by accelerating solitons in optical fibers. Physical Review A, 76, 053803.

    Article  ADS  Google Scholar 

  • Gordon, J. P. (1986). Theory of the soliton self-frequency shift. Optics Letters, 11, 662–664.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., & Taylor, J. R. (1989). Soliton evolution from noise bursts. Electronics Letters, 25, 736–737.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Gomes, A. S. L., & Taylor, J. R. (1987). High-efficiency single-pass solitonlike compression of Raman radiation in an optical fiber around 1.4 μm. Optics Letters, 12, 1035–1037.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Gomes, A. S. L., & Taylor, J. R. (1988a). Pulses of four optical cycles from an optimized optical fibre/grating pair/soliton pulse compressor. Journal of Modern Optics, 35, 7–10.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Faldon, M. E., & Taylor, J. R. (1988b). Raman amplification of modulational instability and solitary wave formation. Optics Letters, 13, 1029–1031.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Faldon, M. E., & Taylor, J. R. (1988c). Temporal and spectral evolution of femtosecond solitons in the region of the zero group velocity dispersion of a single mode optical fibre. Optics Communication, 69, 173–176.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Wigley, P. G. J., & Taylor, J. R. (1989a). Soliton generation through Raman amplification of noise bursts. Optics Letters, 14, 1122–1124.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Faldon, M. E., & Taylor, J. R. (1989b). Spectral and temporal study of the evolution from modulational instability to solitary wave. Optics Communications, 69, 325–328.

    Article  ADS  Google Scholar 

  • Granzow, N., Schmidt, M. A., Chang, W., Wang, L., Coulombier, Q., Troles, J., Toupin, P., Hartl, I., Lee, K. F., Fermann, M. E., Wondraczek, L., & Russell, P. S. J. (2013). Mid-infrared supercontinuum generation in As2S3-silica “nano spike” step index waveguide. Optics Express, 21, 10969–10977.

    Article  ADS  Google Scholar 

  • Grigoryants, E. E., Smirnov, V. I., & Chamorovski, Y. K. (1982). Generation of wide-band optical continuum in fiber waveguides. Soviet Journal of Quantum Electronics, 12, 841–847.

    Article  ADS  Google Scholar 

  • Gross, B., & Manassah, J. (1992). Supercontinuum in the anomalous group-velocity dispersion region. Journal of the Optical Society of America B: Optical Physics, 9, 1813–1818.

    Article  ADS  Google Scholar 

  • Grudinin, A. B., Dianov, E. M., Korobkin, D. V., Prokhorov, A. M., Serkin, V. N., & Kaidarov, D. V. (1987). Stimulated-Raman-scattering excitation of 18-fs pulses in 1.6-μm region during pumping of a single mode optical fiber by the beam from a Nd:YAG laser (λ = 1.064 μm). JETP Letters, 45, 260–263.

    ADS  Google Scholar 

  • Hagen, C. L., Walewski, J. W., & Sanders, S. T. (2006). Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Photonics Technology Letters, 18, 91–93.

    Article  ADS  Google Scholar 

  • Halbout, J.-M., & Grischkowsky, D. (1985). 12-fs ultrashort optical pulse compression at a high repetition rate. Applied Physics Letters, 45, 1281–1128.

    Article  ADS  Google Scholar 

  • Hardin, R. H., & Tappert, F. D. (1973). Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Review (Chronicle), SIAM Review, 15(2), 423.

    Google Scholar 

  • Hasegawa, A. (1984). Generation of a train of soliton pulses by induced modulational instability in optical fibers. Optics Letters, 9, 288–290.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Brinkman, F. (1980). Tunable coherent IR and FIR sources utilizing modulational instability. IEEE Journal of Quantum Electronics, QE16, 694–699.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Kodama, Y. (1981). Signal transmission by optical solitons in monomode fiber. Proceedings of the IEEE, 69, 1145–1150.

    Article  ADS  Google Scholar 

  • Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers 1. Anomalous dispersion. Applied Physics Letters, 23, 142–144.

    Article  ADS  Google Scholar 

  • Heidt, A. M. (2010). Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fiber. Journal of the Optical Society of America B: Optical Physics, 27, 50–559.

    Article  ADS  Google Scholar 

  • Heidt, A. M., Price, J. H. V., Baskiotis, C., Feehan, J. S., Lii, Z., Alam, S. U., & Richardson, D. J. (2013). Mid-infra-red ZBLAN fiber supercontinuum source using picosecond didoe-pumping at 2 μm. Optics Express, 21, 24281–24287.

    Article  ADS  Google Scholar 

  • Herrmann, J., Greibner, U., Zhavoronkov, N., Husakou, A., Nickel, D., Knight, J. C., Wadsworth, W. J., Russell, P. S. J., & Korn, G. (2002). Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Physical Review Letters, 88, 173901.

    Article  ADS  Google Scholar 

  • Hölzer, P., Chang, W., Travers, J. C., Nazarkin, A., Nold, J., Joly, N. Y., Saleh, M. F., Biancalana, F., & Russell, P. S. J. (2011). Femtosecond nonlinear fiber optics in the ionization regime. Physical Review Letters, 107(20), 203901.

    Article  ADS  Google Scholar 

  • Hooper, L. E., Mosley, P. J., Muir, A. C., Wadsworth, W. J., & Knight, J. C. (2010). Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Optics Express, 19, 4902–4907.

    Article  ADS  Google Scholar 

  • Hori, T., Takayanagi, J., Nishizawa, N., & Goto, T. (2004). Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. Optics Express, 12, 317–324.

    Article  ADS  Google Scholar 

  • Hu, X., Zhang, W., Yang, Z., Wang, Y., Zhao, W., Li, X., Wang, H., Li, C., & Shen, D. (2011a). Optics Letters, 36, 2659–2661.

    Article  ADS  Google Scholar 

  • Hult, J. (2007). A fourth-order Runge? Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. Journal of Lightwave Technology, 25(12), 3770–3775.

    Article  ADS  Google Scholar 

  • Hundertmark, H., Rammler, S., Wilken, T., Holzwarth, R., Hänsch, T. W., & Russell, P. S. J. (2009). Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse. Optics Express, 17, 1919–1924.

    Article  ADS  Google Scholar 

  • Husakou, A. V., & Herrmann, J. (2001). Supercontinuum generation of high order solitons by fission in photonic crystal fibers. Physical Review Letters, 87, 203901.

    Article  ADS  Google Scholar 

  • Im, S.-J., Husakou, A., & Herrmann, J. (2009). Guiding properties and dispersion control of Kagome lattice hollow-core photonic crystal fibers. Optics Express, 17(15), 13050–13058.

    Article  ADS  Google Scholar 

  • Ippen, E. P. (1970). Low-power, Quasi-cw Raman oscillator. Applied Physics Letters, 16, 303–305.

    Article  ADS  Google Scholar 

  • Ippen, E. P., & Stolen, R. H. (1972). Stimulated-Brillouin scattering in optical fibers. Applied Physics Letters, 21, 539–541.

    Article  ADS  Google Scholar 

  • Ippen, E. P., Shank, C. V., & Gustafson, T. K. (1974). Self phase modulation of picosecond pulses in optical fibers. Applied Physics Letters, 24, 190–192.

    Article  ADS  Google Scholar 

  • Islam, M. N., Sucha, G., Bar-Joseph, I., Wegener, M., Gordon, J. P., & Chemla, D. S. (1989). Femtosecond distributed soliton spectrum in fibers. Journal of the Optical Society of America B: Optical Physics, 6, 1149–1158.

    Article  ADS  Google Scholar 

  • Itoh, H., Davis, G. M., & Sudo, S. (1989). Continuous-wave-pumped modulational instability in an optical fiber. Optics Letters, 14, 1368–1370.

    Article  ADS  Google Scholar 

  • Jiang, X., Joly, N. Y., Finger, M. A., Wong, G. K. L., Babic, F., Saad, M., & Russell, P. St. J. (2013). Close to three-octave-spanning supercontinuum generated in ZBLAN photonic crystal fiber. Paper JTh5A.6 Post deadline Advanced Solid State Lasers Congress.

    Google Scholar 

  • Jiang, X., Joly, N. Y., Finger, M. A., Babic, F., Wong, G. K. L., Travers, J. C., & Russell, P. S. J. (2015). Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nature Photonics, 9, 133–139.

    Article  ADS  Google Scholar 

  • Johnson, A. M., & Shank, C. V. (1989). Chapter 10: Pulse-compression in single-mode fibers – Picoseconds to femtoseconds. In R. R. Alfano (Ed.), The Supercontinuum Laser Source. Springer. ISBN 0-387-96946-2.

    Google Scholar 

  • Joly, N. Y., Nold, J., Chang, W., Hölzer, P., Nazarkin, A., Wong, G. K. L., Biancalana, F., & Russell, P. S. J. (2011). Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Physical Review Letters, 106(20), 203901.

    Article  ADS  Google Scholar 

  • Kao, K. C., & Hockham, G. A. (1966). Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers, 113, 1151–1158.

    Article  Google Scholar 

  • Kapron, F. P., Keck, D. B., & Maurer, R. D. (1970). Radiation losses in glass optical waveguides. Applied Physics Letters, 17, 423–425.

    Article  ADS  Google Scholar 

  • Karasawa, N., Nakamura, S., Nakagawa, N., Shibata, M., Morita, R., Shigekawa, H., & Yamashita, M. (2001). Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber. IEEE Journal of Quantum Electronics, 37(3), 398–404.

    Article  ADS  Google Scholar 

  • Kelleher, E. J. R., Travers, J. C., Popov, S. V., & Taylor, J. R. (2012a). Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulational instability. Journal of the Optical Society of America B: Optical Physics, 29, 502–512.

    Article  ADS  Google Scholar 

  • Kelleher, E. J. R., Erkintalo, M., & Travers, J. C. (2012b). Fission of solitons in continuous-wave supercontinuum. Optics Letters, 37(24), 5217–5219.

    Article  ADS  Google Scholar 

  • Kinsler, P. (2010). Optical pulse propagation with minimal approximations. Physical Review A, 81(1), 013819.

    Article  ADS  Google Scholar 

  • Knight, J. C. (2003). Photonic crystal fibers. Nature, 424, 847–851.

    Article  ADS  Google Scholar 

  • Knight, J. C., Birks, T. A., Russell, P. S. J., & Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21, 1547–1549.

    Article  ADS  Google Scholar 

  • Knox, W. H., Fork, R. L., Downer, M. C., Stolen, R. H., & Shank, C. V. (1985). Optical pulse compression to 8 f. at a 5-kHz repetition rate. Applied Physics Letters, 46, 1220–1121.

    Article  Google Scholar 

  • Kobtsev, S. M., & Smirnov, S. V. (2005). Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Optics Express, 13, 6912–6918.

    Article  ADS  Google Scholar 

  • Kodama, Y., & Hasegawa, A. (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 510–524.

    Article  ADS  Google Scholar 

  • Kolesik, M., & Moloney, J. V. (2004). Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Physical Review E, 70(3), 036604.

    Article  ADS  Google Scholar 

  • Kubota, H., Tamura, K. R., & Nakazawa, M. (1999). Analysis of coherence-maintained ultrashort optical pulse trains and supercontinuum, generation in the presence of soliton-amplified spontaneous-emission interaction. Journal of the Optical Society of America B: Optical Physics, 16, 2223–2232.

    Article  ADS  Google Scholar 

  • Kudlinski, A., & Mussot, A. (2008). Visible cw-pumped supercontinuum. Optics Letters, 33, 2407–2409.

    Article  ADS  Google Scholar 

  • Kudlinski, A., George, A. K., Knight, J. C., Travers, J. C., Rulkov, A. B., Popov, S. V., & Taylor, J. R. (2006). Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Optics Express, 14, 5715–5722.

    Article  ADS  Google Scholar 

  • Kudlinski, A., Bouwmans, G., Quiquempois, V., LeRouge, A., Bigot, L., Mélin, G., & Mussot, A. (2009a). Dispersion-engineered photonic crystal fibers for cw-pumped supercontinuum generation. Journal of Lightwave Technology, 27, 1556–1564.

    Article  ADS  Google Scholar 

  • Kudlinski, A., Bouwmans, G., Vanvincq, O., Quiquempois, V., LeRouge, A., Bigot, L., Mélin, G., & Mussot, A. (2009b). White-light cw-pumped supercontinuum generation in highly GeO2 -doped-core photonic crystal fibers. Optics Letters, 34, 3621–3523.

    Article  ADS  Google Scholar 

  • Kumar, V. V. R. K., George, A. K., Reeves, W. H., Knight, J. C., Russell, P. S. J., Omenetto, F. G., & Taylor, A. J. (2002). Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Optics Express, 10, 1520–1525.

    Article  ADS  Google Scholar 

  • Kumar, V. V. R. K., George, A. K., Knight, J. C., & Russell, P. S. J. (2003). Tellurite photonic crystal fiber. Optics Express, 11, 2641–2645.

    Article  ADS  Google Scholar 

  • Labat, D., Melin, G., Mussot, A., Fleureau, A., Galkovsky, L., Lempereur, S., & Kudlinski, A. (2011). Phosphorus-doped photonic crystal fibers for high-power (36 W) visible CW supercontinuum. IEEE Photonics Journal, 3(5), 815–820.

    Article  ADS  Google Scholar 

  • Laegsgaard, J. (2007). Mode profile dispersion in the generalised nonlinear Schrödinger equation. Optics Express, 15(24), 16110–16123.

    Article  ADS  Google Scholar 

  • Laegsgaard, J. (2012). Modeling of nonlinear propagation in fiber tapers. Journal of the Optical Society of America B, 29(11), 3183–3191.

    Article  ADS  Google Scholar 

  • Leon-Saval, S. G., Birks, T. A., Wadsworth, W. J., & Russell, P. S. J. (2004). Supercontinuum generation in submicron fibre waveguides. Optics Express, 12, 2864–2869.

    Article  ADS  Google Scholar 

  • Lewis, S. A. E., Chernikov, S. V., & Taylor, J. R. (1998). Ultra-broad-bandwidth spectral continuum generation in fibre Raman amplifier. Electronics Letters, 34, 2267–2268.

    Article  ADS  Google Scholar 

  • Lin, C., & Stolen, R. H. (1976). New nanosecond continuum for excited-state spectroscopy. Applied Physics Letters, 28, 216–218.

    Article  ADS  Google Scholar 

  • Lin, C., Nguyen, V. T., & French, W. G. (1978). Wideband near i.r. continuum (0.7–2.1 mm) generated in low-loss optical fibre. Electronics Letters, 14, 822–823.

    Article  ADS  Google Scholar 

  • Lou, J. W., Xia, T. J., Boyraz, O., Shi, C.-X., Nowak, G. A., & Islam, M. N. (1997). Broader and flatter supercontinuum spectra in dispersion-tailored fibers, paper TuH6. Technical Digest Optical Fiber Communications, 32–34.

    Google Scholar 

  • Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187, 493–494.

    Article  ADS  Google Scholar 

  • Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y., & Russell, P. S. J. (2013a). Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF. Optics Express, 21(9), 10942–10953.

    Article  ADS  Google Scholar 

  • Mak, K. F., Travers, J. C., Joly, N. Y., Abdolvand, A., St, P., & Russell, J. (2013b). Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Optics Letters, 38(18), 3592–3595.

    Article  ADS  Google Scholar 

  • Mamyshev, P. V., & Chernikov, S. V. (1990). Ultrashort-pulse propagation in optical fibers. Optics Letters, 15(19), 1076–1078.

    Article  ADS  Google Scholar 

  • Martin-Lopez, S., Carrasco-Sanz, A., Corredera, P., Abrardi, L., Hernanz, M. L., & Gonzalez-Herraez, M. (2006). Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation. Optics Letters, 31, 3477–3479.

    Article  ADS  Google Scholar 

  • Martinez, R. A., Plant, G., Guo, K., Janiszewski, B., Freeman, M. J., Maynard, R. L., Islam, M. N., Terry, F. L., Alvarez, O., Chenard, F., Bedford, R., Gibson, R., & Ifarraguerri, A. I. (2018). Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Optics Letters 43, 296–299.

    Google Scholar 

  • McClung, F. J., & Helwarth, R. W. (1962). Giant optical pulsations from ruby. Journal of Applied Physics, 33, 828–829.

    Article  ADS  Google Scholar 

  • Mitschke, F. M., & Mollenauer, L. F. (1986). Discovery of the soliton self-frequency shift. Optics Letters, 11, 659–661.

    Article  ADS  Google Scholar 

  • Mitschke, F. M., & Mollenauer, L. F. (1987a). Experimental observation of interaction forces between solitons in optical fibers. Optics Letters, 12, 355–357.

    Article  ADS  Google Scholar 

  • Mitschke, F. M., & Mollenauer, L. F. (1987b). Ultrashort pulses from the soliton laser. Optics Letters, 12, 407–409.

    Article  ADS  Google Scholar 

  • Mocker, H. W., & Collins, R. J. (1965). Mode competition and self-locking effects in a Q-switched ruby laser. Applied Physics Letters, 7, 270–273.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F., & Gordon, J. P. (2006). Solitons in optical fibers. Elsevier-Academic Press. ISBN 13: 978-0-12-504190-4.

    Google Scholar 

  • Mollenauer, L. F., & Stolen, R. H. (1984). The soliton laser. Optics Letters, 9, 13–16.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F., Stolen, R. H., & Gordon, J. P. (1980). Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Physical Review Letters, 45, 1095–1098.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F., Stolen, R. H., Gordon, J. P., & Tomlinson, W. J. (1983). Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Optics Letters, 8, 289–291.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F., Stolen, R. H., & Islam, M. N. (1985). Experimental demostration of soliton propagation in long fibers: loss compensated by Raman gain. Optics Letters, 10, 229–231.

    Article  ADS  Google Scholar 

  • Møller, U., Yu, Y., Petersen, C. R., Kubat, I., Mechin, D., Brilland, L., Troles, J., Luther-Davies, B., & Bang, O. (2014). High average power mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. In Advanced Photonics, JM5A.54. OSA Technical Digest (online). Optical Society of America.

    Google Scholar 

  • Monro, T. M., West, Y. D., Hewak, D. W., Broderick, N. C. R., & Richardson, D. J. (2000). Chalcogenide holey fibres. Electronics Letters, 36, 1998–2000.

    Article  ADS  Google Scholar 

  • Mori, K., Takara, H., Kawanishi, T., Saruwatari, M., & Morioka, T. (1997). Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile. Electronics Letters, 33, 1806–1808.

    Article  ADS  Google Scholar 

  • Morioka, T., Kawanishi, S., Mori, K., & Saruwatari, M. (1993). More than 100 wavelength channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres. Electronics Letters, 29, 862–863.

    Article  ADS  Google Scholar 

  • Morioka, T., Kawanishi, S., Mori, K., & Saruwatari, M. (1994). Nearly penalty free <4ps supercontinuum Gbits/s pulse generation over 1535–1560 nm. Electronics Letters, 30, 790–791.

    Article  ADS  Google Scholar 

  • Morioka, T., Takara, H., Kawanishi, S., Kamatani, O., Takiguchi, K., Uchiyama, K., Saruwatari, M., Takahashi, H., Yamada, M., Kanamori, T., & Ono, H. (1996). 1 Tbit/s (100Gbits/s x 10 channel) OTDM/WDM transmission using single supercontinuum WDM source. Electronics Letters, 32, 906–907.

    Article  ADS  Google Scholar 

  • Mussot, A., & Kudlinki, A. (2009). 19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm. Electronics Letters, 45.

    Google Scholar 

  • Mussot, A., Lantz, E., Maillotte, H., Sylvestre, T., Finot, C., & Pitois, S. (2004). Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Optics Express, 12, 2838–2843.

    Article  ADS  Google Scholar 

  • Mussot, A., Beaugeois, M., Bouazaoui, M., & Sylvestre, T. (2007). Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths. Optics Express, 15, 11553–11563.

    Article  ADS  Google Scholar 

  • Mussot, A., Kudlinski, A., Kolobov, M., Louvergneaux, E., Douay, M., & Taki, M. (2009). Observation of extreme temporal events in CW-pumped supercontinuum. Optics Express, 17, 17101–17015.

    Article  Google Scholar 

  • Nakazawa, M., & Tokuda, M. (1983). Continuum spectrum generation in a multimode fiber using two pump beams at 1.3μm wavelength region. Japanese Journal of Applied Physics, 22, L239–L241.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Yan, M. F., Wisk, P., Fleming, J., DiMarcello, F., Monberg, E., Yablon, A., Jørgensen, C., & Veng, T. (2003a). All-fiber, octave-spanning supercontinuum. Optics Letters, 28, 643–645.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Abeluck, A. K., Headley, C., Yan, M. F., & Jørgensen, C. G. (2003b). Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers. Applied Physics B, 77, 211–218.

    Article  Google Scholar 

  • Nicholson, J. W., Yablon, A. D., Westbrook, P. S., Feder, K. S., & Yan, M. F. (2004a). High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. Optics Express, 12, 3025–3034.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Westbrook, P. S., Fedetr, K. S., & Yablon, A. D. (2004b). Supercontinuum generation in ultraviolet-irradiated fibers. Optics Letters, 29, 2363–2365.

    Article  ADS  Google Scholar 

  • Nicholson, J. W., Bise, R., Alonzo, J., Stockert, T., Trevor, D. J., Dimarcello, F., Monberg, E., Fini, J. M., Westbrook, P. S., Feder, K., & Grüner-Nielsen, L. (2008). Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber. Optics Letters, 33, 28–30.

    Article  ADS  Google Scholar 

  • Nishizawa, N., & Goto, T. (2002a). Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength. Optics Letters, 27, 152–154.

    Article  ADS  Google Scholar 

  • Nishizawa, N., & Goto, T. (2002b). Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero dispersion wavelength. Optics Express, 10, 1151–1159.

    Article  ADS  Google Scholar 

  • Nold, J., Hölzer, P., Joly, N. Y., Wong, G. K. L., Nazarkin, A., Podlipensky, A., Scharrer, M., & Russell, P. S. J. (2010). Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber. Optics Letters, 35(17), 2922–2924.

    Article  ADS  Google Scholar 

  • Nowak, G. A., Kim, J., & Islam, M. N. (1999). Stable supercontinuum generation in short lengths of conventional dispersion shifted fiber. Applied Optics, 38, 7364–7369.

    Article  ADS  Google Scholar 

  • Okuno, T., Onishi, M., & Nishimura, M. (1998). Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber. IEEE Photonics Technology Letters, 10, 72–74.

    Article  ADS  Google Scholar 

  • Österberg, U., & Margulis, W. (1986). Dye laser pumped by Nd:YAG laser pulses frequency doubled in a glass optical fiber. Optics Letters, 11, 516–518.

    Article  ADS  Google Scholar 

  • Ouzounov, D. G., Ahmad, F. R., Müller, D., Venkataraman, N., Gallagher, M. T., Thomas, M. G., Silcox, J., Koch, K. W., & Gaeta, A. L. (2003). Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science, 301(5640), 1702–1704.

    Article  ADS  Google Scholar 

  • Ouzounov, D., Hensley, C., Gaeta, A., Venkateraman, N., Gallagher, M., & Koch, K. (2005). Soliton pulse compression in photonic band-gap fibers. Optics Express, 13(16), 6153–6159.

    Article  ADS  Google Scholar 

  • Palfrey, S. L., & Grischkowsky, D. (1984). Generation of 16-fsec frequency-tunable pulses by optical pulse compression. Optics Letters, 10, 562–564.

    Article  ADS  Google Scholar 

  • Persephonis, P., Chernikov, S. V., & Taylor, J. R. (1996). Cascaded CW fibre Raman laser source 1.6–1.9 μm. Electronics Letters, 32, 1486–1487.

    Article  ADS  Google Scholar 

  • Petersen, C. R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., & Bang, O. (2014). Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photonics, 8, 830–834.

    Article  ADS  Google Scholar 

  • Poletti, F., & Horak, P. (2008). Description of ultrashort pulse propagation in multimode optical fibers. Journal of the Optical Society of America B, 25(10), 1645–1654.

    Article  ADS  Google Scholar 

  • Popov, S. V., Champert, P. A., Solodyankin, M. A., & Taylor, J. R. (2002). Seeded fibre amplifiers and multi-watt average power continuum generation in holety fibres, Paper WKK2, Proceedings OSA Annual Meeting, 117.

    Google Scholar 

  • Price, J. H. V., Monro, T. M., Ebendorff-Heidepriem, H., Poletti, F., Horak, P., Finazzi, V., Leong, J. Y. Y., Petropoulos, P., Flanagan, J. C., Brambilla, G., Feng, X., & Richardson, D. J. (2007). Mid-IR supercontinuum generation from nonsilica microstructured optical fibers. IEEE Journal of Selected Topics in Quantum Electronics, 13, 738–749.

    Article  ADS  Google Scholar 

  • Provino, L., Dudley, J. M., Maillotte, H., Grossard, N., Windeler, R. S., & Eggleton, B. J. (2001). Compact broadband continuum source based on microchip laser pumped microstructured fibre. Electronics Letters, 37, 558–559.

    Article  ADS  Google Scholar 

  • Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T., & Ohishi, Y. (2009a). Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber. Optics Letters, 34, 2015–2017.

    Article  ADS  Google Scholar 

  • Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T., & Ohishi, Y. (2009b). Ultrabroad supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Applied Physics Letters, 95, 161103.

    Article  ADS  Google Scholar 

  • Ranka, J. K., Windeler, R. S., & Stentz, A. J. (2000). Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm. Optics Letters, 25, 25–27.

    Article  ADS  Google Scholar 

  • Ruban, V., Kodama, Y., Ruderman, M., Dudley, J., Grimshaw, R., McClintock, P. V. E., Onorato, M., et al. (2010). Rogue waves – Towards a unifying concept?: Discussions and debates. The European Physical Journal – Special Topics, 185(1), 5–15.

    Article  ADS  Google Scholar 

  • Rulkov, A. B., Getman, A. G., Vyatkin, M. Y., Popov, S. V., Gapontsev, V. P., & Taylor, J. R. (2004a). 525–1800 nm, Watt level all-fibre picosecond source, Paper CDPC7, Conference on Lasers and Electro-Optics, San Francisco.

    Google Scholar 

  • Rulkov A. B., Popov S. V., & Taylor, J. R., (2004b). 1.5 – 2.0 μm, multi Watt white-light generation in CW format in highly nonlinear fibres. Paper TuA6 OSA Conference, Advanced Solid State Photonics, Santa Fe, NM, USA.

    Google Scholar 

  • Rulkov, A. B., Vyatkin, M. Y., Popov, S. V., Taylor, J. R., & Gapontsev, V. P. (2005). High brightness picosecond all-fiber generation in 525-1800 nm range with picosecond Yb pumping. Optics Express, 13, 377–381.

    Article  ADS  Google Scholar 

  • Russell, P. S. J. (2006). Photonic-crystal fibers. Journal of Lightwave Technology, 24, 4729–4749.

    Article  ADS  Google Scholar 

  • Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A., & Travers, J. C. (2014). Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nature Photonics, 8(4), 278–286.

    Article  ADS  Google Scholar 

  • Rusu, M., Grudinin, A. B., & Okhotnikov, O. G. (2005). Slicing the supercontinuum radiation generated in photonic crystal fiber using an all-fiber chirped-pulse amplification scheme. Optics Express, 13, 6390–6400.

    Article  ADS  Google Scholar 

  • Sanghera, J. S., Shaw, L. B., & Aggarwal, I. D. (2009). Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE Journal of Selected Topics in Quantum Electronics, 15, 114–119.

    Article  ADS  Google Scholar 

  • Satsuma, J., & Yajima, N. (1974). Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media. Supplement, Progress Theoretical Physics, 55, 284–306.

    Article  ADS  MathSciNet  Google Scholar 

  • Schreiber, T., Limpert, J., Zellmer, H., Tünnermann, A., & Hansen, K. P. (2003). High average power supercontinuum generation in photonic crystal fibers. Optics Communication, 228, 71–78.

    Article  ADS  Google Scholar 

  • Seefeldt, M., Heuer, A., & Menzel, R. (2003). Compact white-light source with an average output power of 2.4W and 900 nm spectral bandwidth. Optics Communication, 216, 199–202.

    Article  ADS  Google Scholar 

  • Serkin, V. N. (1987a). Self compression and decay of femtosecond optical wavepackets in fiber light guides. Soviet Physics/Lebedev Institute Reports, 6, 49–53.

    Google Scholar 

  • Serkin, V. N. (1987b). Colored envelope solitons in optical fibers. Soviet Technical Physics Letters, 13, 320–321.

    Google Scholar 

  • Solli, D. R., Ropers, C., Koonath, P., & Jalali, B. (2007). Optical rogue waves. Nature, 450, 1054–1058.

    Article  ADS  Google Scholar 

  • Solli, D. R., Ropers, C., & Jalali, B. (2008). Active control of rogue waves for stimulated supercontinuum generation. Physical Review Letters, 101, 233902.

    Article  ADS  Google Scholar 

  • Sørensen, S. T., Møller, U., Larsen, C., Moselund, P. M., Jakobsen, C., Johansen, J., Andersen, T. V., Thomsen, C. L., & Bang, O. (2012). Deep-blue supercontinnum sources with optimum taper profiles ? Verification of GAM. Optics Express, 20(10), 10635–10645.

    Article  ADS  Google Scholar 

  • Stark, S. P., Steinmetz, T., Probst, R. A., Hundertmark, H., Wilken, T., Hänsch, T. W., Udem, T., Russell, P. S. J., & Holzwarth, R. (2011). 14 GHz visible supercontinuum generation: Calibration sources for astronomical spectrographs. Optics Express, 19(17), 15690–15695.

    Article  ADS  Google Scholar 

  • Stark, S., Travers, J. C., Joly, N. Y., & Russell, P. S. J. (2012a). Supercontinuum sources based on photonic crystal fiber. In O. G. Okhotnikov (Ed.), Fiber lasers (pp. 63–96). Wiley-VCH Verlag GmbH & Co.

    Chapter  Google Scholar 

  • Stark, S. P., Travers, J. C., & Russell, P. S. J. (2012b). Extreme supercontinuum generation to the deep UV. Optics Letters, 37(5), 770–772.

    Article  ADS  Google Scholar 

  • Stolen, R. H. (2008). The early years of fiber nonlinear optics. IEEE Journal of Lightwave Technology, 26, 1021–1031.

    Article  Google Scholar 

  • Stolen, R. H., & Ashkin, A. (1973). Optical Kerr effect in glass waveguides. Applied Physics Letters, 22, 294–296.

    Article  ADS  Google Scholar 

  • Stolen, R. H., & Lin, C. (1978). Self phase modulation in silica optical fibers. Physical Review A, 17, 1448–1453.

    Article  ADS  Google Scholar 

  • Stolen, R. H., Ippen, E. P., & Tynes, A. R. (1972). Raman oscillation in glass optical waveguides. Applied Physics Letters, 20, 62–64.

    Article  ADS  Google Scholar 

  • Stolen, R. H., Bjorkholm, J. E., & Ashkin, A. (1974). Phase matched three-wave mixing in silica fiber optical waveguides. Applied Physics Letters, 24, 308–310.

    Article  ADS  Google Scholar 

  • Stolen, R. H., Mollenauer, L. F., & Tomlinson, W. J. (1983). Observation of pulse restoration at the soliton period in optical fibers. Optics Letters, 8, 186–188.

    Article  ADS  Google Scholar 

  • Stolen, R. H., Gordon, J. P., Tomlinson, W. J., & Haus, H. A. (1989). Raman response function of silica-core fibers. Journal of the Optical Society of America B, 6(6), 1159–1166. https://doi.org/10.1364/JOSAB.6.001159

    Article  ADS  Google Scholar 

  • Stone, J. M., & Knight, J. C. (2008). Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser. Optics Express, 16, 2670–2675.

    Article  ADS  Google Scholar 

  • Tai, K., & Tomita, A. (1986). 1100x optical fiber pulse compression using grating pair and soliton effect at 1.319 μm. Applied Physics Letters, 48, 1033–1035.

    Article  ADS  Google Scholar 

  • Tai, K., Hasegawa, A., & Tomita, A. (1986a). Observation of modulational instability in optical fibers. Physical Review Letters, 56, 135–138.

    Article  ADS  Google Scholar 

  • Tai, K., Tomita, A., Jewell, J. L., & Hasegawa, A. (1986b). generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability. Applied Physics Letters, 49, 236–238.

    Article  ADS  Google Scholar 

  • Tai, K., Hasegawa, A., & Bekki, N. (1988). Fission of optical solitons induced by stimulated Raman effect. Optics Letters, 13(5), 392–394.

    Article  ADS  Google Scholar 

  • Takara, H., Ohara, T., Mori, K., Sato, K., Yamada, E., Inoue, Y., Shibata, T., Abe, M., Morioka, T., & Sato, K. I. (2000). More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letters, 36, 2089–2090.

    Article  ADS  Google Scholar 

  • Takayanagi, J., Nishizawa, N., Nagai, H., Yoshida, M., & Goto, T. (2005). Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system. IEEE Photonics Technology Letters, 17, 37–39.

    Article  ADS  Google Scholar 

  • Takushima, Y., Futami, F., & Kikuchi, K. (1998). Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked-semiconductor laser source. IEEE Photonics Technology Letters, 10, 1560–1562.

    Article  ADS  Google Scholar 

  • Tani, F., Travers, J. C., & Russell, P. S. J. (2013). PHz-wide supercontinua of nondispersing subcycle pulses generated by extreme modulational instability. Physical Review Letters, 111(3), 033902.

    Article  ADS  Google Scholar 

  • Tani, F., Travers, J. C., & Russell, P. S. J. (2014). Multimode ultrafast nonlinear optics in optical waveguides: Numerical modeling and experiments in kagomé photonic-crystal fiber. Journal of the Optical Society of America B, 31(2), 311.

    Article  ADS  Google Scholar 

  • Teipel, J., Türke, D., & Giessen, H. (2005). Compact multi-watt picosecond coherent white light sources using multiple-taper fibers. Optics Express, 13, 1734–1742.

    Article  ADS  Google Scholar 

  • Tomlinson, W. J., Stolen, R. H., & Shank, C. V. (1984). Compression of optical pulses chirped by self-phase modulation in fibers. Journal of the Optical Society of America B: Optical Physics, 1, 139–149.

    Article  ADS  Google Scholar 

  • Travers, J. C. (2009). Blue solitary waves from infrared continuous wave pumping of optical fibers. Optics Express, 17(3), 1502–1507.

    Article  ADS  Google Scholar 

  • Travers, J. C. (2010a). Chapter 8: Continuous wave supercontinuum generation. In J. M. Dudley & J. R. Taylor (Eds.), Supercontinuum generation in Optical Fibers. Cambridge University Press. ISBN 978-0-521-51480-4.

    Google Scholar 

  • Travers, J. C. (2010b). High average power supercontinuum sources. Pramana-Journal of Physics, 75, 769–785.

    Article  ADS  Google Scholar 

  • Travers, J. C. (2010c). Blue extension of optical fibre supercontinuum generation. Journal of Optics, 12(11), 113001.

    Article  ADS  Google Scholar 

  • Travers, J. C., & Taylor, J. R. (2009). Soliton trapping of dispersive waves in tapered optical fibers. Optics Letters, 34, 115–117.

    Article  ADS  Google Scholar 

  • Travers, J. C., Kennedy, R. E., Popov, S. V., Taylor, J. R., Sabert, H., & Mangan, B. (2005a). Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber. Optics Letters, 30, 1938–1940.

    Article  ADS  Google Scholar 

  • Travers, J. C., Popov, S. V., & Taylor, J. R. (2005b). Extended blue supercontinuum generation in cascaded holey fibers. Optics Letters, 30, 3132–3134.

    Article  ADS  Google Scholar 

  • Travers, J. C., Rulkov, A. B., Popov, S. V., Taylor, J. R., Kudlinski, A., George, A. K., & Knight, J. C. (2007). Multi-watt supercontinuum generation from 0.3 to 2.4 μm in PCF tapers. In Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, JTuB2. OSA Technical Digest (CD). Optical Society of America.

    Google Scholar 

  • Travers, J. C., Rulkov, A. B., Cumberland, B. A., Popov, S. V., & Taylor, J. R. (2008). Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Optics Express, 16, 14435–14447.

    Article  ADS  Google Scholar 

  • Travers, J. C., Frosz, M. H., & Dudley, J. M. (2010). Chapter 3: Nonlinear fibre optics overview. In J. M. Dudley & J. R. Taylor (Eds.), Supercontinuum generation in Optical Fibers. Cambridge University Press. ISBN 978-0-521-51480-4.

    Google Scholar 

  • Travers, J. C., Chang, W., Nold, J., Joly, N. Y., & Russell, P. S. J. (2011). Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]. Journal of the Optical Society of America B, 28(12), A11–A26.

    Article  Google Scholar 

  • Travers, J. C., Ermolov, A., Belli, F., Mak, K. F., Frosz, M. H., Tani, F., Abdolvand, A., & Russell, P. S. J. (2014). Efficient broadband vacuum-ultraviolet generation in gas-filled hollow-core photonic crystal fibers. In Frontiers in optics, FM4C.6. OSA Technical Digest (online). Optical Society of America.

    Google Scholar 

  • Tzoar, N., & Jain, M. (1981). Self-phase modulation in long-geometry optical waveguides. Physical Review A, 23(3), 1266.

    Article  ADS  Google Scholar 

  • Vanholsbeeck, F., Martin-Lopez, S., González-Herráez, M., & Coen, S. (2005). The role of pump coherence in continuous-wave supercontinuum generation. Optics Express, 13, 6615–6625.

    Article  ADS  Google Scholar 

  • Vodop’yanov, K. L., Grudinin, A. B., Dianov, E. M., Kulevskii, L. A., Prokhorov, A. M., & Khaidarov, D. V. (1987). Generation of pulses of 100–200 f. duration by stimulated Raman scattering in a single-mode fiber waveguide at wavelengths 1.5–1.7 μm. Sov. J. Quantum Elect., 17, 1311–1313.

    Article  Google Scholar 

  • Vysloukh, V. A. (1983). Propagation of pulses in optical fibers in the region of a dispersion minimum. Role of nonlinearity and higher-order dispersion. Soviet Journal of Quantum Electronics, 13, 1113–1114.

    Article  Google Scholar 

  • Vysloukh, V. A., & Serkin, V. N. (1983). Generation of high-energy solitons of stimulated Raman radiation in fiber light guides. JETP Letters, 38, 199–202.

    ADS  Google Scholar 

  • Vysloukh, V. A., & Serkin, V. N. (1984). Nonlinear transformation of solitons in fiber lightguides. Bulletin of the Academy of Sciences of the USSR. Physical Series, 48, 125–129.

    Google Scholar 

  • Wadsworth, W. J., Knight, J. C., Ortigosa-Blanch, A., Arriaga, J., Silvestre, E., & Russell, P. S. J. (2000). Soliton effects in photonic crystal fibres at 850 nm. Electronics Letters, 36, 53–55.

    Article  ADS  Google Scholar 

  • Wai, P. K. A., Menyuk, C. R., Lee, Y. C., & Chen, H. H. (1986a). Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Optics Letters, 11(7), 464–466.

    Article  ADS  Google Scholar 

  • Wai, P. K. A., Menyuk, C. R., Lee, C., & Chen, H. H. (1986b). Nonlinear pulse propagation in the neighbourhood of the zero-dispersion wavelength of monomode optical fibers. Optics Letters, 11, 464–466.

    Article  ADS  Google Scholar 

  • Wai, P. K. A., Menyuk, C. R., Lee, C., & Chen, H. H. (1987). Soliton at the zero-group-velocity-dispersion wavelength of a single mode fiber. Optics Letters, 12, 628–630.

    Article  ADS  Google Scholar 

  • Washio, K., Inoue, K., & Tanigawa, T. (1980). Efficient generation of near-i.r. stimulated light scattering in optical fibres pumped in low-dispersion region at 1.3 μm. Electronics Letters, 16, 331–333.

    Article  ADS  Google Scholar 

  • Westbrook, P. S., Nicholson, J. W., Feder, K. S., & Yablon, A. D. (2005). Improved supercontinuum generation through UV processing of highly nonlinear fibers. Journal of Lightwave Technology, 23, 13–18.

    Article  ADS  Google Scholar 

  • Wetzel, B., Stefani, A., Larger, L., Lacourt, P. A., Merolla, J. M., Sylvestre, T., Kudlinski, A., Mussot, A., Genty, G., Dias, F., & Dudley, J. M. (2012). Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Scientific Reports, 2(882), 1–7.

    Google Scholar 

  • Xia, C., Kumar, M., Cheng, M. Y., Hegde, R. S., Islam, M. N., Galvanauskas, A., Winful, H. G., Terry, F. L., Jr., Freeman, M. J., Poulain, M., & Mazé, G. (2007). Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. Optics Express, 15, 865–871.

    Article  ADS  Google Scholar 

  • Xia, C., Islam, M. N., Terry, F. L., Jr., Freeman, M. J., & Mauricio, J. (2009). 10.5 watts time-averaged power mid-infrared supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation. IEEE Journal of Selected Topics in Quantum Electronics, 15, 422–434.

    Article  ADS  Google Scholar 

  • Yeom, D. I., Mägi, E. C., Lamont, M. R. E., Roelens, M. A. E., Fu, L., & Eggleton, B. J. (2008). Low-threshold supercontinuum generation in highly nonluinear chalcogenide nanowires. Optics Letters, 33, 660–662.

    Article  ADS  Google Scholar 

  • Yu, F., & Knight, J. C. (2013). Spectral attenuation limits of silica hollow core negative curvature fiber. Optics Express, 21(18), 21466–21471.

    Article  ADS  Google Scholar 

  • Zakharov, V. E., & Ostrovsky, L. A. (2009). Modulation instability: The beginning. Physica D: Nonlinear Phenomena, 238(5), 540–548.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zakharov, V. E., & Shabat, A. B. (1971). Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 61, 118–134.

    Google Scholar 

  • Zhang, M., Kelleher, E. J. R., Runcorn, T. H., Mashinsky, V. M., Medvedkov, O. I., Dianov, E. M., Popa, D., Milana, S., Hasan, T., Sun, Z., Bonaccorso, F., Jiang, Z., Flahaut, E., Chapman, B. H., Ferrari, A. C., Popov, S. V., & Taylor, J. R. (2013). Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Optics Express, 21, 23261–23271.

    Article  ADS  Google Scholar 

  • Zysset, B., Beaud, P., & Hodel, W. (1987). Generation of optical solitons in the wavelength region 1.37–1.49 μm. Applied Physics Letters, 50, 1027–1029.

    Article  ADS  Google Scholar 

New References Since 2015

  • Antikainen, A., & Agrawal, G. P. (2019). Supercontinuum generation in seven-core fibers. Journal of the Optical Society of America B: Optical Physics, 36, 2927–2937.

    Article  ADS  Google Scholar 

  • Arun, S., Choudhury, V., Balaswamy, V., & Supradeepa, V. R. (2020). Octave-spanning, continuous wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers. Optics Letters, 45, 1172–1175.

    Article  ADS  Google Scholar 

  • Bi, W. J., Liu, Y. Y., Li, X., Liao, M. S., Hu, L. L., Ge, W. Q., He, F., Kuan, P. W., Yu, F., Wang, T. X., Wang, L. F., & Gao, W. Q. (2019). Micro-joule level visible supercontinuum generation in seven-core photonic crystal fibers pumped by a 5156 nm laser. Optics Letters, 44, 5041–5044.

    Article  ADS  Google Scholar 

  • Chen, H.-W., Chen, Z.-L., Chen, S.-P., Hou, J., & Lu, Q.-S. (2013a). Hundred-watt-level, all-fiber-integrated supercontinuum generation from photonic crystal fiber. Applied Physics Express, 6, 032702.

    Article  ADS  Google Scholar 

  • Chen, H.-W., Liang, G., Jin, A.-J., Chen, S.-P., Hou, J., & Lu, Q.-S. (2013b). Investigation of hundred-watt-level supercontinuum generation in photonic crystal fiber. Acta Physica Sinica, 62, 154207.

    Article  Google Scholar 

  • Chen, H. W., Wei, H. F., Liu, T., Zhou, X. F., Li, J., Tong, W. J., Chen, Z. L., Chen, S. P., Hou, J., & Lu, Q. S. (2014a). Hundred-watt-level supercontinuum generation in seven-core photonic crystal fiber. Acta Physica Sinica, 63, 044205.

    Article  Google Scholar 

  • Chen, H. W., Wei, H. F., Liu, T., Zhou, X. F., Yan, P. G., Chen, Z. L., Chen, S. P., Li, J., Hou, J., & Lu, Q. S. (2014b). All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0902008.

    Google Scholar 

  • Cheng, T., Nagasaka, K., Tuan, T. H., Xue, X., Matsumoto, M., Tezuka, H., Suzuki, T., & Ohishi, Y. (2016). Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters, 41, 2117–2120.

    Article  ADS  Google Scholar 

  • Dai, S., Wang, Y., Peng, X., Zhang, P., Wang, X., & Xu, Y. (2018). A review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Applied Sciences, 8, 707.

    Article  Google Scholar 

  • Engelsholm, R. D., & Bang, O. (2019). Supercontinuum noise reduction by fiber undertapering. Optics Express, 27, 10320–10331.

    Article  ADS  Google Scholar 

  • Fang, H. H., Hu, M. L., Huang, L. L., Chai, L., Dai, N. L., Li, J. Y., Tashchilina, A. Y., Zheltikov, A. M., & Wang, C. Y. (2012). Multiwatt octave spanning supercontinuum generation in multicore photonic-crystal fiber. Optics Letters, 37, 2292–2294.

    Article  ADS  Google Scholar 

  • Fu, J., Chen, Y., Huang, Z., Yu, F., Wu, D., Pan, J., Zhang, C., Wang, D., Pang, M., & Leng, Y. (2021). Photoionization-induced broadband dispersive wave generated in an Ar-filled hollow-core photonic crystal fiber. Crystals, 11, 180.

    Article  Google Scholar 

  • Gauthier, J. C., Fortin, V., Carrée, J. Y., Poulain, S., Poulain, M., & Vallée and Bernier, M. (2016). Mid IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber. Optics Letters, 41, 1756–1759.

    Article  ADS  Google Scholar 

  • Gonzalo, I. B., & Bang, O. (2018). Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation. Journal of the Optical Society of America B: Optical Physics, 35, 2102–2110.

    Article  ADS  Google Scholar 

  • Gonzalo, I. B., Engelsholm, R. D., Sørensen, M. P., & Bang, O. (2018). Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation. Scientific Reports, 8, 6579.

    Article  ADS  Google Scholar 

  • Gouveia-Neto, A. S., Gomes, A. S. L., & Taylor, J. R. (1988). Femtosecond soliton Raman generation. IEEE Journal of Quantum Electronics, QE-24, 332–340.

    Article  ADS  Google Scholar 

  • Heidt, A. M., Hodasi, J. M., Rampur, A., Spangenberg, D. M., Ryser, M., Klimczak, M., & Feurer, T. (2020). Low noise all-fiber amplification of a coherent supercontinuum at 2 μm and its limits imposed by polarization noise. Scientific Reports, 10, 16734.

    Article  Google Scholar 

  • Hooper, L., Kalita, M., Devine, A., Orec-Archer, A., & Clowes, J. (2015). White light 50W supercontinum – Roadmap to kW truly white lasers. Proceedings of SPIE, 9344, 93440X.

    Article  ADS  Google Scholar 

  • Hosseini, P., Ermolov, A., Tani, F., Novoa, D., & Russell, P. (2018). UV soliton dynamics and Raman-enhanced supercontinuum generation in photonic crystal fiber. ACS Photonics, 5, 2426–2430.

    Article  Google Scholar 

  • Hu, X., Zhang, W., Yang, Z., Wang, Y., Zhao, W., Wang, H., Li, C., & Shen, D. (2011b). High average power, strictly all-fiber supercontinuum source with good beam quality. Optics Letters, 36, 2659–2661.

    Article  ADS  Google Scholar 

  • Huang, S. S., Zhang, G. L., Wei, H. F., & Li, H. Q. (2013). Supercontinuum generation and mode analysis for double cladding seven-core photonic crystal fiber. Chinese Journal of Lasers, 40, 1105002.

    Article  Google Scholar 

  • Hudson, D. D., Antipov, S., Li, L., Alamgir, I., Hu, T., El-Amraoui, M., Messaddeo, Y., Rochette, M., Jackson, S. D., & Fuerbach, A. (2017). Toward all-fiber supercontinuum spanning the mid infrared. Optica, 4, 1163–1166.

    Article  ADS  Google Scholar 

  • Jain, D., Sidarthan, R., Moselund, P. M., Yoo, S., Ho, D., & Bang, O. (2016). Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber. Optics Express, 24, 26667–26677.

    Article  ADS  Google Scholar 

  • Jensen, M., Gonzalo, T. B., Engelsholm, R. D., Maria, M., Israelsen, N. M., Podoleanu, A., & Bang, O. (2019). Noise of supercontinuum sources in spectral domain optical coherence tomography. Journal of the Optical Society of America B: Optical Physics, 36, A154–A160.

    Article  ADS  Google Scholar 

  • Jiao, K., Yao, J., Zhao, Z., Wang, X., Si, N., Wang, X., Chen, P., Xue, Z., Tian, Y., Zhang, B., Zhang, P., Dai, S., Nie, Q., & Wang, R. (2019a). Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber. Optics Express, 27, 2036–2043.

    Article  ADS  Google Scholar 

  • Jiao, K., Yao, J., Wang, X. G., Wang, X., Zhao, Z., Zhang, B., Si, N., Liu, J., Shen, X., Zhang, P., Dai, S., Nie, Q., & Wang, R. (2019b). 1.2–15.2 μm supercontinuum generation in a low-loss chalcogenide fiber pumped at a deep anomalous-dispersion region. Optics Letters, 44, 5545–5548.

    Article  ADS  Google Scholar 

  • Keller, U., Li, K. D., Rodwell, M., & Bloom, D. M. (1989). Noise characterization of femtosecond fiber Raman soliton lasers. IEEE Journal of Quantum Electronics, QE25, 280–288.

    Article  ADS  Google Scholar 

  • Klimczak, M., Sobon, G., Kasztelanic, R., Abramski, K. M., & Bucznski, R. (2016). Direct comparison of shot-to shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser. Scientific Reports, 6, 19284.

    Article  ADS  Google Scholar 

  • Krupa, K., Louot, C., Couderc, V., Fabert, M., Guenard, R., Shalaby, B. M., Tonello, A., Pagnoux, D., Leproux, P., Bendahmane, A., Dupiol, R., Millot, G., & Wabnitz, S. (2016). Optics Letters, 41, 5785–5788.

    Article  ADS  Google Scholar 

  • Leonov, S. O., Wang, Y., Shiryaev, V. S., Snopatin, G. E., Stepanov, B. S., Plotnichenko, V. G., Vicentini, E., Gambetta, A., Coluccelli, N., Svelto, C., Laporta, P., & Galzerano, G. (2020). Coherent mid-infrared supercontinuum generation in tapered suspended core As39Se61 fibers pumped by a few-optical-cycle Cr:ZnSe laser. Optics Letters, 46, 1346–1349.

    Article  ADS  Google Scholar 

  • Li, Z., Jia, Z., Yao, C., Zhao, Z., Li, N., Hu, M., Ohishi, Y., Qin, W., & Qin, G. (2020). 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers. Optics Letters, 45, 1882–1885.

    Article  ADS  Google Scholar 

  • Liang, S., Xu, L., Fu, Q., Jung, Y., Shepherd, D. P., Richardson, D. J., & Alam, S.-U. (2018). 295-kW peak power picosecond pul;ses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5 octave supercontinuum extending up to 5 μm. Optics Express, 26, 6490–6498.

    Article  ADS  Google Scholar 

  • Liu, K., Liu, J., Shi, H., Tan, F., & Wang, P. (2014). 24.3 W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thullium-doped diber amplifier. Paper AM3A.6 Advanced Solid State Lasers (ASSL).

    Google Scholar 

  • Liu, L., Cheng, T., Nagasaka, K., Tong, H., Qin, G., Suzuki, T., & Ohishi, Y. (2016). Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion. Optics Letters, 41, 392–395.

    Article  ADS  Google Scholar 

  • Lopez-Galmiche, G., Eznaveh, Z. S., Eftekhar, M. A., Lopez, J. A., Wright, L. G., Wise, F., Christodoulides, D., & Correra, R. A. (2016). Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Optics Letters, 41, 2553–2556.

    Article  ADS  Google Scholar 

  • Møller, U., Yu, Y., Kubat, I., Petersen, C. R., Gai, X., Brilland, L., Méchin, D., Caillaud, C., Troles, J., Luther-Davies, B., & Bang, O. (2015). Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Optics Express, 23, 3282–3291.

    Article  ADS  Google Scholar 

  • Petersen, C. R., Engelsholm, R. D., Markos, C., Brilland, L., Caillaud, C., Troles, J., & Bang, O. (2017). Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Optics Express, 25, 15336–15347.

    Article  ADS  Google Scholar 

  • Poudel, C., & Kaminski, C. (2019). Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications. Journal of the Optical Society of America B: Optical Physics, 36, A139–A153.

    Article  ADS  Google Scholar 

  • Qi, X., Chen, S. P., Li, Z. H., Liu, T., Ou, Y., Wang, N., & Hou, J. (2018). High-Power visible-enhanced all-fiber supercontinuum generation in a seven-core photonic crystal fiber pumped at 1016 nm. Optics Letters, 43, 1019–1022.

    Article  ADS  Google Scholar 

  • Qin, G., Yan, X., Kito, C., Liao, M., Chaudhari, C., Suzuki, T., & Ohishi, Y. (2009). Ultrabroad supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Applied Physics Letters, 95, 161103.

    Article  ADS  Google Scholar 

  • Rao, S., Engelsholm, R. D., Gonzalo, I. B., Zhou, B. B., Bowen, P., Moselund, P. M., Bang, O., & Bache, M. (2019). Ultra-low noise supercontinuum generation with a flat near-zero normal dispersion fiber. Optics Letters, 44, 2216–2219.

    Article  ADS  Google Scholar 

  • Robichaud, L.-R., Fortin, V., Gauthier, J.-C., Chatigny, S., Couillard, J.-F., Delarosbil, J.-L., Vallée, R., & Bernier, M. (2016). Compact 3-8 μm supercontinuum generation in a low loss As2Se3 step-index fiber. Optics Letters, 41, 4605–4608.

    Article  ADS  Google Scholar 

  • Robichaud, L.-R., Duval, S., Pleau, L. P., Fortin, V., Bah, S. T., Chatigny, S., Vallée, R., & Bernier, M. (2020). High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source. Optics Express, 28, 107–115.

    Article  ADS  Google Scholar 

  • Saini, T. S., Kumar, A., & Sinah, R. K. (2015). Broadband mid-infrared supercontinuum spectra spanning 2-15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber. Journal of Lightwave Technology, 33, 3914–3920.

    Article  ADS  Google Scholar 

  • Salem, R., Jiang, Z., Liu, D., Pafchek, R., Gardner, D., Foy, P., Saad, M., Jenkins, D., Cable, A., & Fendel, P. (2015). mid-infrared supercontinuum generation spanning 1.8 octaves using step index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm. Optics Express, 23, 30592–30602.

    Article  ADS  Google Scholar 

  • Sierro, B., & Heidt, A. M. (2020). Noise amplification in all-normal dispersion fiber supercontinuum generation and its impact on ultrafast photonics applications. OSA Continuum, 3, 2347–2361.

    Article  Google Scholar 

  • Smith, C., Adamu, A., Michieletto, M., & Bang, O. (2020). Spectral broadening of ultraviolet dispersive waves in gas-filled hollow-core fiber using pump pulse modulation. Optics Letters, 45, 6744–6747.

    Article  ADS  Google Scholar 

  • Song, R., Hou, J., Chen, S.-P., Yang, W. Q., & Lu, Q.-S. (2012a). High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier. Optics Letters, 37, 1529–1531.

    Article  ADS  Google Scholar 

  • Song, R., Hou, J., Chen, S.-P., Yang, W. Q., & Lu, Q.-S. (2012b). All-fiber 177.6 W supercontinuum source. Acta Physica Sinica, 61, 054217.

    Article  Google Scholar 

  • Song, R., Hou, J., Liu, T., Yang, W.-Q., & Lu, Q.-S. (2013). A hundreds of watt all-fiber near-infrared supercontinuum. Laser Physics Letters, 10, 065402.

    Article  ADS  Google Scholar 

  • Théberge, F., Bérubé, N., Poulain, S., Cozic, S., Robichaud, L.-R., Bernier, M., & Vallée, R. (2018). Watt-level and spectrally flat mid-infrared supercontinuum in fluoroindate fibers. Photonics Research, 6, 609–613.

    Article  Google Scholar 

  • Wang, X., Wang, D., Shen, X., Wu, Z., He, X., Yuan, J., Wang, X., & Yu, C. (2017). Supercontinuum generation from ultraviolet and visible wavelength based on the higher-order modes of photonic crystal fiber. Optik, 140, 423–426.

    Article  ADS  Google Scholar 

  • Wang, N., Chen, S. P., Qi, X., Yang, L. J., & Hou, J. (2018). Ultraviolet-extended flat supercontinuum generation in seven-core photonic crystal fiber. Optical Engineering, 57, 026110.

    ADS  Google Scholar 

  • Wei, H. F., Chen, H. W., Chen, S. P., Yan, P. G., Liu, T., Guo, L., Lei, Y., Chen, Z. L., Li, J., Zhang, X. B., Zhang, G. L., Hou, J., Tong, W. J., Luo, J., Li, J. Y., & Chen, K. K. (2013). A compact seven-core photonics crystal fiber supercontinuum source with 42.3W output power. Laser Physics Letters, 10, 045101.

    Article  ADS  Google Scholar 

  • Yang, W., Zhang, B., Xue, G., Yin, K., & Hou, J. (2014). Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system. Optics Letters, 39, 1849–1852.

    Article  ADS  Google Scholar 

  • Yao, C., Jia, Z., Li, Z., Jia, S., Zhao, Z., Zhang, L., Feng, Y., Qin, G., Ohishi, Y., & Qin, W. (2018). High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica, 5, 1264–1270.

    Article  ADS  Google Scholar 

  • Yin, K., Zhang, B., Yao, J., Yang, L., Liu, G., & Hou, J. (2016). 1.9-3.6 μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio. Optics Letters, 41, 5067–5070.

    Article  ADS  Google Scholar 

  • Yin, K., Zhang, B., Yang, L., & Hou, J. (2017). 15.2 W spectrally flat all-fiber supercontinuum laser source with > 1 W power beyond 3.8 μm. Optics Letters, 42, 2334–2337.

    Article  ADS  Google Scholar 

  • Yin, K., Zhang, B., Yang, L., & Hou, J. (2018). 30W monolithic 2-3 μm supercontinuum laser. Phot. Res., 6, 123–126.

    Article  Google Scholar 

  • Yu, Y., Zhang, B., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D. Y., Madden, S., & Luther-Davies, B. (2015). 1.8 -10 μm mid-infrared supercontinuum generated in a step index chalcogenide fiber using low peak pump power. Optics Letters, 40, 1081–1084.

    Article  ADS  Google Scholar 

  • Zhang, N., Peng, X., Wang, Y., Dai, S., Yuan, Y., Su, J., Li, G., Zhang, P., Yang, P., & Wang, X. (2019). Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion. Optics Express, 27, 10311–10319.

    Article  ADS  Google Scholar 

  • Zhang, H., Li, F., Liao, R., Dong, K., Li, Y., Lin, H., Wang, J., & Jing, F. (2021). Supercontinuum generation of 314.7 W ranging from 390 to 2400 nm by tapered photonic crystal fiber. Optics Express, 46, 1429–1432.

    Google Scholar 

  • Zhao, Z., Wang, X., Dai, S., Pan, Z., Liu, S., Sun, L., Zhang, P., Liu, Z., Nie, Q., Shen, X., & Wang, R. (2016). 1.5-14 μm midinfrared supercontinuum generation in a low loss Te-based chalcogenide step-index fiber. Optics Letters, 41, 5222–5225.

    Article  ADS  Google Scholar 

  • Zhao, Z., Wu, B., Wang, X., Pan, Z., Liu, Z., Zhang, P., Shen, X., Nie, Q., Dai, S., & Wang, R. (2017). Mid-infrared supercontinuum covering 2.0-16.0 μm in a low-loss telluride single-mode fiber. Laser & Photonics Reviews, 11, 1700005.

    Article  ADS  Google Scholar 

  • Zheng, Z., Ouyang, D., Zhao, J., Liu, M., Ruan, S., Yan, P., & Wang, J. (2016). Scaling all-fiber mid-infrared supercontinuum up to 10W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photonics Research, 4, 135–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Travers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Travers, J.C., Taylor, J.R. (2022). Fibre-Based Supercontinuum. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, Cham. https://doi.org/10.1007/978-3-031-06197-4_5

Download citation

Publish with us

Policies and ethics