Skip to main content

Sleep Apnea Diagnosis Using Complexity Features of EEG Signals

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

Sleep apnea syndrome is one the most prevalent sleep disorders. The accurate diagnosis and treatment of apnea by physicians can help to avoid its destructive effects in the long term. Electroencephalogram (EEG) records activity of the brain from different areas of scalp and can be an appropriate method to diagnose sleep apnea. In this work, we proposed a Computer Aided Diagnosis System (CADS) for sleep apnea based on complexity features of EEG. At first, EEG time series of 20 participants were decomposed into six frequency bands (delta, theta, alpha, sigma, beta, and gamma) by using bandpass Finite Impulse Response (FIR) filters. Then, complexity features such as fractals, Lempel-Ziv Complexity (LZC), entropies, and generalized Hurst exponent that was used for the first time to detect sleep apnea from EEG signals, were extracted from each frequency band. The minimum-redundancy maximum-relevance (mRMR) algorithm was applied to sort 120 features of three EEG channels. Finally, two popular classifiers, Support Vector Machine (SVM) and K-Nearest Neighbors (KNN), were used to detect sleep apnea. \( 99.33\%\) accuracy was obtained using the SVM classifier and generalized hurst exponent had an effective contribution to detect apnea.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alqassim, S., et al.: Sleep apnea monitoring using mobile phones. In: International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE (2012)

    Google Scholar 

  2. Azim, Md.R., et al.: Analysis of EEG and EMG signals for detection of sleep disordered breathing events. In: International Conference on Electrical and Computer Engineering (2010)

    Google Scholar 

  3. Bhattacharjee, A., et al.: Sleep apnea detection based on Rician modeling of feature variation in multiband EEG signal. IEEE J. Biomed. Health Inform. 23(3), 1066–81074 (2018)

    Article  Google Scholar 

  4. Bello, S.A., Alqasemi, U.: Computer Aided Detection of Obstructive Sleep Apnea from EEG Signals. SSRN 3890660 (2021)

    Google Scholar 

  5. Devuyst, S., Dutoit, T., Kerkhofs, M.: The DREAMS databases and assessment algorithm. Zenodo, Genève (2005)

    Google Scholar 

  6. Gutta, S., et al.: Cardiorespiratory model-based data-driven approach for sleep apnea detection. IEEE J. Biomed. Health Inform. 22(4), 1036–1045 (2017)

    Article  Google Scholar 

  7. Gaurav, G., Anand, R.S., Kumar, V.: EEG based cognitive task classification using multifractal detrended fluctuation analysis. Cogn. Neurodyn. 15(6), 999–1013 (2021)

    Article  CAS  Google Scholar 

  8. Jayaraj, R., Mohan, J.: Classification of sleep apnea based on sub-band decomposition of EEG signals. Diagnostics 11(9) (2021)

    Google Scholar 

  9. Kandel, E.R., et al.: Principles of Neural Science, vol. 3. McGraw-Hill, New York (2000)

    Google Scholar 

  10. Kang, J., et al.: EEG entropy analysis in autistic children. J. Clin. Neurosci. 62, 199–206 (2019)

    Article  Google Scholar 

  11. Karegar, F.P., Fallah, A., Rashidi, S.: ECG based human authentication with using Generalized Hurst Exponent. In: Iranian Conference on Electrical Engineering (ICEE) (2017)

    Google Scholar 

  12. Kannathal, N., et al.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)

    Article  CAS  Google Scholar 

  13. Lin, S.-Y., et al.: EEG signal analysis of patients with obstructive sleep apnea syndrome (OSAS) using power spectrum and fuzzy entropy. In: International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (2017)

    Google Scholar 

  14. Li, X., Ouyang, G., Richards, D.A.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77(1), 70–74 (2007)

    Article  Google Scholar 

  15. Liu, D., Pang, Z., Lloyd, S.R.: A neural network method for detection of obstructive sleep apnea and narcolepsy based on pupil size and EEG. IEEE Trans. Neural Netw. 19(2), 308–318 (2008)

    Article  CAS  Google Scholar 

  16. Li, Y., et al.: Interhemispheric brain switching correlates with severity of sleep-disordered breathing for obstructive sleep apnea patients. Appl. Sci. 9(8), 1568 (2019)

    Article  Google Scholar 

  17. Lahmiri, S.: Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Physica A Stat. Mech. Appl. 490, 378–385 (2018)

    Article  Google Scholar 

  18. Gorriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Article  Google Scholar 

  19. Subha, D.P., et al.: EEG signal analysis: a survey. J. Med. Syst. 34(2), 195–212 (2010)

    Article  Google Scholar 

  20. Sharma, A., Amarnath, M., Kankar, P.K.: Feature extraction and fault severity classification in ball bearings. J. Vibr. Control 22(1), 176–192 (2016)

    Article  Google Scholar 

  21. Saha, S., et al.: An approach for automatic sleep apnea detection based on entropy of multi-band EEG signal. In: IEEE Region 10 Conference (TENCON) (2016)

    Google Scholar 

  22. Senaratna, C.V., et al.: Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med. Rev. 34, 70–81 (2017)

    Article  Google Scholar 

  23. Shahnaz, C., Minhaz, A.T., Ahamed, S.T.: Sub-frame based apnea detection exploiting delta band power ratio extracted from EEG signals. In: IEEE Region 10 Conference (TENCON) (2016)

    Google Scholar 

  24. Schluter, T., Conrad, S.: An approach for automatic sleep stage scoring and apnea-hypopnea detection. Front. Comput. Sci. 6(2), 230–241 (2012)

    Article  Google Scholar 

  25. Tibdewal, M.N., et al.: Multiple entropies performance measure for detection and localization of multi-channel epileptic EEG. Biomed. Signal Process. Control 38, 158–167 (2017)

    Article  Google Scholar 

  26. Taran, S., Bajaj, V.: Sleep apnea detection using artificial bee colony optimize Hermite basis functions for EEG signals. IEEE Trans. Instrum. Meas. 69(2), 608–616 (2019)

    Article  Google Scholar 

  27. Taran, S., et al.: Detection of sleep apnea events using electroencephalogram signals. Appl. Acoust. 181, 108–137 (2021)

    Google Scholar 

  28. Uthayakumar, R.: Fractal dimension in Epileptic EEG signal analysis. In: Banerjee, S., Rondoni, L. (eds.) Applications of Chaos and Nonlinear Dynamics in Science and Engineering-Vol. 3, pp. 103–157. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34017-8_4

  29. Ubeyli, E.D., et al.: Analysis of sleep EEG activity during hypopnoea episodes by least squares support vector machine employing AR coefficients. Expert Syst. Appl. 37(6), 4463–4467 (2010)

    Article  Google Scholar 

  30. Wang, H., Guo, Z., Du, W.: Diagnosis of rolling element bearing based on multifractal detrended fluctuation analyses and continuous hidden Markov model. J. Mech. Sci. Technol. 35(8), 3313–3322 (2021). https://doi.org/10.1007/s12206-021-0705-y

    Article  Google Scholar 

  31. Wang, Y., et al.: An efficient method to detect sleep hypopnea-apnea events based on EEG signals. IEEE Access 9, 641–650 (2020)

    Article  CAS  Google Scholar 

  32. Wang, Y., et al.: A Robust Sleep Apnea-hypopnea Syndrome Automated Detection Method Based on Fuzzy Entropy Using Single Lead-EEG Signals (2021)

    Google Scholar 

  33. Xin, X., Yaru, Z., Sanli, Y., et al.: A New Method for Detecting Sleep Apnea. Research Square (2022)

    Google Scholar 

  34. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 100, 9–34 (1999)

    Article  Google Scholar 

  35. Zhao, X., et al.: Classification of sleep apnea based on EEG sub-band signal characteristics. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  36. Zhou, J., Wu, X., Zeng, W.: Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine. J. Clin. Monit. Comput. 29(6), 767–772 (2015). https://doi.org/10.1007/s10877-015-9664-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Shoeibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gholami, B., Behboudi, M.H., Khadem, A., Shoeibi, A., Gorriz, J.M. (2022). Sleep Apnea Diagnosis Using Complexity Features of EEG Signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics