Skip to main content

Clustered WSN for Building Energy Management Applications

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity 360 2021)

Abstract

Wireless sensor networks are usually deployed in mesh topologies using radio communication links. The mesh selforganizes to route data packets from sensors to the sink. However, if not carefully designed, this may create holes of uncovered areas and energy holes when many networks paths traverse a limited number of sensors. This paper presents the design and performance evaluation of a low-cost clustered wireless sensor network for Building Energy Management (BEM) applications using Bluetooth Low Energy (BLE) and Better Approach to Mobile Ad-hoc Networking (BATMAN). The latter is used to interconnect gateways and cluster headers that have enough power to forward packets and make computations without compromising their battery lifetime, while the former is used to connect sensors to a cluster header. A prototype of a BEM application has been developed and the performance of the network was tested. Results show that the throughput and latency achieved are adequate for BEM applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sethi, P., Sarangi, S.R.: Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. 2017(1), 1–25 (2017)

    Google Scholar 

  2. Singh, D., Tripathi, G., Jara, A.J.: A survey of Internet-of-Things: future vision, architecture, challenges and services. In: 2014 IEEE World Forum on Internet of Things, WF-IoT, pp. 287–292. IEEE, March 2014

    Google Scholar 

  3. Alavi, A.H., Jiao, P., Buttlar, W.G., Lajnef, N.: Internet of Things-enabled smart cities: state-of-the-art and future trends. Measurement 129, 589–606 (2018)

    Article  Google Scholar 

  4. Dang, L.M., Piran, M., Han, D., Min, K., Moon, H.: A survey on internet of things and cloud computing for healthcare. Electronics 8(7), 768 (2019)

    Article  Google Scholar 

  5. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Industr. Inf. 14(11), 4724–4734 (2018)

    Article  Google Scholar 

  6. Kamienski, C., et al.: Smart water management platform: IOT-based precision irrigation for agriculture. Sensors 19(2), 276 (2019)

    Article  Google Scholar 

  7. Magadán, L., Suárez, F.J., Granda, J.C., García, D.F.: Low-cost real-time monitoring of electric motors for the Industry 4.0. Procedia Manuf. 42, 393–398 (2020)

    Article  Google Scholar 

  8. Oyekanlu, E.: Predictive edge computing for time series of industrial IoT and large scale critical infrastructure based on open-source software analytic of big data. In: 2017 IEEE International Conference on Big Data, pp. 1663–1669. IEEE, December 2017

    Google Scholar 

  9. Chen, R.Y.: An intelligent value stream-based approach to collaboration of food traceability cyber physical system by fog computing. Food Control 71, 124–136 (2017)

    Article  Google Scholar 

  10. Afroz, Z., Urmee, T., Shafiullah, G.M., Higgins, G.: Real-time prediction model for indoor temperature in a commercial building. Appl. Energy 231, 29–53 (2018)

    Article  Google Scholar 

  11. Xu, L., Collier, R., O’Hare, G.M.: A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet Things J. 4(5), 1229–1249 (2017)

    Article  Google Scholar 

  12. Patel, J.A., Patel, Y.: The clustering techniques for wireless sensor networks: a review. In: 2018 Second International Conference on Inventive Communication and Computational Technologies, ICICCT, pp. 147–151. IEEE, April 2018

    Google Scholar 

  13. El Khamlichi, Y., Mesmoudi, Y., Tahiri, A., Abtoy, A.: A recovery algorithm to detect and repair coverage holes in wireless sensor network systems. J. Commun. 13(2), 67–74 (2018)

    Article  Google Scholar 

  14. Rafiei, A., Abolhasan, M., Franklin, D.R., Safaei, F., Smith, S., Ni, W.: Effect of the number of participating nodes on recovery of WSN coverage holes. In: 2017 27th International Telecommunication Networks and Applications Conference, ITNAC, pp. 1–8. IEEE, November 2017

    Google Scholar 

  15. Deng, X., Yang, L.T., Yi, L., Wang, M., Zhu, Z.: Detecting confident information coverage holes in industrial Internet of Things: a energy-efficient perspective. IEEE Commun. Mag. 56(9), 68–73 (2018)

    Article  Google Scholar 

  16. Wu, X., Chen, G., Das, S.K.: Avoiding energy holes in wireless sensor networks with nonuniform node distribution. IEEE Trans. Parallel Distrib. Syst. 19(5), 710–720 (2008)

    Article  Google Scholar 

  17. Oliveira, L., Rodrigues, J.J., Kozlov, S.A., Rabêlo, R.A., Albuquerque, V.H.C.D.: MAC layer protocols for Internet of Things: a survey. Future Internet 11(1), 16 (2019)

    Article  Google Scholar 

  18. Chhaya, L., Sharma, P., Kumar, A., Bhagwatikar, G.: Communication theories and protocols for smart grid hierarchical network. J Electr. Electron. Eng. 10(1), 43 (2017)

    Google Scholar 

  19. Garnepudi, P., Damarla, T., Gaddipati, J., Veeraiah, D.: Proactive, reactive and hybrid multicast routing protocols for wireless mesh networks. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research, pp. 1–7. IEEE, December 2013

    Google Scholar 

  20. Reddy, M.C.K., Sujana, A., Sujita, A., Rudroj, K.: Comparing the throughput and delay of proactive and reactive routing protocols in mobile ad-hoc networks. In: 2018 2nd International Conference on Inventive Systems and Control, ICISC, pp. 1278–1283. IEEE, January 2018

    Google Scholar 

  21. Er-Rouidi, M., Moudni, H., Mouncif, H., Merbouha, A.: An energy consumption evaluation of reactive and proactive routing protocols in mobile ad-hoc network. In: 2016 13th International Conference on Computer Graphics, Imaging and Visualization, CGiV, pp. 437–441. IEEE, March 2016

    Google Scholar 

  22. Verma, S., Kawamoto, Y., Fadlullah, Z.M., Nishiyama, H., Kato, N.: A survey on network methodologies for real-time analytics of massive IoT data and open research issues. IEEE Commun. Surv. Tutorials 19(3), 1457–1477 (2017)

    Article  Google Scholar 

  23. Jornet-Monteverde, J.A., Galiana-Merino, J.J.: Low-cost conversion of single-zone HVAC systems to multi-zone control systems using low-power wireless sensor networks. Sensors 20(13), 3611 (2020)

    Article  Google Scholar 

  24. Lachhab, F., Bakhouya, M., Ouladsine, R., Essaaidi, M.: Monitoring and controlling buildings indoor air quality using WSN-based technologies. In: 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT, pp. 0696–0701. IEEE, April 2017

    Google Scholar 

  25. Nigam, H., Karmakar, A., Saini, A.K.: Wireless sensor network based structural health monitoring for multistory building. In: 2020 4th International Conference on Computer, Communication and Signal Processing ICCCSP, pp. 1–5. IEEE, September 2020

    Google Scholar 

  26. Abbas, Z., Yoon, W.: A survey on energy conserving mechanisms for the internet of things: wireless networking aspects. Sensors 15(10), 24818–24847 (2015)

    Article  Google Scholar 

  27. Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M.: Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4(2), 26–35 (2017)

    Article  Google Scholar 

  28. Sanchez-Iborra, R., Cano, M.D., Garcia-Haro, J.: Performance evaluation of BATMAN routing protocol for VoIP services: a QoE perspective. IEEE Trans. Wireless Commun. 13(9), 4947–4958 (2014)

    Article  Google Scholar 

  29. Kulla, E., Hiyama, M., Ikeda, M., Barolli, L.: Performance comparison of OLSR and BATMAN routing protocols by a MANET testbed in stairs environment. Comput. Math. Appli. 63(2), 339–349 (2012)

    Article  Google Scholar 

  30. Popleteev, A.: Indoor positioning using FM radio signals (Doctoral dissertation, University of Trento) (2011)

    Google Scholar 

  31. Davoli, L., Cilfone, A., Belli, L., Ferrari, G.: Design and experimental performance analysis of a BATMAN-based double Wi-Fi interface mesh network. Futur. Gener. Comput. Syst. 92, 593–603 (2019)

    Article  Google Scholar 

  32. Chissungo, E., Blake, E., Le, H.: Investigation into Batman-adv protocol performance in an indoor mesh potato testbed. In: 2011 Third International Conference on Intelligent Networking and Collaborative Systems, pp. 8–13. IEEE, November 2011

    Google Scholar 

  33. Adu-Manu, K., Adam, N., Tapparello, C., Ayatollahi, H., Heinzelman, W.: Energy-harvesting wireless sensor networks (EH-WSNs): a review. ACM Trans. Sens. Netw. 14(2), 1–50 (2018)

    Article  Google Scholar 

  34. Astafiev, A.V., Demidov, A.A., Zhiznyakov, A.L., Kondrushin, I.A.: Development of an algorithm for positioning a mobile device based on sensor networks from ble beacons for building autonomous navigation systems. In: 2021 International Russian Automation Conference, RusAutoCon, pp. 1056–1061. IEEE, September 2021

    Google Scholar 

  35. Nair, K., et al.: Optimizing power consumption in IOT based wireless sensor networks using bluetooth low energy. In: 2015 International Conference on Green Computing and Internet of Things, ICGCIoT, pp. 589–593, IEEE, October 2015

    Google Scholar 

Download references

Acknowledgment

This research has been partially funded by the Spanish National Plan of Research, Development and Innovation under the project OCAS (RTI2018-094849-B-100) and the University of Oviedo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Magadán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magadán, L., Suárez, F.J., Granda, J.C., García, D.F. (2022). Clustered WSN for Building Energy Management Applications. In: Paiva, S., et al. Science and Technologies for Smart Cities. SmartCity 360 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 442. Springer, Cham. https://doi.org/10.1007/978-3-031-06371-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06371-8_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06370-1

  • Online ISBN: 978-3-031-06371-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics