Skip to main content

Experimental Research on Foot Use and Function During Climbing by Primates

  • Chapter
  • First Online:
The Evolution of the Primate Foot

Abstract

Vertical climbing has played a central role in the evolutionary history of the primate foot. Yet, to date, very little experimental work has examined how the primate foot functions during climbing, due in part to logistical limitations and ethical considerations associated with experimental data collection. Additionally, the current literature generally lacks an integrative approach for collecting multiple types of data and examining the interactions of various physical setups in an experimental setting. This chapter reviews literature on the experimental biomechanics of primate climbing, with a focus on the primate hindlimb and foot. We first describe how the primate foot is used during climbing in naturalistic contexts. We then review and synthesize studies on four aspects of the primate foot during climbing: spatiotemporal features, kinematics, kinetics, and electromyography. We conclude that future studies should attempt to include more biomechanical data on the foot specifically, collect data that allow an understanding of how substrate affects foot function, and broaden the species sample from which data are collected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andriacchi, T., Andersson, G., Fermier, R., Stern, D., & Galante, J. (1980). A study of lower-limb mechanics during stair-climbing. Journal of Bone and Joint Surgery, 62(5), 749–757.

    Article  CAS  Google Scholar 

  • Arms, A., Voges, D., Fischer, M., & Preuschoft, H. (2002). Arboreal locomotion in small New-World monkeys. Zeitschrift für Morphologie und Anthropologie, 83, 243–263.

    Article  CAS  Google Scholar 

  • Baláš, J., Panáčková, M., Strejcová, B., Martin, A. J., Cochrane, D. J., Kaláb, M., Kodejška, J., & Draper, N. (2014). The relationship between climbing ability and physiological responses to rock climbing. The Scientific World Journal, 2014, 678387.

    Article  Google Scholar 

  • Bartlett, J. L., Sumner, B., Ellis, R. G., & Kram, R. (2014). Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing. American Journal of Physical Anthropology, 153(1), 124–131.

    Article  Google Scholar 

  • Bhat, P., & Kumar, A. (2009). The medial longitudinal arch in tree climbing communities. Scientific Medicine, 1(2).

    Google Scholar 

  • Bhat, P., & Kumar, A. (2014). A study of footprints of tree-climbing communities of South India. Nitte University Journal of Health Science, 4(4), 60.

    Google Scholar 

  • Bitty, E. A., & McGraw, W. S. (2007). Locomotion and habitat use of Stampflii’s putty-nosed monkey (Cercopithecus nictitans stampflii) in the Taï National Park, Ivory Coast. American Journal of Physical Anthropology, 134(3), 383–391.

    Article  Google Scholar 

  • Blanchard, M. L., Furnell, S., Sellers, W. I., & Crompton, R. H. (2015). Locomotor flexibility in Lepilemur explained by habitat and biomechanics. American Journal of Physical Anthropology, 156(1), 58–66.

    Article  Google Scholar 

  • Bock, W. J., & Winkler, H. (1978). Mechanical analysis of the external forces on climbing mammals. Zoomorphologie, 91(1), 49–61.

    Article  Google Scholar 

  • Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T. (2007). Telemetered electromyography of peroneus longus in Varecia variegata and Eulemur rubriventer: Implications for the functional significance of a large peroneal process. Journal of Human Evolution, 53(2), 119–134.

    Article  Google Scholar 

  • Cant, J. G., Youlatos, D., & Rose, M. D. (2001). Locomotor behavior of Lagothrix lagothricha and Ateles belzebuth in Yasunı National Park, Ecuador: General patterns and nonsuspensory modes. Journal of Human Evolution, 41(2), 141–166.

    Article  CAS  Google Scholar 

  • Cartmill, M. (1974). Pads and claws in arboreal locomotion. In F. Jenkins (Ed.), Primate Locomotion (pp. 45–83). Academic Press.

    Google Scholar 

  • Cartmill, M. (1985). Climbing. In M. Hildebrand, D. Bramble, K. Liem, & D. Wake (Eds.), Functional vertebrate morphology (pp. 73–88). Harvard University Press.

    Chapter  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2002). Support polygons and symmetrical gaits in mammals. Zoological Journal of the Linnean Society, 136(3), 401–420.

    Article  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2007a). Primate gaits and primate origins. In M. J. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 403–435). Springer.

    Chapter  Google Scholar 

  • Cartmill, M., Lemelin, P., & Schmitt, D. (2007b). Understanding the adaptive value of diagonal-sequence gaits in primates: A comment on Shapiro and Raichlen, 2005. American Journal of Physical Anthropology, 133(2), 822–825.

    Article  Google Scholar 

  • Chatani, K. (2003). Positional behavior of free-ranging Japanese macaques (Macaca fuscata). Primates, 44(1), 13–23.

    Article  Google Scholar 

  • Congdon, K. A., & Ravosa, M. J. (2016). Get a grip: Substrate orientation and digital grasping pressures in strepsirrhines. Folia Primatologica, 87(4), 224–243.

    Article  Google Scholar 

  • Conroy, G. C. (1976). Hallucial tarsometatarsal joint in an Oligocene anthropoid Aegyptopithecus zeuxis. Nature, 262(5570), 684.

    Article  Google Scholar 

  • Crompton, R. H., Blanchard, M. L., Coward, S., Alexander, R. M., & Thorpe, S. K. (2010). Vertical clinging and leaping revisited: Locomotion and habitat use in the western tarsier, Tarsius bancanus explored via loglinear modeling. International Journal of Primatology, 31(6), 958–979.

    Article  Google Scholar 

  • Cuhna, A., Vieiera, M., & Grelle, C. (2006). Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: The capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest, Rio de Janeiro. Urban Ecosystem, 9, 351–359.

    Article  Google Scholar 

  • Dagosto, M. (1988). Implications of postcranial evidence for the origin of euprimates. Journal of Human Evolution, 17(1–2), 35–56.

    Article  Google Scholar 

  • Dagosto, M. (2007). The postcranial morphotype of primates. In M. J. Ravosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 489–534). Springer.

    Chapter  Google Scholar 

  • Dagosto, M., & Yamashita, N. (1998). Effect of habitat structure on positional behavior and support use in three species of lemur. Primates, 39(4), 459–472.

    Article  Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex. John Murray.

    Book  Google Scholar 

  • DeSilva, J. (2008). Vertical climbing adaptations in the anthropoid ankle and midfoot: Implications for locomotion in Miocene catarrhines and Plio-Pleistocene hominins. PhD dissertation, University of Michigan.

    Google Scholar 

  • DeSilva, J. M. (2009). Functional morphology of the ankle and the likelihood of climbing in early hominins. Proceedings of the National Academy of Sciences, 106(16), 6567–6572.

    Article  CAS  Google Scholar 

  • Diedrich, F. J., & Warren, W. H., Jr. (1998). The dynamics of gait transitions: Effects of grade and load. Journal of Motor Behavior, 30(1), 60–78.

    Article  CAS  Google Scholar 

  • Doran, D. M. (1992). Comparison of instantaneous and locomotor bout sampling methods: A case study of adult male chimpanzee locomotor behavior and substrate use. American Journal of Physical Anthropology, 89(1), 85–99.

    Article  CAS  Google Scholar 

  • Doran, D. M. (1993). Comparative locomotor behavior of chimpanzees and bonobos: The influence of morphology on locomotion. American Journal of Physical Anthropology, 91(1), 83–98.

    Article  CAS  Google Scholar 

  • Dunham, N. T. (2015). Ontogeny of positional behavior and support use among Colobus angolensis palliatus of the Diani Forest, Kenya. Primates, 56(2), 183–192.

    Article  Google Scholar 

  • Elton, S., Foley, R., & Ulijaszek, S. (1998). Habitual energy expenditure of human climbing and clambering. Annals of Human Biology, 25(6), 523–531.

    Article  CAS  Google Scholar 

  • Fan, P., Scott, M. B., Fei, H., & Ma, C. (2013). Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integrative Zoology, 8(4), 356–364.

    Article  Google Scholar 

  • Fleagle, J. G., & Mittermeier, R. A. (1980). Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. American Journal of Physical Anthropology, 52(3), 301–314.

    Article  Google Scholar 

  • Fleagle, J. G., Mittermeier, R. A., & Skopec, A. L. (1981). Differential habitat use by Cebus apella and Saimiri sciureus in central Surinam. Primates, 22(3), 361–367.

    Article  Google Scholar 

  • Fleagle, J. G., Stern, J. T., Jungers, W. L., Susman, R. L., Vangor, A. K., & Wells, J. P. (1981). Climbing: A biomechanical link with brachiation and with bipedalism. Symposium of the Zoological Society of London, 48, 359–375.

    Google Scholar 

  • Franz, J. R., & Kram, R. (2012). The effects of grade and speed on leg muscle activations during walking. Gait & Posture, 35(1), 143–147.

    Article  Google Scholar 

  • Furnell, S., Blanchard, M. L., Crompton, R. H., & Sellers, W. I. (2015). Locomotor ecology of Propithecus verreauxi in Kirindy Mitea National Park. Folia Primatologica, 86(4), 223–230.

    Article  Google Scholar 

  • Garber, P. (1991). A comparative study of positional behavior in three species of tamarin monkeys. Primates, 32(2), 219–230.

    Article  Google Scholar 

  • Gebo, D. L. (1985). The nature of the primate grasping foot. American Journal of Physical Anthropology, 67(3), 269–277.

    Article  Google Scholar 

  • Gebo, D. L. (1986). Anthropoid origins—The foot evidence. Journal of Human Evolution, 15(6), 421–430.

    Article  Google Scholar 

  • Gebo, D. L. (1988). Foot morphology and locomotor adaptation in Eocene primates. Folia Primatologica, 50(1–2), 3–41.

    Article  CAS  Google Scholar 

  • Gebo, D. L. (1992). Plantigrady and foot adaptation in African apes: Implications for hominid origins. American Journal of Physical Anthropology, 89(1), 29–58.

    Article  CAS  Google Scholar 

  • Gebo, D. L. (1996). Climbing, brachiation, and terrestrial quadrupedalism: Historical precursors of hominid bipedalism. American Journal of Physical Anthropology, 101(1), 55–92.

    Article  CAS  Google Scholar 

  • Gebo, D. L. (2011). Vertical clinging and leaping revisited: Vertical support use as the ancestral condition of strepsirrhine primates. American Journal of Physical Anthropology, 146(3), 323–335.

    Article  Google Scholar 

  • Gebo, D. L., & Dagosto, M. (1988). Foot anatomy, climbing, and the origin of the Indriidae. Journal of Human Evolution, 17(1–2), 135–154.

    Article  Google Scholar 

  • Gebo, D. L., & Simons, E. L. (1987). Morphology and locomotor adaptations of the foot in early Oligocene anthropoids. American Journal of Physical Anthropology, 74(1), 83–101.

    Article  CAS  Google Scholar 

  • George, B., Kumar, A., & Rao, M. (2013a). Foot deformations in coconut tree climbers of South India. Nitte University Journal of Health Science, 3(1), 45–51.

    Google Scholar 

  • George, B. M., Kumar, A., & Rao, M. S. (2013b). Biomechanics of climbing coconut trees and its implications in ankle foot morphology-a video sequence analysis. Journal of Clinical and Diagnostic Research, 7(5), 790.

    Google Scholar 

  • Granatosky, M. C., Schmitt, D., & Hanna, J. (2019). Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. Journal of Experimental Biology, 222(2), 185702.

    Google Scholar 

  • Hanna, J. B. (2006). Kinematics of vertical climbing in lorises and Cheirogaleus medius. Journal of Human Evolution, 50(4), 469–478.

    Article  CAS  Google Scholar 

  • Hanna, J. B., & Schmitt, D. (2011a). Interpreting the role of climbing in primate locomotor evolution: are the biomechanics of climbing influenced by habitual substrate use and anatomy?. International Journal of Primatology, 32(2), 430–444.

    Google Scholar 

  • Hanna, J. B., & Schmitt, D. (2011b). Locomotor energetics in primates: gait mechanics and their relationship to the energetics of vertical and horizontal locomotion. American Journal of Physical Anthropology, 145(1), 43–54.

    Google Scholar 

  • Hanna, J. B., Granatosky, M. C., Rana, P., & Schmitt, D. (2017). The evolution of vertical climbing in primates: Evidence from reaction forces. Journal of Experimental Biology, 220, 157628.

    Article  Google Scholar 

  • Hanna, J. B., Schmitt, D., & Griffin, T. M. (2008). The energetic cost of climbing in primates. Science, 320(5878), 898–898.

    Article  CAS  Google Scholar 

  • Hirasaki, E. (1992). Vertical climbing in Ateles geoffroyi and Macaca fuscata and its comparative neurological background. In S. Matano, R. Tuttle, H. Ishida, & M. Goodman (Eds.), Topics in primatology (pp. 167–176). University of Tokyo Press.

    Google Scholar 

  • Hirasaki, E., Kumakura, H., & Matano, S. (1993). Kinesiological characteristics of vertical climbing in Ateles geoffroyi and Macaca fuscata. Folia Primatologica, 61(3), 148–156.

    Article  CAS  Google Scholar 

  • Hirasaki, E., Kumakura, H., & Matano, S. (1995). Electromyography of 15 limb muscles in Japanese macaques (Macaca fuscata) during vertical climbing. Folia Primatologica, 64(4), 218–224.

    Article  CAS  Google Scholar 

  • Hirasaki, E., Kumakura, H., & Matano, S. (2000). Biomechanical analysis of vertical climbing in the spider monkey and the Japanese macaque. American Journal of Physical Anthropology, 113(4), 455–472.

    Article  CAS  Google Scholar 

  • Hirasaki, E., & Matano, S. (1996). Comparison of locomotor patterns and the cerebellar complex in Ateles and Macaca. Folia Primatologica, 66(1–4), 209–225.

    Article  CAS  Google Scholar 

  • Hirokawa, Y., & Kumakura, H. (2003). Functional analysis of the thigh muscles during locomotion in the Garnet galago (Galago garnetti). Anthropological Science, 111(2), 187–201.

    Article  Google Scholar 

  • Holowka, N. B., O’Neill, M. C., Thompson, N. E., & Demes, B. (2017). Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion. American Journal of Physical Anthropology, 164, 131–147.

    Article  Google Scholar 

  • Hunt, K. D., Cant, J. G., Gebo, D. L., Rose, M. D., Walker, S. E., & Youlatos, D. (1996). Standardized descriptions of primate locomotor and postural modes. Primates, 37(4), 363–387.

    Article  Google Scholar 

  • Isbell, L. A., Pruetz, J. D., Lewis, M., & Young, T. P. (1998). Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): Implications for the evolution of long hindlimb length in Homo. American Journal of Physical Anthropology, 105(2), 199–207.

    Article  CAS  Google Scholar 

  • Isler, K. (2002a). Characteristics of vertical climbing in African apes. Senckenbergiana Lethaea, 82(1), 115–124.

    Article  Google Scholar 

  • Isler, K. (2002b). Characteristics of vertical climbing in gibbons. Evolutionary Anthropology, 11(S1), 49–52.

    Article  Google Scholar 

  • Isler, K. (2004). Footfall patterns, stride length and speed of vertical climbing in spider monkeys (Ateles fusciceps robustus) and woolly monkeys (Lagothrix lagotricha). Folia Primatologica, 75(3), 133–149.

    Article  Google Scholar 

  • Isler, K. (2005). 3D-kinematics of vertical climbing in hominoids. American Journal of Physical Anthropology, 126(1), 66–81.

    Article  Google Scholar 

  • Isler, K., & Grüter, C. C. (2006). Arboreal locomotion in wild black-and-white snub-nosed monkeys (Rhinopithecus bieti). Folia Primatologica, 77(3), 195–211.

    Article  Google Scholar 

  • Isler, K., & Thorpe, S. K. (2003). Gait parameters in vertical climbing of captive, rehabilitant and wild Sumatran orang-utans (Pongo pygmaeus abelii). Journal of Experimental Biology, 206(22), 4081–4096.

    Article  Google Scholar 

  • Jungers, W. (1977). Hindlimb and pelvic adaptations to vertical climbing and clinging in Megaladapis, a giant subfossil prosimian from Madagascar. Yearbook of Physical Anthropology, 20, 508–524.

    Google Scholar 

  • Jungers, W., Stern, J., & Jouffroy, F. (1983). Functional morphology of the quadriceps femoris in primates: A comparative anatomical and experimental analysis. Annales des Sciences Naturelles Zoologie et Biologie Animale, 5(2), 101–116.

    Google Scholar 

  • Kingston, A. K., Boyer, D. M., Patel, B. A., Larson, S. G., & Stern, J. T. (2010). Hallucal grasping in Nycticebus coucang: Further implications for the functional significance of a large peroneal process. Journal of Human Evolution, 58(1), 33–42.

    Article  Google Scholar 

  • Kivell, T. L., Schmitt, D., & Wunderlich, R. E. (2010). Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits. Journal of Experimental Biology, 213(9), 1549–1557.

    Article  Google Scholar 

  • Kraft, T. S., Venkataraman, V. V., & Dominy, N. J. (2014). A natural history of human tree climbing. Journal of Human Evolution, 71, 105–118.

    Article  Google Scholar 

  • Kumakura, H. (1989). Functional analysis of the biceps femoris muscle during locomotor behavior in some primates. American Journal of Physical Anthropology, 79(3), 379–391.

    Article  CAS  Google Scholar 

  • Lammers, A. R., Earls, K. D., & Biknevicius, A. R. (2006). Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica. Journal of Experimental Biology, 209(20), 4154–4166.

    Article  Google Scholar 

  • Larson, S., & Stern, J. (1987). EMG of the hamstrings in chimpanzees and orangutans. Yearbook of Physical Anthropology, 72, 223–230.

    Google Scholar 

  • Lay, A. N., Hass, C. J., & Gregor, R. J. (2006). The effects of sloped surfaces on locomotion: A kinematic and kinetic analysis. Journal of Biomechanics, 39(9), 1621–1628.

    Article  Google Scholar 

  • Lay, A. N., Hass, C. J., Nichols, T. R., & Gregor, R. J. (2007). The effects of sloped surfaces on locomotion: An electromyographic analysis. Journal of Biomechanics, 40(6), 1276–1285.

    Article  Google Scholar 

  • Lewis, O. J. (1964). The tibialis posterior tendon in the primate foot. Journal of Anatomy, 98, 209–218.

    CAS  Google Scholar 

  • Lewis, O. J. (1972). The evolution of the hallucial tarsometatarsal joint in the Anthropoidea. American Journal of Physical Anthropology, 37(1), 13–33.

    Article  CAS  Google Scholar 

  • Lewis, O. J. (1980a). The joints of the evolving foot. Part I. The ankle joint. Journal of Anatomy, 130, 527–543.

    CAS  Google Scholar 

  • Lewis, O. J. (1980b). The joints of the evolving foot. Part II. The intrinsic joints. Journal of Anatomy, 130, 833–857.

    CAS  Google Scholar 

  • Lewis, O. J. (1980c). The joints of the evolving foot. Part III. The fossil evidence. Journal of Anatomy, 131, 275–298.

    CAS  Google Scholar 

  • Manduell, K. L., Morrogh-Bernard, H. C., & Thorpe, S. K. (2011). Locomotor behavior of wild orangutans (Pongo pygmaeus wurmbii) in disturbed peat swamp forest, Sabangau, Central Kalimantan, Indonesia. American Journal of Physical Anthropology, 145(3), 348–359.

    Article  Google Scholar 

  • McGraw, W. S. (1998). Comparative locomotion and habitat use of six monkeys in the Tai Forest, Ivory Coast. American Journal of Physical Anthropology, 105(4), 493–510.

    Article  CAS  Google Scholar 

  • McGraw, W. S. (2000). Positional behavior of Cercopithecus petaurista. International Journal of Primatology, 21(1), 157–182.

    Article  Google Scholar 

  • Morton, D. J. (1922). Evolution of the human foot. American Journal of Physical Anthropology, 5(4), 305–336.

    Article  Google Scholar 

  • Morton, D. J. (1924a). Evolution of the human foot II. American Journal of Physical Anthropology, 7(1), 1–52.

    Article  Google Scholar 

  • Morton, D. J. (1924b). Evolution of the longitudinal arch of the human foot. Journal of Bone and Joint Surgery, 6(1), 56–90.

    Google Scholar 

  • Morton, D. J. (1927). Human origin. Correlation of previous studies of primate feet and posture with other morphologic evidence. American Journal of Physical Anthropology, 10(2), 173–203.

    Article  Google Scholar 

  • Morton, D. J. (1935). The human foot: Its evolution, physiology, and functional disorders. Columbia University Press.

    Google Scholar 

  • Nakano, Y. (2002). The effects of substratum inclination on locomotor patterns in primates. Zeitschrift für Morphologie und Anthropologie, 83, 189–199.

    Article  Google Scholar 

  • Nakano, Y., Hirasaki, E., & Kumakura, H. (2006). Patterns of vertical climbing in primates. In H. Ishida, R. Tuttle, M. Pickford, N. Ogihara, & M. Nakatsukasa (Eds.), Human origins and environmental backgrounds (pp. 97–104). Springer.

    Chapter  Google Scholar 

  • Nakano, Y., Ishida, H., & Hirasaki, E. (1996). The change of the locomotor pattern caused by the inclination of the substrata in a Japanese macaque. Primate Research, 12(2), 79–87.

    Article  Google Scholar 

  • Nash, L. T. (1998). Vertical clingers and sleepers: Seasonal influences on the activities and substrate use of Lepilemur leucopus at Beza Mahafaly Special Reserve, Madagascar. Folia Primatologica, 69, 204–217.

    Article  Google Scholar 

  • Nekaris, K. (2001). Activity budget and positional behavior of the Mysore slender Loris (Loris tardigradus lydekkerianus): Implications for slow climbing locomotion. Folia Primatologica, 72(4), 228–241.

    Article  CAS  Google Scholar 

  • Noé, F., Quaine, F., & Martin, L. (2001). Influence of steep gradient supporting walls in rock climbing: Biomechanical analysis. Gait & Posture, 13(2), 86–94.

    Article  Google Scholar 

  • Nyakatura, J. A., Fischer, M. S., & Schmidt, M. (2008). Gait parameter adjustments of cotton-top tamarins (Saguinus oedipus, Callitrichidae) to locomotion on inclined arboreal substrates. American Journal of Physical Anthropology, 135(1), 13–26.

    Article  Google Scholar 

  • Nyakatura, J. A., & Heymann, E. W. (2010). Effects of support size and orientation on symmetric gaits in free-ranging tamarins of Amazonian Peru: Implications for the functional significance of primate gait sequence patterns. Journal of Human Evolution, 58(3), 242–251.

    Article  Google Scholar 

  • Parenteau, C., & Viano, D. (1998). Biomechanical properties of human cadaveric ankle-subtalar joints in quasi-static loading. Journal of Biomechanical Engineering, 120(1), 105–111.

    Article  CAS  Google Scholar 

  • Patel, B. A., Wallace, I. J., Boyer, D. M., Granatosky, M. C., Larson, S. G., & Stern, J. T. (2015). Distinct functional roles of primate grasping hands and feet during arboreal quadrupedal locomotion. Journal of Human Evolution, 88, 79–84.

    Article  Google Scholar 

  • Pontzer, H., & Wrangham, R. W. (2004). Climbing and the daily energy cost of locomotion in wild chimpanzees: Implications for hominoid locomotor evolution. Journal of Human Evolution, 46(3), 315–333.

    Article  Google Scholar 

  • Preuschoft, H. (1990). Gravity in primates and its relation to body shape and locomotion. Human Evolution, 5(6), 559–578.

    Google Scholar 

  • Preuschoft, H. (2002). What does “arboreal locomotion” mean exactly and what are the relationships between “climbing”, environment and morphology? Zeitschrift für Morphologie und Anthropologie, 83, 171–188.

    Article  Google Scholar 

  • Preuschoft, H., Schönwasser, K.-H., & Witzel, U. (2016). Selective value of characteristic size parameters in hylobatids. A biomechanical approach to small ape size and morphology. In U. Reichard, H. Hirai, & C. Barelli (Eds.), Evolution of Gibbons and Siamang (pp. 229–265). Springer.

    Chapter  Google Scholar 

  • Prost, J., & Sussman, R. (1969). Monkey locomotion on inclined surfaces. American Journal of Physical Anthropology, 31(1), 53–58.

    Article  Google Scholar 

  • Prost, J. H. (1980). Origin of bipedalism. American Journal of Physical Anthropology, 52(2), 175–189.

    Article  CAS  Google Scholar 

  • Protopapadaki, A., Drechsler, W. I., Cramp, M. C., Coutts, F. J., & Scott, O. M. (2007). Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals. Clinical Biomechanics, 22(2), 203–210.

    Article  Google Scholar 

  • Raichlen, D., Pontzer, H., Shapiro, L., & Sockol, M. (2009). Understanding hind limb weight support in chimpanzees with implications for the evolution of primate locomotion. American Journal of Physical Anthropology, 138(4), 395–402.

    Article  Google Scholar 

  • Reghem, E., Pouydebat, E., & Bels, V. (2009). Biomechanics of a primate hand (Microcebus m) in climbing: Function, strategies and human implications. Computer Methods in Biomechanics and Biomedical Engineering, 12, 213–214.

    Article  Google Scholar 

  • Riener, R., Rabuffetti, M., & Frigo, C. (2002). Stair ascent and descent at different inclinations. Gait & Posture, 15(1), 32–44.

    Article  Google Scholar 

  • Rome, K. (1996). Ankle joint dorsiflexion measurement studies. A review of the literature. Journal of the American Podiatric Medical Association, 86(5), 205–211.

    Article  CAS  Google Scholar 

  • Sarringhaus, L., MacLatchy, L., & Mitani, J. (2014). Locomotor and postural development of wild chimpanzees. Journal of Human Evolution, 66, 29–38.

    Article  CAS  Google Scholar 

  • Schmitt, D. (2010). Primate locomotor evolution: Biomechanical studies of primate locomotion and their implications for understanding primate neuroethology. In M. Platt & A. Ghazanfar (Eds.), Primate neuroethology (pp. 10–30). Oxford University Press.

    Google Scholar 

  • Schoonaert, K., D’Août, K., & Aerts, P. (2006). A dynamic force analysis system for climbing of large primates. Folia Primatologica, 77(3), 246–254.

    Article  Google Scholar 

  • Schoonaert, K., D’Août, K., Samuel, D., Talloen, W., Nauwelaerts, S., Kivell, T. L., & Aerts, P. (2016). Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus). American Journal of Primatology, 78(11), 1165–1177.

    Article  Google Scholar 

  • Shamaei, K., Cenciarini, M., & Dollar, A. (2011). On the mechanics of the ankle in the stance phase of the gait. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 8135–8140.

    Article  Google Scholar 

  • Shapiro, L. J., & Raichlen, D. A. (2005). Lateral sequence walking in infant Papio cynocephalus: Implications for the evolution of diagonal sequence walking in primates. American Journal of Physical Anthropology, 126(2), 205–213.

    Article  Google Scholar 

  • Shapiro, L. J., & Young, J. W. (2010). Is primate-like quadrupedalism necessary for fine-branch locomotion? A test using sugar gliders (Petaurus breviceps). Journal of Human Evolution, 58(4), 309–319.

    Article  Google Scholar 

  • Stern, J. T. (1977). Electromyography of some muscles of the upper limb in Ateles and Lagothrix. Yearbook of Physical Anthropology, 20, 498–507.

    Google Scholar 

  • Stern, J. T., & Susman, R. L. (1981). Electromyography of the gluteal muscles in Hylobates, Pongo, and Pan: Implications for the evolution of hominid bipedality. American Journal of Physical Anthropology, 55(2), 153–166.

    Article  Google Scholar 

  • Stern, J. T., & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60(3), 279–317.

    Article  Google Scholar 

  • Stern, J. T., Wells, J. P., Jungers, W. L., Vangor, A. K., & Fleagle, J. (1980). An electromyographic study of the pectoralis major in atelines and Hylobates, with special reference to the evolution of a pars clavicularis. American Journal of Physical Anthropology, 52(1), 13–25.

    Article  Google Scholar 

  • Stern, J. T., Wells, J. P., Jungers, W. L., & Vangor, A. K. (1980). An electromyographic study of serratus anterior in atelines and Alouatta: Implications for hominoid evolution. American Journal of Physical Anthropology, 52(3), 323–334.

    Article  Google Scholar 

  • Stevens, N. (2006). Stability, limb coordination and substrate type: The ecorelevance of gait sequence pattern in primates. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 305(11), 953–963.

    Article  Google Scholar 

  • Stevens, N. J., Ratsimbazafy, J. H., & Ralainasolo, F. (2011). Linking field and laboratory approaches for studying primate locomotor responses to support orientation. In K. D’Aout & E. Vereecke (Eds.), Primate locomotion (pp. 311–333). Springer.

    Chapter  Google Scholar 

  • Szalay, F. S., & Dagosto, M. (1988). Evolution of hallucial grasping in the primates. Journal of Human Evolution, 17(1–2), 1–33.

    Article  Google Scholar 

  • Thorpe, S. K., & Crompton, R. H. (2005). Locomotor ecology of wild orangutans (Pongo pygmaeus abelii) in the Gunung Leuser Ecosystem, Sumatra, Indonesia: A multivariate analysis using log-linear modelling. American Journal of Physical Anthropology, 127(1), 58–78.

    Article  Google Scholar 

  • Thorpe, S. K., & Crompton, R. H. (2006). Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. American Journal of Physical Anthropology, 131(3), 384–401.

    Article  Google Scholar 

  • Toussaint, S., Herrel, A., Ross, C. F., Aujard, F., & Pouydebat, E. (2015). Substrate diameter and orientation in the context of food type in the gray mouse lemur, Microcebus murinus: Implications for the origins of grasping in primates. International Journal of Primatology, 36(3), 583–604.

    Article  Google Scholar 

  • Tulchin, K., Orendurff, M., & Karol, L. (2010). The effects of surface slope on multi-segment foot kinematics in healthy adults. Gait & Posture, 32(4), 446–450.

    Article  Google Scholar 

  • Vangor, A. (1977). Functional pre-adaptation to bipedality in non-human primates. American Journal of Physical Anthropology, 47(1), 164–165.

    Google Scholar 

  • Vangor, A., & Wells, J. (1983). Muscle recruitment and the evolution of bipedality: Evidence from telemetered electromyography of spider, woolly and patas monkeys. Annales des Sciences Naturelles Zoologie et Biologie Animale, 5(3), 125–135.

    Google Scholar 

  • Vangor, A. K. (1979). Electromyography of gait in non-human primates and its significance for the evolution of bipedality. PhD dissertation, State University of New York at Stony Brook.

    Google Scholar 

  • Venkataraman, V. V., Kraft, T. S., DeSilva, J. M., & Dominy, N. J. (2013a). Phenotypic plasticity of climbing-related traits in the ankle joint of great apes and rainforest hunter-gatherers. Human Biology, 85(3), 309–328.

    Google Scholar 

  • Venkataraman, V. V., Kraft, T. S., & Dominy, N. J. (2013b). Tree climbing and human evolution. Proceedings of the National Academy of Sciences, 110(4), 1237–1242.

    Google Scholar 

  • Vereecke, E., & Wunderlich, R. (2016). Experimental research on hand use and function in primates. In T. L. Kivell, P. Lemelin, B. G. Richmond, & D. Schmitt (Eds.), The evolution of the primate hand: Anatomical, developmental, functional, and paleontological evidence (pp. 259–284). Springer.

    Chapter  Google Scholar 

  • Vilensky, J. A., Moore, A. M., & Libii, J. N. (1994). Squirrel monkey locomotion on an inclined treadmill: Implications for the evolution of gaits. Journal of Human Evolution, 26(5–6), 375–386.

    Article  Google Scholar 

  • Warren, R. D., & Crompton, R. H. (1997). Locomotor ecology of Lepilemur edwardsi and Avahi occidentalis. American Journal of Physical Anthropology, 104(4), 471–486.

    Article  CAS  Google Scholar 

  • Workman, C., & Schmitt, D. (2012). Positional behavior of Delacour’s langurs (Trachypithecus delacouri) in northern Vietnam. International Journal of Primatology, 33(1), 19–37.

    Article  Google Scholar 

  • Wright, K. (2007). The relationship between locomotor behavior and limb morphology in brown (Cebus apella) and weeper (Cebus olivaceus) capuchins. American Journal of Primatology, 69(7), 736–756.

    Article  Google Scholar 

  • Wunderlich, R. E., & Ischinger, S. (2017). Foot use during vertical climbing in chimpanzees (Pan troglodytes). Journal of Human Evolution, 109, 1–10.

    Article  CAS  Google Scholar 

  • Wunderlich, R. E., Simons, E. L., & Jungers, W. L. (1996). New pedal remains of Megaladapis and their functional significance. American Journal of Physical Anthropology, 100(1), 115–138.

    Article  CAS  Google Scholar 

  • Xiong, J., Gong, S., Qiu, C., & Li, Z. (2009). Comparison of locomotor behavior between white-headed langurs Trachypithecus leucocephalus and Francois’ langurs T. francoisi in Fusui, China. Current Zoology, 55(1), 9–19.

    Article  Google Scholar 

  • Yamazaki, N., & Ishida, H. (1984). A biomechanical study of vertical climbing and bipedal walking in gibbons. Journal of Human Evolution, 13(7), 563–571.

    Article  Google Scholar 

  • Youlatos, D. (2002). Positional behavior of black spider monkeys (Ateles paniscus) in French Guiana. International Journal of Primatology, 23(5), 1071–1093.

    Article  Google Scholar 

  • Zhu, W. W., Garber, P. A., Bezanson, M., Qi, X. G., & Li, B. G. (2015). Age-and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana). American Journal of Primatology, 77(1), 98–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jandy B. Hanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanna, J.B., Venkataraman, V. (2022). Experimental Research on Foot Use and Function During Climbing by Primates. In: Zeininger, A., Hatala, K.G., Wunderlich, R.E., Schmitt, D. (eds) The Evolution of the Primate Foot. Developments in Primatology: Progress and Prospects. Springer, Cham. https://doi.org/10.1007/978-3-031-06436-4_8

Download citation

Publish with us

Policies and ethics