Skip to main content

Improving Machine Self-Diagnosis with an Instance-Based Selector for Real-Time Anomaly Detection Algorithms

  • Conference paper
  • First Online:
Decision Support Systems XII: Decision Support Addressing Modern Industry, Business, and Societal Needs (ICDSST 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 447))

Included in the following conference series:

Abstract

The diffusion of smart sensor technology in production enables real-time monitoring of production conditions. Machine self-diagnosis shall serve the analysis of these conditions by differentiating expected data from anomalies. Several algorithms have been developed in practice and academia to detect anomalies in real-time and to support machine self-diagnosis, so that counteractions can be taken. However, due to the algorithms’ different functionalities, they yield different results when applied to the same data. Our research aims to leverage complementary potentials among these algorithms. To this end, we use a design science research approach to design and prototypically implement a real-time anomaly detection algorithm selector to support decision making regarding machine self-diagnosis. The selector decides in real-time for each sensor-emitted data point, which algorithm yields the most reliable result in terms of anomaly detection. We evaluate functionality and feasibility with two real-world case studies. The evaluation shows that the algorithm selector may outperform single algorithms and that it is applicable in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buer, S.-V., Strandhagen, J.W., Semini, M., et al.: The digitalization of manufacturing: investigating the impact of production environment and company size. JMTM 32(3), 621–645 (2021)

    Article  Google Scholar 

  2. Schütze, A., Helwig, N., Schneider, T. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0. J. Sens. Sens. Syst. 7(1), 359–371 (2018)

    Google Scholar 

  3. Cohen, Y., Singer, G.: A smart process controller framework for Industry 4.0 settings. J. Intell. Manuf. 32(7), 1975–1995 (2021). https://doi.org/10.1007/s10845-021-01748-5

    Article  Google Scholar 

  4. Hsieh, R.-J., Chou, J., Ho, C.-H.: Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing 2019, pp. 90–97 (2019)

    Google Scholar 

  5. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms - the Numenta anomaly benchmark, pp. 38–44 (2015)

    Google Scholar 

  6. Apostol, I., Preda, M., Nila, C., et al.: IoT botnet anomaly detection using unsupervised deep learning. Electronics 10(16), 1876 (2021)

    Article  Google Scholar 

  7. Kotthoff, L.: Algorithm Selection Literature Summary. http://larskotthoff.github.io/assurvey/

  8. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  9. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algorithm ranking. Mach. Learn. 93(1), 141–161 (2013). https://doi.org/10.1007/s10994-013-5387-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Kerschke, P., Kotthoff, L., Bossek, J., et al.: Leveraging TSP solver complementarity through machine learning. Evol. Comput. 26(4), 597–620 (2018)

    Article  Google Scholar 

  11. Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

    Article  Google Scholar 

  12. Vom Brocke, J., Simons, A., Riemer, K., et al.: Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. CAIS 37 (2015)

    Google Scholar 

  13. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), xiii–xxiii (2002)

    Google Scholar 

  14. Ahmad, S., Lavin, A., Purdy, S., et al.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017)

    Article  Google Scholar 

  15. Numenta Anomaly Benchmark. Numenta Anomaly Benchmark. https://github.com/numenta/NAB

  16. Stahmann, P., Rieger, B.: Towards design principles for a real-time anomaly detection algorithm benchmark suited to Industrie 4.0 streaming data. In: 55th HICSS 2022 (2022)

    Google Scholar 

  17. Siegel, B.: Industrial anomaly detection: a comparison of unsupervised neural network architectures. IEEE Sens. Lett. 4(8), 1–4 (2020)

    Article  Google Scholar 

  18. Farquad, M., Bose, I.: Preprocessing unbalanced data using support vector machine. Decis. Support Syst. 53(1), 226–233 (2012)

    Article  Google Scholar 

  19. Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25(1), 77–89 (2016)

    Article  Google Scholar 

  20. “AnonymousPublisher1793” on GitHub. Data and additional information. https://github.com/anonymousPublisher1793/publication

  21. Adams, E.P., MacKay, D.J.C.: Bayesian Online Changepoint Detection (2007)

    Google Scholar 

  22. Burnaev, E., Ishimtsev, V.: Conformalized density- and distance-based anomaly detection in time-series data (2016)

    Google Scholar 

  23. Schneider, M., Ertel, W., Ramos, F.: Expected similarity estimation for large-scale batch and streaming anomaly detection. Mach. Learn. 105(3), 305–333 (2016). https://doi.org/10.1007/s10994-016-5567-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Dunning, T.: The t-digest: efficient estimates of distributions. Softw. Impacts 7, 100049 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Stahmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stahmann, P., Oodes, J., Rieger, B. (2022). Improving Machine Self-Diagnosis with an Instance-Based Selector for Real-Time Anomaly Detection Algorithms. In: Cabral Seixas Costa, A.P., Papathanasiou, J., Jayawickrama, U., Kamissoko, D. (eds) Decision Support Systems XII: Decision Support Addressing Modern Industry, Business, and Societal Needs. ICDSST 2022. Lecture Notes in Business Information Processing, vol 447. Springer, Cham. https://doi.org/10.1007/978-3-031-06530-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06530-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06529-3

  • Online ISBN: 978-3-031-06530-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics