Skip to main content

On IND-qCCA Security in the ROM and Its Applications

CPA Security Is Sufficient for TLS 1.3

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13277))

Abstract

Bounded IND-CCA security (IND-qCCA) is a notion similar to the traditional IND-CCA security, except the adversary is restricted to a constant number q of decryption/decapsulation queries. We show in this work that IND-qCCA is easily obtained from any passively secure PKE in the (Q)ROM. That is, simply adding a confirmation hash or computing the key as the hash of the plaintext and ciphertext holds an IND-qCCA KEM. In particular, there is no need for derandomization or re-encryption as in the Fujisaki-Okamoto (FO) transform [15]. This makes the decapsulation process of such IND-qCCA KEM much more efficient than its FO-derived counterpart. In addition, IND-qCCA KEMs could be used in the recently proposed KEMTLS protocol [29] that requires IND-1CCA ephemeral key-exchange mechanisms, or in TLS 1.3. Then, using similar proof techniques, we show that CPA-secure KEMs are sufficient for the TLS 1.3 handshake to be secure, solving an open problem in the ROM. In turn, this implies that the PRF-ODH assumption used to prove the security of TLS 1.3 is not necessary and can be replaced by the CDH assumption in the ROM. We also highlight and briefly discuss several use cases of IND-1CCA KEMs in protocols and ratcheting primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OQS OpenSSL (June 2021). https://github.com/open-quantum-safe/openssl

  2. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 621–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_21

    Chapter  Google Scholar 

  3. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_12

    Chapter  Google Scholar 

  4. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 61–90. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_3

    Chapter  MATH  Google Scholar 

  5. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: Relations, instantiations, and impossibility results. Cryptology ePrint Archive, Report 2017/517 (2017). https://ia.cr/2017/517

  6. Brendel, J., Fiedler, R., Günther, F., Janson, C., Stebila, D.: Post-quantum asynchronous deniable key exchange and the signal handshake. Cryptology ePrint Archive, Report 2021/769 (2021). https://eprint.iacr.org/2021/769

  7. Celi, S., et al.: Implementing and measuring KEMTLS. Cryptology ePrint Archive, Report 2021/1019 (2021). https://ia.cr/2021/1019

  8. Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_31

    Chapter  Google Scholar 

  9. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key exchange and authentication in TLS and SSH. IACR Cryptol. ePrint Arch. 2019, 858 (2019)

    Google Scholar 

  10. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp. 448–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78375-4_18

    Chapter  MATH  Google Scholar 

  11. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 1–57 (2021)

    Google Scholar 

  12. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol. J. Cryptol. 34 (2020)

    Google Scholar 

  13. Fluhrer, S.: Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive, Report 2016/085 (2016). https://eprint.iacr.org/2016/085

  14. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013). https://doi.org/10.1007/s00145-011-9114-1

  16. Giacon, F., Heuer, F., Poettering, B.: KEM Combiners. Cryptology ePrint Archive, Report 2018/024 (2018). https://eprint.iacr.org/2018/024

  17. Günther, F.: Modeling advanced security aspects of key exchange and secure channel protocols (2018)

    Google Scholar 

  18. Günther, F., Towa, P.: KEMTLS with delayed forward identity protection in (almost) a single round trip. Cryptology ePrint Archive, Report 2021/725 (2021). https://eprint.iacr.org/2021/725

  19. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  20. Huguenin-Dumittan, L., Vaudenay, S.: A note on IND-qCCA security in the ROM and its applications: CPA security is sufficient for TLS 1.3. Cryptology ePrint Archive, Report 2021/844 (2021). https://ia.cr/2021/844

  21. Jao, D., et al.: SIKE (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

  22. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guarantees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_6

    Chapter  Google Scholar 

  23. Kuchta, V., Sakzad, A., Stehlé, D., Steinfeld, R., Sun, S.-F.: Measure-rewind-measure: tighter quantum random oracle model proofs for One-Way to hiding and CCA security. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 703–728. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_24

    Chapter  Google Scholar 

  24. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13

    Chapter  Google Scholar 

  25. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking post-quantum cryptography in TLS. Cryptology ePrint Archive, Report 2019/1447 (2019). https://eprint.iacr.org/2019/1447

  26. Pereira, M., Dowsley, R., Hanaoka, G., Nascimento, A.C.A.: Public key encryption schemes with bounded CCA security and optimal ciphertext length based on the CDH assumption. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 299–306. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18178-8_26

    Chapter  Google Scholar 

  27. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_1

    Chapter  Google Scholar 

  28. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17

    Chapter  MATH  Google Scholar 

  29. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1461–1480 (2020)

    Google Scholar 

  30. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. Cryptology ePrint Archive, Report 2020/534 (2020). https://eprint.iacr.org/2020/534

  31. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS with pre-distributed public keys. Cryptology ePrint Archive, Report 2021/779 (2021). https://eprint.iacr.org/2021/779

  32. Yamakawa, T., Yamada, S., Matsuda, T., Hanaoka, G., Kunihiro, N.: Reducing public key sizes in bounded CCA-secure KEMs with optimal ciphertext length. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 100–109. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27659-5_7

    Chapter  Google Scholar 

  33. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

Download references

Acknowledgment

We thank Daniel Collins for pointing out possible use-cases of IND-1CCA KEMs in ratcheting and the anonymous reviewers for their helpful comments. Loïs Huguenin-Dumittan is supported by a grant (project No 192364) of the Swiss National Science Foundation (SNSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïs Huguenin-Dumittan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huguenin-Dumittan, L., Vaudenay, S. (2022). On IND-qCCA Security in the ROM and Its Applications. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07082-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07081-5

  • Online ISBN: 978-3-031-07082-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics