Skip to main content

Acetylcholine

  • Chapter
  • First Online:
Neurochemistry in Clinical Practice

Abstract

Acetylcholine (Ach) is an excitatory neurotransmitter formed from choline and acetic acid through the process of esterification. It is the primary neurotransmitter in the parasympathetic autonomic nervous system, a chemical transmitter at the neuromuscular junction, and a neuromodulator in the brain. This chapter outlines the history, neurochemical profile, receptor functioning, metabolism, pharmacological importance, and the clinical application of Ach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dudley HW. Observations on acetylcholine. Biochem J. 1929;23(5):1064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mott FW, Halliburton WD. On the physiological action of choline and Neurine. Br Med J. 1899;1:1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hunt R, De M, Taveau R. On the physiological action of certain Cholin derivatives and new methods for detecting Cholin. Br Med J. 1906;2(2399):1788–91.

    Google Scholar 

  4. Dale H. Br Med J. 1968;3(5613):318–21.

    Article  Google Scholar 

  5. Ewins AJ. Acetylcholine, a new active principle of Ergot. Biochem J. 1914;8(1):44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dale HH. The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol Exp Ther. 1914;6:147–90.

    CAS  Google Scholar 

  7. Fishman MC. Sir Henry Hallett Dale and acetylcholine story. Yale J Biol Med. 1972;45(2):104–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Loewi O, N. Uber hormonale Ubertragbarkeitder Herznervenwirkung. Pflügers Arch Physiol. 1926;214:678–88.

    Article  CAS  Google Scholar 

  9. Dale HH, Dudley HW. The presence of histamine and acetylcholine in the spleen of the ox and the horse. J Physiol. 1929;68:97–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dale HH. Nomenclature of fibers in the autonomic system and their effects. J Physiol. 1933;80:10P–11.

    Google Scholar 

  11. Raju TN. The Nobel chronicles. 1936: Henry Hallett Dale (1875–1968) and Otto Loewi (1873–1961). Lancet. 1999;353(9150):416.

    Article  CAS  PubMed  Google Scholar 

  12. Gu Q, Singer W. Effects of intracortical infusion of anticholinergic drugs on neuronal plasticity in kitten striate cortex. Eur J Neurosci. 1993;5(5):475–85.

    Article  CAS  PubMed  Google Scholar 

  13. Raiteri MA, Leardi RI, Marchi MA. Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J Pharmacol Exp Ther. 1984;228(1):209–14.

    CAS  PubMed  Google Scholar 

  14. Butcher LL, Oh JD, Woolf NJ. Cholinergic neurons identified by in situ hybridization histochemistry. Prog Brain Res. 1993;98:1–8.

    Article  CAS  PubMed  Google Scholar 

  15. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37(6):475–524.

    Article  CAS  PubMed  Google Scholar 

  16. Manaye KF, Zweig R, Wu D, Hersh LB, De Lacalle S, Saper CB, et al. Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain. Neuroscience. 1999;89:759–70.

    Article  CAS  PubMed  Google Scholar 

  17. Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol. 1999;411(4):693–704.

    Article  CAS  PubMed  Google Scholar 

  18. Shiromani PJ, Lai YY, Siegel JM. Descending projections from the dorsolateral pontine tegmentum to the paramedian reticular nucleus of the caudal medulla in the cat. Brain Res. 1990;517:224–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kita T, Kita H. Cholinergic and non-cholinergic mesopontine tegmental neurons projecting to the subthalamic nucleus in the rat. Eur J Neurosci. 2011;33(3):433–43.

    Article  PubMed  Google Scholar 

  20. Jones BE. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res. 2004;145:157–69.

    Article  CAS  PubMed  Google Scholar 

  21. Woolf NJ. A structural basis for memory storage in mammals. Prog Neurobiol. 1998;55:59–77.

    Article  CAS  PubMed  Google Scholar 

  22. Bialowas J, Frotscher M. Choline acetyltransferase-immunoreactive neurons and terminals in the rat septal complex: a combined light and electron microscopic study. J Comp Neurol. 1987;259(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  23. Woolf NJ, Eckenstein F, Butcher LL. Cholinergic systems in the rat brain: I. projections to the limbic telencephalon. Brain Res Bull. 1984;13:751–84.

    Article  CAS  PubMed  Google Scholar 

  24. Bigl V, Woolf NJ, Butcher LL. Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull. 1982;8:727–49.

    Article  CAS  PubMed  Google Scholar 

  25. Contestabile A, Villani L, Fasolo A, Franzoni MF, Gribaudo L, Øktedalen O, Fonnum F. Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach. Neuroscience. 1987;21(1):253–70.

    Article  CAS  PubMed  Google Scholar 

  26. Grady SR, Moretti M, Zoli M, Marks MJ, Zanardi A, Pucci L, Clementi F, Gotti C. Rodent habenulo–interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the α3β4 and α3β3β4 subtypes mediate acetylcholine release. J Neurosci. 2009;29(7):2272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Phelps PE, Vaughn JE. Immunocytochemical localization of choline acetyltransferase in rat ventral striatum: a light and electron microscopic study. J Neurocytol. 1986;15(5):595–617.

    Article  CAS  PubMed  Google Scholar 

  28. Woolf NJ, Butcher LL. Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: a combined Evans blue and acetylcholinesterase analysis. Brain Res Bull. 1981;7:487–507.

    Article  CAS  PubMed  Google Scholar 

  29. Talbot K, Woolf NJ, Butcher LL. Feline islands of Calleja complex: II. Cholinergic and cholinesterasic features. J Comp Neurol. 1988;275:580–603.

    Article  CAS  PubMed  Google Scholar 

  30. Arvidsson U, Riedl M, Elde R, Meister B. Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol. 1997;378(4):454–67.

    Article  CAS  PubMed  Google Scholar 

  31. Kirsch D. Stages and architecture of normal sleep. Uptodate literature review current through: 2020. This topic last updated: Mar 19, 2020.

    Google Scholar 

  32. Von Economo C. Sleep as a problem of localization. J Nerv Ment Dis. 1930;71(3):249–59.

    Article  Google Scholar 

  33. Jouvet M. The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. In: Neurophysiology and neurochemistry of sleep and wakefulness. Berlin: Springer; 1972. p. 166–307.

    Chapter  Google Scholar 

  34. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature. 2003;425(6961):917–25.

    Article  CAS  PubMed  Google Scholar 

  35. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1–340.

    Article  CAS  PubMed  Google Scholar 

  37. Kryger MH, Roth T, Dement WC. Principles and practice of sleep medicine. Amsterdam: Elsevier; 2017.

    Google Scholar 

  38. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science. 1993;262(5134):679–85.

    Article  CAS  PubMed  Google Scholar 

  39. Lee MG, Hassani OK, Alonso A, Jones BE. Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci. 2005;25(17):4365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han Y, Shi YF, Xi W, Zhou R, Tan ZB, Wang H, Li XM, Chen Z, Feng G, Luo M, Huang ZL. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol. 2014;24(6):693–8.

    Article  CAS  PubMed  Google Scholar 

  41. Gritti I, Mainville L, Mancia M, Jones BE. GABAergic and other non cholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol. 1997;383(2):163–77.

    Article  CAS  PubMed  Google Scholar 

  42. Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE. Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an opto-dialysis study. J Neurosci. 2016;36(6):2057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science. 1953;118(3062):273–4.

    Article  CAS  PubMed  Google Scholar 

  44. Dement W, Kleitman N. Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol. 1957;9(4):673–90.

    Article  CAS  PubMed  Google Scholar 

  45. Jouvet M. Paradoxical sleep as a programming system. J Sleep Res. 1998;7(S1):1–5.

    Article  PubMed  Google Scholar 

  46. Nelson JP, McCarley RW, Hobson JA. REM sleep burst neurons, PGO waves, and eye movement information. J Neurophysiol. 1983;50(4):784–97.

    Article  CAS  PubMed  Google Scholar 

  47. Steriade M, Pare D, Bouhassira D, Deschenes M, Oakson G. Phasic activation of lateral geniculate and perigeniculate thalamic neurons during sleep with ponto-geniculo-occipital waves. J Neurosci. 1989;9(7):2215–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amatruda TT III, Black DA, McKenna TM, McCarley RW, Hobson JA. Sleep cycle control and cholinergic mechanisms: differential effects of carbachol injections at pontine brainstem sites. Brain Res. 1975;98(3):501–15.

    Article  CAS  PubMed  Google Scholar 

  49. Webster HH, Jones BE. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 1988;458(2):285–302.

    Article  CAS  PubMed  Google Scholar 

  50. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci. 2015;112(2):584–9.

    Article  PubMed  CAS  Google Scholar 

  51. Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of sleep and wakefulness: 2012 update. Sleep Med Clin. 2012;7(3):469–86.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Baghdoyan HA. Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol Regul Integr Comp Physiol. 1997;273(3):R896–904.

    Article  CAS  Google Scholar 

  53. Carrera-Cañas C, Garzón M, De Andrés IT. The transition between slow-wave sleep and REM sleep constitutes an independent sleep stage organized by cholinergic mechanisms in the rostrodorsal pontine tegmentum. Front Neurosci. 2019;13:748.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Platt CE. The effects of subcutaneous injections of di-isopropyl fluorophosphate (DFP) on the rate of learning a discrimination problem by albino rats (Doctoral dissertation, The Ohio State University). 1951.

    Google Scholar 

  55. McGaugh JL, Petrinovich L. The effect of strychnine sulphate on maze-learning. Am J Psychol. 1959;72(1):99–102.

    Article  Google Scholar 

  56. Blozovski D, Hennocq N. Effects of antimuscarinic cholinergic drugs injected systemically or into the hippocampo-entorhinal area upon passive avoidance learning in young rats. Psychopharmacology (Berl). 1982;76(4):351–8.

    Article  CAS  Google Scholar 

  57. Radcliffe KA, Fisher JL, Gray R, Dani JA. Nicotinic modulation of glutamate and GABA synaptic transmission in hippocampal neurons. Ann N Y Acad Sci. 1999;868(1):591–610.

    Article  CAS  PubMed  Google Scholar 

  58. Kremin T, Gerber D, Giocomo LM, Huang SY, Tonegawa S, Hasselmo ME. Muscarinic suppression in stratum radiatum of CA1 shows dependence on presynaptic M1 receptors and is not dependent on effects at GABAB receptors. Neurobiol Learn Mem. 2006;85(2):153–63.

    Article  CAS  PubMed  Google Scholar 

  59. Brown KL, Comalli DM, De Biasi M, Woodruff-Pak DS. Trace eyeblink conditioning is impaired in α7 but not in β2 nicotinic acetylcholine receptor knockout mice. Front Behav Neurosci. 2010;8(4):166.

    Google Scholar 

  60. Giocomo LM, Hasselmo ME. Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus. Eur J Neurosci. 2005;22(6):1349–56.

    Article  PubMed  Google Scholar 

  61. Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem. 2003;80(3):332–42.

    Article  CAS  PubMed  Google Scholar 

  62. Chapman CA, Lacaille JC. Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. J Neurosci. 1999;19(19):8637–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci. 1999;3(9):351–9.

    Article  CAS  PubMed  Google Scholar 

  64. Klink R, Alonso A. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J Neurophysiol. 1997;77(4):1813–28.

    Article  CAS  PubMed  Google Scholar 

  65. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron. 2006;49(5):735–46.

    Article  PubMed  CAS  Google Scholar 

  66. Drachman DA. Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology. 1977;27(8):783–90.

    Article  CAS  PubMed  Google Scholar 

  67. Wenk G, Hughey D, Boundy V, Kim A, Walker L, Olton D. Neurotransmitters and memory: role of cholinergic, serotonergic, and noradrenergic systems. Behav Neurosci. 1987;101(3):325.

    Article  CAS  PubMed  Google Scholar 

  68. Kessler J, Markowitsch HJ, Sigg G. Memory related role of the posterior cholinergic system. Int J Neurosci. 1986;30(1–2):101–19.

    Article  CAS  PubMed  Google Scholar 

  69. Pun S, Sigrist M, Santos AF, Ruegg MA, Sanes JR, Jessell TM, Arber S, Caroni P. An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles. Neuron. 2002;34(3):357–70.

    Article  CAS  PubMed  Google Scholar 

  70. Fambrough DM, Devreotes PN. Newly synthesized acetylcholine receptors are located in the Golgi apparatus. J Cell Biol. 1978;76(1):237–44.

    Article  CAS  PubMed  Google Scholar 

  71. Liu J, Blin N, Conklin BR, Wess J. Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis. J Biol Chem. 1996;271(11):6172–8.

    Article  CAS  PubMed  Google Scholar 

  72. Krnjević K, Pumain R, Renaud L. The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol. 1971;215(1):247–68.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wakamori MI, Hidaka HI, Akaike NO. Hyperpolarizing muscarinic responses of freshly dissociated rat hippocampal CA1 neurones. J Physiol. 1993;463(1):585–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991;11(10):3218–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Douglas CL, Baghdoyan HA, Lydic R. M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J Pharmacol Exp Ther. 2001;299(3):960–6.

    CAS  PubMed  Google Scholar 

  76. Segal M. Presynaptic cholinergic inhibition in hippocampal cultures. Synapse. 1989;4(4):305–12.

    Article  CAS  PubMed  Google Scholar 

  77. Hounsgaard J. Presynaptic inhibitory action of acetylcholine in area CA1 of the hippocampus. Exp Neurol. 1978;62(3):787–97.

    Article  CAS  PubMed  Google Scholar 

  78. Markram H, Segal M. The inositol 1,4,5-trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA. J Physiol. 1992;447:513–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. González JC, Albinana E, Baldelli P, García AG, Hernández-Guijo JM. Presynaptic muscarinic receptor subtypes involved in the enhancement of spontaneous GABAergic postsynaptic currents in hippocampal neurons. Eur J Neurosci. 2011;33(1):69–81.

    Article  PubMed  Google Scholar 

  80. Toyoshima C, Unwin N. Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J Cell Biol. 1990;111(6):2623–35.

    Article  CAS  PubMed  Google Scholar 

  81. Cooper E, Couturier S, Ballivet M. Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor. Nature. 1991;350(6315):235–8.

    Article  CAS  PubMed  Google Scholar 

  82. Goldman D, Deneris E, Luyten W, Kochhar A, Patrick J, Heinemann S. Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell. 1987;48(6):965–73.

    Article  CAS  PubMed  Google Scholar 

  83. Clarke PB, Schwartz RD, Paul SM, Pert CB, Pert A. Nicotinic binding in rat brain: autoradiographic comparison of [3H] acetylcholine,[3H] nicotine, and [125I]-alpha-bungarotoxin. J Neurosci. 1985;5(5):1307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Millar NS. Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem Soc Trans. 2003;31(Pt 4):869–74.

    Article  CAS  PubMed  Google Scholar 

  85. Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci. 1993;13(2):596–604.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fenster CP, Rains MF, Noerager B, Quick MW, Lester RA. Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine. J Neurosci. 1997;17(15):5747–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dajas-Bailador FA, Lima PA, Wonnacott S. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a ca(2+) dependent mechanism. Neuropharmacology. 2000;39(13):2799–807.

    Article  CAS  PubMed  Google Scholar 

  88. Potter LT. Synthesis, storage and release of [14C] acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970;206(1):145–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nachmansohn DA, Machado AL. The formation of acetylcholine. a new enzyme: “choline acetylase”. J Neurophysiol. 1943;6(5):397–403.

    Article  CAS  Google Scholar 

  90. Michelson MJ, Zeimal EV. Acetylcholine: an approach to the molecular mechanism of action. Amsterdam: Elsevier; 2014.

    Google Scholar 

  91. Zeisel SH, Da Costa KA, Franklin PD, Alexander EA, Lamont JT, Sheard NF, Beiser A. Choline, an essential nutrient for humans. FASEB J. 1991;5(7):2093–8.

    Article  CAS  PubMed  Google Scholar 

  92. Rylett RJ. Synaptosomal “membrane-bound” choline acetyltransferase is most sensitive to inhibition by choline mustard. J Neurochem. 1989;52(3):869–75.

    Article  CAS  PubMed  Google Scholar 

  93. Misawa H, Matsuura J, Oda Y, Takahashi R, Deguchi T. Human choline acetyltransferase mRNAs with different 5′-region produce a 69-kDa major translation product. Brain Res Mol Brain Res. 1997;44(2):323–33.

    Article  CAS  PubMed  Google Scholar 

  94. Resendes MC, Dobransky T, Ferguson SS, Rylett RJ. Nuclear localization of the 82-kDa form of human choline acetyltransferase. J Biol Chem. 1999;274(27):19417–21.

    Article  CAS  PubMed  Google Scholar 

  95. Gill SK, Ishak M, Dobransky T, Haroutunian V, Davis KL, Rylett RJ. 82-kDa choline acetyltransferase is in nuclei of cholinergic neurons in human CNS and altered in aging and Alzheimer disease. Neurobiol Aging. 2007;28(7):1028–40.

    Article  CAS  PubMed  Google Scholar 

  96. Collier B, Katz HS. Acetylcholine synthesis from recaptured choline by a sympathetic ganglion. J Physiol. 1974;238(3):639–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Anderson DC, King SC, Parsons SM. Pharmacological characterization of the acetylcholine transport system in purified torpedo electric organ synaptic vesicles. Mol Pharmacol. 1983;24(1):48–54.

    CAS  PubMed  Google Scholar 

  98. Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB. The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science. 1993;261(5121):617–9.

    Article  CAS  PubMed  Google Scholar 

  99. Bejanin S, Cervini R, Mallet J, Berrard S. A unique gene organization for two cholinergic markers, choline acetyltransferase and a putative vesicular transporter of acetylcholine. J Biol Chem. 1994;269(35):21944–7.

    Article  CAS  PubMed  Google Scholar 

  100. Krantz DE, Waites C, Oorschot V, Liu Y, Wilson RI, Tan PK, Klumperman J, Edwards RH. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J Cell Biol. 2000;149(2):379–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Prado VF, Martins-Silva C, de Castro BM, Lima RF, Barros DM, Amaral E, et al. Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron. 2006;51(5):601–12.

    Article  CAS  PubMed  Google Scholar 

  102. Bahr BA, Parsons SM. Demonstration of a receptor in torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Proc Natl Acad Sci U S A. 1986;83(7):2267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Augustinsson KB, Nachmansohn D. Distinction between acetylcholine-esterase and other choline Ester-splitting enzymes. Science. 1949;110(2847):98–9.

    Article  CAS  PubMed  Google Scholar 

  104. Getman DK, Eubanks JH, Camp S, Evans GA, Taylor P. The human gene encoding acetylcholinesterase is located on the long arm of chromosome 7. Am J Hum Genet. 1992;51(1):170.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. MacIntosh FC. Formation, storage, and release of acetylcholine at nerve endings. Can J Biochem Physiol. 1959;37(2):343–56.

    Article  CAS  PubMed  Google Scholar 

  106. Schumacher M, Maulet Y, Camp S, Taylor P. Multiple messenger RNA species give rise to the structural diversity in acetylcholinesterase. J Biol Chem. 1988;263(35):18979–87.

    Article  CAS  PubMed  Google Scholar 

  107. Jope RS, Jenden DJ. The utilization of choline and acetyl coenzyme a for the synthesis of acetylcholine. J Neurochem. 1980;35(2):318–25.

    Article  CAS  PubMed  Google Scholar 

  108. Kobayashi Y, Okuda T, Fujioka Y, Matsumura G, Nishimura Y, Haga T. Distribution of the high-affinity choline transporter in the human and macaque monkey spinal cord. Neurosci Lett. 2002;317(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  109. Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi H, Levey AI, Blakely RD. Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci. 2003;23(30):9697–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ribeiro FM, Pinthong M, Black SA, Gordon AC, Prado VF, Prado MA, Rylett RJ, Ferguson SS. Regulated recycling and plasma membrane recruitment of the high-affinity choline transporter. Eur J Neurosci. 2007;26(12):3437–48.

    Article  PubMed  Google Scholar 

  111. Apparsundaram S, Martinez V, Parikh V, Kozak R, Sarter M. Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J Neurosci. 2005;25(15):3851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tripathi KD. Essentials of medical pharmacology. Jaypee; 2013. p. 92–123.

    Google Scholar 

  113. Tripathi KD. Essentials of medical pharmacology. New Delhi: Jaypee; 2013. p. 433–4.

    Google Scholar 

  114. Tripathi KD. Essentials of medical pharmacology. New Delhi: Jaypee; 2013. p. 347–55.

    Google Scholar 

  115. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973;180(4088):871–2.

    Article  CAS  PubMed  Google Scholar 

  116. Keesey J, Naiem F, Lindstrom J, Roe D, Herrmann C, Walford R. Acetylcholine receptor antibody titer and HLA-B8 antigen in myasthenia gravis. Arch Neurol. 1982;39(2):73–7.

    Article  CAS  PubMed  Google Scholar 

  117. Simpson JA. Myasthenia gravis: a new hypothesis. Scott Med J. 1960;5(10):419–36.

    Article  Google Scholar 

  118. Fambrough DM, Drachman DB, Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973;182(4109):293–5.

    Article  CAS  PubMed  Google Scholar 

  119. Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26(11):1054.

    Article  CAS  PubMed  Google Scholar 

  120. Kordas G, Lagoumintzis G, Sideris S, Poulas K, Tzartos SJ. Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients. PLoS One. 2014;9(9):e0117673.

    Article  CAS  Google Scholar 

  121. Rødgaard A, Nielsen FC, Djurup R, Somnier F, Gammeltoft S. Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. Clin Exp Immunol. 1987;67(1):82.

    PubMed  PubMed Central  Google Scholar 

  122. Tzartos SJ, Lindstrom JM. Monoclonal antibodies used to probe acetylcholine receptor structure: localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci. 1980;77(2):755–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang B, Shen C, Bealmear B, Ragheb S, Xiong WC, Lewis RA, Lisak RP, Mei L. Autoantibodies to agrin in myasthenia gravis patients. PLoS One. 2014;9(3):e91816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Guyon T, Wakkach A, Poea S, Mouly V, Klingel-Schmitt I, Levasseur P, Beeson D, Asher O, Tzartos S, Berrih-Aknin S. Regulation of acetylcholine receptor gene expression in human myasthenia gravis muscles. Evidences for a compensatory mechanism triggered by receptor loss. J Clin Invest. 1998;102(1):249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Patrick J, Lindstrom J, Culp B, Mcmillan J. Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody. Proc Natl Acad Sci. 1973;70(12):3334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ritchie K, Lovestone S. The dementias. Lancet. 2002;360(9347):1759–66.

    Article  PubMed  Google Scholar 

  127. Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6(1):19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rasool CG, Svendsen CN, Selkoe DJ. Neurofibrillary degeneration of cholinergic and noncholinergic neurons of the basal forebrain in Alzheimer’s disease. Ann Neurol. 1986;20(4):482–8.

    Article  CAS  PubMed  Google Scholar 

  129. Muir JL, Dunnett SB, Robbins TW, Everitt BJ. Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Exp Brain Res. 1992;89(3):611–22.

    Article  CAS  PubMed  Google Scholar 

  130. Muir JL, Everitt BJ, Robbins TW. AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J Neurosci. 1994;14(4):2313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Doody RS, Stevens JC, Beck C, Dubinsky RM, Kaye JA, Gwyther LM, Mohs RC, Thal LJ, Whitehouse PJ, DeKosky ST, Cummings JL. Practice parameter: management of dementia (an evidence-based review): report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2001;56(9):1154–66.

    Article  CAS  PubMed  Google Scholar 

  132. Howard R, McShane R, Lindesay J, Ritchie C, Baldwin A, Barber R, et al. Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N Engl J Med. 2012;366(10):893–903.

    Article  CAS  PubMed  Google Scholar 

  133. Sun Y, Lai MS, Lu CJ, Chen RC. How long can patients with mild or moderate Alzheimer’s dementia maintain both the cognition and the therapy of cholinesterase inhibitors: a national population-based study. Eur J Neurol. 2008;15(3):278–83.

    Article  CAS  PubMed  Google Scholar 

  134. Small G, Erkinjuntti T, Kurz A, Lilienfeld S. Galantamine in the treatment of cognitive decline in patients with vascular dementia or Alzheimer’s disease with cerebrovascular disease. CNS Drugs. 2003;17(12):905–14.

    Article  CAS  PubMed  Google Scholar 

  135. Samochocki M, Höffle A, Fehrenbacher A, Jostock R, Ludwig J, Christner C, Radina M, Zerlin M, Ullmer C, Pereira EF, Lübbert H. Galantamine is an allosterically potentiating ligand of neuronal nicotinic but not of muscarinic acetylcholine receptors. J Pharmacol Exp Ther. 2003;305(3):1024–36.

    Article  CAS  PubMed  Google Scholar 

  136. Hager K, Baseman AS, Nye JS, Brashear HR, Han J, Sano M, Davis B, Richards HM. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2014;10:391–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Singer W, Opfer-Gehrking TL, McPhee BR, Hilz MJ, Bharucha AE, Low PA. Acetylcholinesterase inhibition: a novel approach in the treatment of neurogenic orthostatic hypotension. J Neurol Neurosurg Psychiatry. 2003;74(9):1294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Jordan J, Shannon JR, Black BK, Lance RH, Squillante MD, Costa F, Robertson D. NN-nicotinic blockade as an acute human model of autonomic failure. Hypertension. 1998;31(5):1178–84.

    Article  CAS  PubMed  Google Scholar 

  139. Okamoto LE, Shibao CA, Gamboa A, Diedrich A, Raj SR, Black BK, Robertson D, Biaggioni I. Synergistic pressor effect of atomoxetine and pyridostigmine in patients with neurogenic orthostatic hypotension. Hypertension. 2019;73(1):235–41.

    Article  CAS  PubMed  Google Scholar 

  140. Singer W, Sandroni P, Opfer-Gehrking TL, Suarez GA, Klein CM, Hines S, O’Brien PC, Slezak J, Low PA. Pyridostigmine treatment trial in neurogenic orthostatic hypotension. Arch Neurol. 2006;63(4):513–8.

    Article  PubMed  Google Scholar 

  141. Lugaresi E, Cirignotta F. Hypnogenic paroxysmal dystonia: epileptic seizure or a new syndrome? Sleep. 1981;4(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  142. Lugaresi E, Cirignotta F, Montagna P. Nocturnal paroxysmal dystonia. J Neurol Neurosurg Psychiatry. 1986;49(4):375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kania K, Niśkiewicz I, Wierzbicka-Wichniak A, Kozubski W, Tokarz-Kupczyk E. Nocturnal paroxysmal dystonia—case report. Neurol Neurochir Pol. 2015;49(2):134–6.

    Article  PubMed  Google Scholar 

  144. Villa C, Colombo G, Meneghini S, Gotti C, Moretti M, Ferini-Strambi L, Chisci E, Giovannoni R, Becchetti A, Combi R. CHRNA2 and nocturnal frontal lobe epilepsy: identification and characterization of a novel loss of function mutation. Front Mol Neurosci. 2019;12:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Indurthi DC, Qudah T, Liao VW, Ahring PK, Lewis TM, BalleT CM, Absalom NL. Revisiting autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) mutations in the nicotinic acetylcholine receptor reveal an increase in efficacy regardless of stoichiometry. Pharmacol Res. 2019;139:215–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Digala, L., Murala, S., Bollu, P.C. (2022). Acetylcholine. In: Bollu, P.C. (eds) Neurochemistry in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-07897-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07897-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07896-5

  • Online ISBN: 978-3-031-07897-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics