Skip to main content

AI, Epidemiology and Public Health in the Covid Pandemic

  • Chapter
  • First Online:
Artificial Intelligence in Covid-19

Abstract

Epidemiology and public health are two closely related disciplines, and both rely in part on the quantification, the measurement of given characteristics—whether for the purpose of describing a health problem, researching the causes of this problem, or more broadly, any data and knowledge that may be useful for decision-making in the area of population health. The development of digital technology in all aspects of our lives and activities means that new sources of data are becoming available, presenting new or complementary qualities to those that could previously be collected in epidemiology. The processing capabilities of this data have also evolved hand in hand, and the resurgence of artificial intelligence (AI) techniques, in the broad sense, appears to be an opportunity to be explored for both epidemiologists and public health actors. The Covid19 pandemic has arisen as a textbook case addressed to epidemiology and public health, and for which it seems that any means were good to try. It is therefore both an opportunity to examine the practical application of these two disciplines in its classic aspects, and the proposals for the use of artificial intelligence in this context. The main question is then to know what types of use could have been suggested or employed. A targeted bibliographic search highlights six main types of uses of AI in epidemiology and public health in the context of the pandemic, as well as a seventh which appears more specific to the digital age: infodemics. We propose to examine to what extent these proposals have been reported in a reliable and documented manner, thus making it possible to assess the performance of the algorithms developed, as well as their degree of maturity. We conclude by placing the question of AI in epidemiology and public health in a broader context, to outline the main issues for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Last JM. A dictionary of epidemiology. 4th ed. Oxford: Oxford University Press; 2001.

    Google Scholar 

  2. Valleron J. Les rôles de la modélisation en épidémiologie. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie. 2000;323(5):429–33.

    CAS  Google Scholar 

  3. WHO. n.d.. https://www.euro.who.int/en/health-topics/Health-systems/public-health-services. Accessed 15 Mar 2022.

  4. Fröhlich H, Balling R, Beerenwinkel N, et al. From hype to reality: data science enabling personalized medicine. BMC Med. 2018;16:150. https://doi.org/10.1186/s12916-018-1122-7.

    Article  Google Scholar 

  5. Evans BR, Leighton FA. A history of one health. Rev Sci Tech. 2014;33:413–20. https://doi.org/10.20506/rst.33.2.2298.

    Article  CAS  Google Scholar 

  6. Fassin D. Santé Publique. In: Lecourt D, editor. Dictionnaire de la pensée médicale. Paris: PUF; 2004. p. 1014–8.

    Google Scholar 

  7. Panorama de la santé. Quels sont les facteurs à l’origine des gains d’espérance de vie des dernières décennies? In: Analyse internationale des états membres de l’OCDE. Paris: OCDE; 2017.

    Google Scholar 

  8. Yuill C, Crinson I, Duncan E. The biomedical model of health. In: Key concepts in health studies. London: SAGE Publications Ltd; 2010. p. 7–10.

    Chapter  Google Scholar 

  9. Engel GL. The need for a new medical model: a challenge for biomedicine. Science. 1977;196(4286):129–36. https://doi.org/10.1126/science.847460.

    Article  CAS  Google Scholar 

  10. Bourjolay C. La responsabilité du fumeur informé. Les Echos. 2003. https://www.lesechos.fr/2003/11/la-responsabilite-du-fumeur-informe-678844. Accessed 15 Mar 2022.

  11. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8:184–7.

    Article  Google Scholar 

  12. Syrett K. ‘P4 medicine’ and the purview of health law: the patient or the public? In: Kohl U, Eisler J, editors. Data-driven personalisation in markets, politics and law. Cambridge: Cambridge University Press; 2021. p. 159–73. https://doi.org/10.1017/9781108891325.013.

    Chapter  Google Scholar 

  13. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25:30–6. https://doi.org/10.1038/s41591-018-0307-0.

    Article  CAS  Google Scholar 

  14. Olstad DL, McIntyre L. Reconceptualising precision public health. BMJ Open. 2019;9:e030279. https://doi.org/10.1136/bmjopen-2019-030279.

    Article  Google Scholar 

  15. Horton R. Offline: in defence of precision public health. Lancet. 2018;392:1504.

    Article  Google Scholar 

  16. Mondschein CF, Monda C. Chapter 5. The EU’s general data protection regulation (GDPR) in a research context. In: Kubben P, Dumontier M, Dekker A, editors. Fundamentals of clinical data science. Cham: Springer; 2019.

    Google Scholar 

  17. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Dig Med. 2020;3:118. https://doi.org/10.1038/s41746-020-00324-0.

    Article  Google Scholar 

  18. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020;368:eabb6936. https://doi.org/10.1126/science.abb6936.

    Article  CAS  Google Scholar 

  19. Statista. n.d.. https://fr.statista.com/statistiques/505110/taux-de-penetration-du-smartphone-par-age-france/. Accessed 15 Mar 2022

  20. Manganello J, Gerstner G, Pergolino K, Graham Y, Falisi A, Strogatz D. The relationship of health literacy with use of digital technology for health information: implications for public health practice. J Public Health Manag Pract. 2017;23:380–7. https://doi.org/10.1097/PHH.0000000000000366.

    Article  Google Scholar 

  21. Kamel Boulos MN, Peng G, VoPham T. An overview of GeoAI applications in health and healthcare. Int J Health Geogr. 2019;18:7. https://doi.org/10.1186/s12942-019-0171-2.

    Article  Google Scholar 

  22. Huang P, MacKinlay A, Yepes AJ. Syndromic surveillance using generic medical entities on Twitter. In: Proceedings of Australasian language technology association workshop; 2016. p. 35–44.

    Google Scholar 

  23. Hamon T, Gagnayre R. Improving knowledge of patient skills thanks to automatic analysis of online discussions. Patient Educ Couns. 2013;92:197–204. https://doi.org/10.1016/j.pec.2013.05.012.

    Article  Google Scholar 

  24. Chiolero A, Buckeridge D. Glossary for public health surveillance in the age of data science. J Epidemiol Community Health. 2020;74:612–6.

    Google Scholar 

  25. Kandula S, Shaman J. Reappraising the utility of Google Flu Trends. PLoS Comput Biol. 2019;15:e1007258. https://doi.org/10.1371/journal.pcbi.1007258.

    Article  CAS  Google Scholar 

  26. Wongvibulsin S, Zeger SL. Enabling individualised health in learning healthcare systems. BMJ Evid Based Med. 2020;25(4):125–9. https://doi.org/10.1136/bmjebm-2019-111190.

    Article  Google Scholar 

  27. Kröger M, Schlickeiser R. Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: Time-independent reproduction factor. J Phys A. 2020;53:505601. https://doi.org/10.1088/1751-8121/abc65d.

    Article  Google Scholar 

  28. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, Leskovec J. Mobility network models of COVID-19 explain inequities and inform reopening. Nature. 2021;589:82–7. https://doi.org/10.1038/s41586-020-2923-3.

    Article  CAS  Google Scholar 

  29. Gomes DCDS, Serra GLO. Machine learning model for computational tracking and forecasting the COVID-19 dynamic propagation. IEEE J Biomed Health Inform. 2021;25:615–22. https://doi.org/10.1109/JBHI.2021.3052134.

    Article  Google Scholar 

  30. Dolgin E. Industry embraces virtual trial platforms. Nat Rev Drug Discov. 2018;17:305–6. https://doi.org/10.1038/nrd.2018.66.

    Article  CAS  Google Scholar 

  31. Desrosières A. La politique des grands nombres: histoire de la raison statistique. Paris: La Découverte; 2016. réed., 402 p.

    Google Scholar 

  32. Névéol A, Robert A, Anderson R, Cohen KB, Grouin C, Lavergne T, Rey G, Rondet C, Zweigenbaum P. Multilingual information extraction task overview: ICD10 coding of death certificates in English and French. In: CLEF eHealth; 2017. http://ceur-ws.org/Vol-1866/invited_paper_6.pdf. Accessed 15 Mar 2022.

    Google Scholar 

  33. Falissard L, Morgand C, Roussel S, Imbaud C, Ghosn W, Bounebache K, Rey G. A deep artificial neural network-based model for prediction of underlying cause of death from death certificates: algorithm development and validation. JMIR Med Inform. 2020;8:e17125. https://doi.org/10.2196/17125.

    Article  Google Scholar 

  34. Abd-Alrazaq A, Alajlani M, Alhuwail D, Schneider J, Al-Kuwari S, Shah Z, et al. Artificial intelligence in the fight against COVID-19: scoping review. J Med Internet Res. 2020;22:e20756. https://doi.org/10.2196/20756.

    Article  Google Scholar 

  35. Abdulkareem M, Petersen SE. The promise of AI in detection, diagnosis, and epidemiology for combating COVID-19: beyond the hype. Front Artif Intell. 2021;4:652669. https://doi.org/10.3389/frai.2021.652669.

    Article  Google Scholar 

  36. Adly AS, Adly AS, Adly MS. Approaches based on artificial intelligence and the internet of intelligent things to prevent the spread of COVID-19: scoping review. J Med Internet Res. 2020;22:e19104. https://doi.org/10.2196/19104.

    Article  Google Scholar 

  37. Asadzadeh A, Pakkhoo S, Saeidabad MM, Khezri H, Ferdousi R. Information technology in emergency management of COVID-19 outbreak. Inform Med Unlock. 2020;21:100475. https://doi.org/10.1016/j.imu.2020.100475.

    Article  Google Scholar 

  38. Barbieri D, Giuliani E, Del Prete A, Losi A, Villani M, Barbieri A. How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. Int J Environ Res Public Health. 2021;18:7648. https://doi.org/10.3390/ijerph18147648.

    Article  CAS  Google Scholar 

  39. Bragazzi NL, Dai H, Damiani G, Behzadifar M, Martini M, Wu J. How big data and artificial intelligence can help better manage the COVID-19 pandemic. Int J Environ Res Public Health. 2020;17:3176. https://doi.org/10.3390/ijerph17093176.

    Article  CAS  Google Scholar 

  40. Chang Z, Zhan Z, Zhao Z, You Z, Liu Y, Yan Z, et al. Application of artificial intelligence in COVID-19 medical area: a systematic review. J Thorac Dis. 2021;13:7034–53. https://doi.org/10.21037/jtd-21-747.

    Article  Google Scholar 

  41. Chen J, See KC. Artificial intelligence for COVID-19: rapid review. J Med Internet Res. 2020;22:e21476. https://doi.org/10.2196/21476.

    Article  Google Scholar 

  42. Dogan O, Tiwari S, Jabbar MA, Guggari S. A systematic review on AI/ML approaches against COVID-19 outbreak. Complex Intell Syst. 2021;7:2655–78. https://doi.org/10.1007/s40747-021-00424-8.

    Article  Google Scholar 

  43. Guo Y, Zhang Y, Lyu T, Prosperi M, Wang F, Xu H, et al. The application of artificial intelligence and data integration in COVID-19 studies: a scoping review. J Am Med Inform Assoc JAMIA. 2021;28:2050–67. https://doi.org/10.1093/jamia/ocab098.

    Article  Google Scholar 

  44. Malik YS, Sircar S, Bhat S, Ansari MI, Pande T, Kumar P, et al. How artificial intelligence may help the COVID‐19 pandemic: pitfalls and lessons for the future. Rev Med Virol. 2020;31:e2205. https://doi.org/10.1002/rmv.2205.

    Article  CAS  Google Scholar 

  45. Naseem M, Akhund R, Arshad H, Ibrahim MT. Exploring the potential of artificial intelligence and machine learning to combat COVID-19 and existing opportunities for LMIC: a scoping review. J Prim Care Community Health. 2020;11:2150132720963634. https://doi.org/10.1177/2150132720963634.

    Article  Google Scholar 

  46. Napolitano F, Xu X, Gao X. Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Brief Bioinform. 2021;23:bbab456. https://doi.org/10.1093/bib/bbab456.

    Article  CAS  Google Scholar 

  47. Shah H, Shah S, Tanwar S, Gupta R, Kumar N. Fusion of AI techniques to tackle COVID-19 pandemic: models, incidence rates, and future trends. Multimed Syst. 2021:1–34. https://doi.org/10.1007/s00530-021-00818-1.

  48. Syeda HB, Syed M, Sexton KW, Syed S, Begum S, Syed F, et al. Role of machine learning techniques to tackle the COVID-19 crisis: systematic review. JMIR Med Inform. 2021;9:e23811. https://doi.org/10.2196/23811.

    Article  Google Scholar 

  49. Syrowatka A, Kuznetsova M, Alsubai A, Beckman AL, Bain PA, Craig KJT, et al. Leveraging artificial intelligence for pandemic preparedness and response: a scoping review to identify key use cases. NPJ Digit Med. 2021;4:96. https://doi.org/10.1038/s41746-021-00459-8.

    Article  Google Scholar 

  50. Swayamsiddha S, Prashant K, Shaw D, Mohanty C. The prospective of Artificial Intelligence in COVID-19 Pandemic. Heal Technol. 2021;11:1311–20. https://doi.org/10.1007/s12553-021-00601-2.

    Article  Google Scholar 

  51. Rodríguez-Rodríguez I, Rodríguez J-V, Shirvanizadeh N, Ortiz A, Pardo-Quiles D-J. Applications of artificial intelligence, machine learning, big data and the internet of things to the COVID-19 pandemic: a scientometric review using text mining. Int J Environ Res Public Health. 2021;18:8578. https://doi.org/10.3390/ijerph18168578.

    Article  CAS  Google Scholar 

  52. Tayarani NM-H. Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos, Solitons Fractals. 2021;142:110338. https://doi.org/10.1016/j.chaos.2020.110338.

    Article  Google Scholar 

  53. Uohara MY, Weinstein JN, Rhew DC. The essential role of technology in the public health battle against COVID-19. Popul Health Manag. 2020;23:361–7. https://doi.org/10.1089/pop.2020.0187.

    Article  Google Scholar 

  54. Vaishya R, Javaid M, Khan IH, Haleem A. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diab Metab Syndr. 2020;14:337–9. https://doi.org/10.1016/j.dsx.2020.04.012.

    Article  Google Scholar 

  55. Xu Z, Su C, Xiao Y, Wang F. Artificial intelligence for COVID-19: battling the pandemic with computational intelligence. Intell Med. 2022;2:13–29. https://doi.org/10.1016/j.imed.2021.09.001.

    Article  Google Scholar 

  56. Zhang Q, Gao J, Wu JT, Cao Z, Dajun ZD. Data science approaches to confronting the COVID-19 pandemic: a narrative review. Phil Trans A Math Phys Eng Sci. 2022;380:20210127. https://doi.org/10.1098/rsta.2021.0127.

    Article  CAS  Google Scholar 

  57. Mégarbane B, Bourasset F, Scherrmann J-M. Epidemiokinetic tools to monitor lockdown efficacy and estimate the duration adequate to control SARS-CoV-2 spread. J Epidemiol Glob Health. 2021;11:321–5. https://doi.org/10.1007/s44197-021-00007-3.

    Article  Google Scholar 

  58. Ayyoubzadeh SM, Ayyoubzadeh SM, Zahedi H, Ahmadi M, Kalhori SRN. Predicting COVID-19 incidence through analysis of google trends data in Iran: data mining and deep learning pilot study. JMIR Public Health Surveill. 2020;6:e18828. https://doi.org/10.2196/18828.

    Article  Google Scholar 

  59. Qin L, Sun Q, Wang Y, Wu K-F, Chen M, Shia B-C, et al. Prediction of number of cases of 2019 novel coronavirus (COVID-19) using social media search index. Int J Environ Res Public Health. 2020;17:E2365. https://doi.org/10.3390/ijerph17072365.

    Article  CAS  Google Scholar 

  60. Jahanbin K, Rahmanian V. Using twitter and web news mining to predict COVID-19 outbreak. Asian Pac J Trop Med. 2020;13:378. https://doi.org/10.4103/1995-7645.279651.

    Article  CAS  Google Scholar 

  61. Liu D, Clemente L, Poirier C, Ding X, Chinazzi M, Davis JT, et al. A machine learning methodology for real-time forecasting of the 2019-2020 COVID-19 outbreak using Internet searches, news alerts, and estimates from mechanistic models. ArXiv200404019 Cs Q-Bio Stat. 2020;

    Google Scholar 

  62. Walker A, Hopkins C, Surda P. The use of google trends to investigate the loss of smell related searches during COVID‐19 outbreak. Int Forum Allergy Rhinol. 2020;10:839. https://doi.org/10.1002/alr.22580.

    Article  Google Scholar 

  63. Alhama J, Maestre JP, Martín MÁ, Michán C. Monitoring COVID-19 through SARS-CoV-2 quantification in wastewater: progress, challenges and prospects. Microb Biotechnol. 2022;15:1719. https://doi.org/10.1111/1751-7915.13989.

    Article  CAS  Google Scholar 

  64. Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. Lancet Digit Health. 2020;2:e201–8. https://doi.org/10.1016/S2589-7500(20)30026-1.

    Article  Google Scholar 

  65. McCall B. COVID-19 and artificial intelligence: protecting health-care workers and curbing the spread. Lancet Digit Health. 2020;2:e166–7. https://doi.org/10.1016/S2589-7500(20)30054-6.

    Article  Google Scholar 

  66. Johns Hopkins Coronavirus Resource Center. COVID-19 Map. Baltimore, MD: Johns Hopkins Coronavirus Resource Center; n.d.. https://coronavirus.jhu.edu/map.html. Accessed 9 Mar 2022.

  67. Yang Z, Zeng Z, Wang K, Wong S-S, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12:165–74. https://doi.org/10.21037/jtd.2020.02.64.

    Article  Google Scholar 

  68. Yue M, Clapham HE, Cook AR. Estimating the size of a COVID-19 epidemic from surveillance systems. Epidemiology. 2020;31:567–9. https://doi.org/10.1097/EDE.0000000000001202.

    Article  Google Scholar 

  69. Hu Z, Ge Q, Li S, Jin L, Xiong M. Artificial intelligence forecasting of COVID-19 in China. ArXiv200207112 Q-Bio. 2020;

    Google Scholar 

  70. Long JB, Ehrenfeld JM. The role of augmented intelligence (AI) in detecting and preventing the spread of novel coronavirus. J Med Syst. 2020;44:59. https://doi.org/10.1007/s10916-020-1536-6.

    Article  CAS  Google Scholar 

  71. Gupta R, Tanwar S, Tyagi S, Kumar N. Machine learning models for secure data analytics: a taxonomy and threat model. Comput Commun. 2020;153:406–40. https://doi.org/10.1016/j.comcom.2020.02.008.

    Article  Google Scholar 

  72. Tuli S, Tuli S, Tuli R, Gill SS. Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet Things. 2020;11:100222. https://doi.org/10.1016/j.iot.2020.100222.

    Article  Google Scholar 

  73. Ardabili SF, Mosavi A, Ghamisi P, Ferdinand F, Varkonyi-Koczy AR, Reuter U, et al. COVID-19 outbreak prediction with machine learning. Algorithms. 2020;13:249. https://doi.org/10.3390/a13100249.

    Article  Google Scholar 

  74. Kumari A, Vekaria D, Gupta R, Tanwar S. Redills: Deep learning-based secure data analytic framework for smart grid systems. In: 2020 IEEE Int. Conf. Commun. Workshop ICC Workshop; 2020. p. 1–6. https://doi.org/10.1109/ICCWorkshops49005.2020.9145448.

    Chapter  Google Scholar 

  75. Magdon-Ismail M. Machine learning the phenomenology of COVID-19 from early infection dynamics. ArXiv200307602 Cs Q-Bio Stat. 2020;

    Google Scholar 

  76. Ahmad A, Garhwal S, Ray SK, Kumar G, Malebary SJ, Barukab OM. The number of confirmed cases of COVID-19 by using machine learning: methods and challenges. Arch Comput Methods Eng. 2021;28:2645–53. https://doi.org/10.1007/s11831-020-09472-8.

    Article  Google Scholar 

  77. Kolozsvári LR, Bérczes T, Hajdu A, Gesztelyi R, Tiba A, Varga I, et al. Predicting the epidemic curve of the coronavirus (SARS-CoV-2) disease (COVID-19) using artificial intelligence: an application on the first and second waves. Inform Med Unlock. 2021;25:100691. https://doi.org/10.1016/j.imu.2021.100691.

    Article  Google Scholar 

  78. Musulin J, Baressi Šegota S, Štifanić D, Lorencin I, Anđelić N, Šušteršič T, et al. Application of artificial intelligence-based regression methods in the problem of COVID-19 spread prediction: a systematic review. Int J Environ Res Public Health. 2021;18:4287. https://doi.org/10.3390/ijerph18084287.

    Article  CAS  Google Scholar 

  79. Elsheikh AH, Saba AI, Panchal H, Shanmugan S, Alsaleh NA, Ahmadein M. Artificial intelligence for forecasting the prevalence of COVID-19 pandemic: an overview. Healthcare. 2021;9:1614. https://doi.org/10.3390/healthcare9121614.

    Article  Google Scholar 

  80. Aslan IH, Demir M, Wise MM, Lenhart S. Modeling COVID-19: forecasting and analyzing the dynamics of the outbreak in Hubei and Turkey. Math Meth Appl Sci. 2022;45(10):6481.

    Article  Google Scholar 

  81. Parbat D, Chakraborty M. A python based support vector regression model for prediction of COVID19 cases in India. Chaos, Solitons Fractals. 2020;138:109942. https://doi.org/10.1016/j.chaos.2020.109942.

    Article  Google Scholar 

  82. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–4. https://doi.org/10.1016/S1473-3099(20)30120-1.

    Article  CAS  Google Scholar 

  83. Zou D, Wang L, Xu P, Chen J, Zhang W, Gu Q. Epidemic model guided machine learning for COVID-19 forecasts in the United States. medRxiv:2020:2020.05.24.20111989.

    Google Scholar 

  84. Zheng N, Du S, Wang J, Zhang H, Cui W, Kang Z, et al. Predicting COVID-19 in China using hybrid AI model. IEEE Trans Cybern. 2020;50:2891–904. https://doi.org/10.1109/TCYB.2020.2990162.

    Article  Google Scholar 

  85. Rockett RJ, Arnott A, Lam C, Sadsad R, Timms V, Gray K-A, et al. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling. Nat Med. 2020;26:1398–404. https://doi.org/10.1038/s41591-020-1000-7.

    Article  CAS  Google Scholar 

  86. Car Z, Baressi Šegota S, Anđelić N, Lorencin I, Mrzljak V. Modeling the spread of COVID-19 infection using a multilayer perceptron. Comput Math Methods Med. 2020;2020:e5714714. https://doi.org/10.1155/2020/5714714.

    Article  Google Scholar 

  87. Huang C-J, Chen Y-H, Ma Y, Kuo P-H. Multiple-input deep convolutional neural network model for COVID-19 forecasting in China. medRxiv:2020:2020.03.23.20041608.

    Google Scholar 

  88. Misra S, Deb PK, Koppala N, Mukherjee A, Mao S. S-Nav: safety-aware IoT navigation tool for avoiding COVID-19 hotspots. IEEE Internet Things J. 2021;8:6975–82. https://doi.org/10.1109/JIOT.2020.3037641.

    Article  Google Scholar 

  89. Allam Z, Jones DS. On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management. Healthcare. 2020;8:46. https://doi.org/10.3390/healthcare8010046.

    Article  Google Scholar 

  90. Zhang J, Litvinova M, Wang W, Wang Y, Deng X, Chen X, et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study. Lancet Infect Dis. 2020;20:793–802. https://doi.org/10.1016/S1473-3099(20)30230-9.

    Article  CAS  Google Scholar 

  91. Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Eurosurveillance. 2020;25:2000058. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058.

    Article  Google Scholar 

  92. Tessmer HL, Ito K, Omori R. Can machines learn respiratory virus epidemiology?: a comparative study of likelihood-free methods for the estimation of epidemiological dynamics. Front Microbiol. 2018;9:343. https://doi.org/10.3389/fmicb.2018.00343.

    Article  Google Scholar 

  93. Li M, Zhang Z, Cao W, Liu Y, Du B, Chen C, et al. Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach. Sci Total Environ. 2021;764:142810. https://doi.org/10.1016/j.scitotenv.2020.142810.

    Article  CAS  Google Scholar 

  94. Jehi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, et al. Individualizing risk prediction for positive coronavirus disease 2019 testing: results from 11,672 patients. Chest. 2020;158:1364–75. https://doi.org/10.1016/j.chest.2020.05.580.

    Article  CAS  Google Scholar 

  95. Pramanik M, Chowdhury K, Rana MJ, Bisht P, Pal R, Szabo S, et al. Climatic influence on the magnitude of COVID-19 outbreak: a stochastic model-based global analysis. Int J Environ Health Res. 2020;32:1095–110. https://doi.org/10.1080/09603123.2020.1831446.

    Article  CAS  Google Scholar 

  96. Travaglio M, Yu Y, Popovic R, Selley L, Leal NS, Martins LM. Links between air pollution and COVID-19 in England. Environ Pollut Bark. 1987;2021(268):115859. https://doi.org/10.1016/j.envpol.2020.115859.

    Article  CAS  Google Scholar 

  97. Maghdid HS, Ghafoor KZ. A smartphone enabled approach to manage COVID-19 lockdown and economic crisis. SN Comput Sci. 2020;1:271.

    Article  Google Scholar 

  98. Mao Z, Yao H, Zou Q, Zhang W, Dong Y. Digital contact tracing based on a graph database algorithm for emergency management during the COVID-19 epidemic: case study. JMIR MHealth UHealth. 2021;9:e26836. https://doi.org/10.2196/26836.

    Article  Google Scholar 

  99. Paul M, Haque SME, Chakraborty S. Human detection in surveillance videos and its applications - a review. EURASIP J Adv Signal Process. 2013;2013:176. https://doi.org/10.1186/1687-6180-2013-176.

    Article  Google Scholar 

  100. Nguyen CT, Saputra YM, Van Huynh N, Nguyen N-T, Khoa TV, Tuan BM, et al. A comprehensive survey of enabling and emerging technologies for social distancing-Part II: Emerging technologies and open issues. IEEE Access Pract Innov Open Solut. 2020;8:154209–36. https://doi.org/10.1109/ACCESS.2020.3018124.

    Article  Google Scholar 

  101. Punn NS, Sonbhadra SK, Agarwal S, Rai G. Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques. ArXiv200501385 Cs. 2021;

    Google Scholar 

  102. Ahmed I, Ahmad M, Rodrigues JJPC, Jeon G, Din S. A deep learning-based social distance monitoring framework for COVID-19. Sustain Cities Soc. 2021;65:102571. https://doi.org/10.1016/j.scs.2020.102571.

    Article  Google Scholar 

  103. Lakshmi S, Sathiyabhama B, Revathi T, Basker N, Vinothkumar R. Tracing of vehicle region and number plate detection using deep learning. In: 2020 Int Conf Emerg Trends Inf Technol Eng Ic-ETITE; 2020. https://doi.org/10.1109/ic-ETITE47903.2020.357.

    Chapter  Google Scholar 

  104. Srinivasa Rao ASR, Vazquez JA. Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine. Infect Control Hosp Epidemiol. 2020;41:826–30. https://doi.org/10.1017/ice.2020.61.

    Article  CAS  Google Scholar 

  105. LeewayHertz - Softw Dev Co. COVID-19 technology solutions. AI enabled digital solutions. n.d.. https://www.leewayhertz.com/covid-19-technology-solutions/. Accessed 9 Mar 2022.

  106. Gupta M, Abdelsalam M, Mittal S. Enabling and enforcing social distancing measures using smart city and ITS infrastructures: a COVID-19 use case. ArXiv200409246 Cs. 2020;

    Google Scholar 

  107. Penang Institute. Smart city technologies take on COVID-19. n.d.. https://penanginstitute.org/publications/issues/smart-city-technologies-take-on-covid-19/. Accessed 9 Mar 2022

  108. Singh SK, Jeong Y-S, Park JH. A deep learning-based IoT-oriented infrastructure for secure smart City. Sustain Cities Soc. 2020;60:102252. https://doi.org/10.1016/j.scs.2020.102252.

    Article  Google Scholar 

  109. Chen Q, Leaman R, Allot A, Luo L, Wei C-H, Yan S, et al. Artificial intelligence in action: addressing the COVID-19 pandemic with natural language processing. Annu Rev Biomed Data Sci. 2021;4:313–39. https://doi.org/10.1146/annurev-biodatasci-021821-061045.

    Article  Google Scholar 

  110. Tsao S-F, Chen H, Tisseverasinghe T, Yang Y, Li L, Butt ZA. What social media told us in the time of COVID-19: a scoping review. Lancet Digit Health. 2021;3:e175–94. https://doi.org/10.1016/S2589-7500(20)30315-0.

    Article  Google Scholar 

  111. Husnayain A, Fuad A, Su EC-Y. Applications of Google Search Trends for risk communication in infectious disease management: a case study of the COVID-19 outbreak in Taiwan. Int J Infect Dis. 2020;95:221–3. https://doi.org/10.1016/j.ijid.2020.03.021.

    Article  CAS  Google Scholar 

  112. Chundakkadan R, Ravindran R. Information flow and COVID-19 recovery. World Dev. 2020;136:105112. https://doi.org/10.1016/j.worlddev.2020.105112.

    Article  Google Scholar 

  113. Song J, Song TM, Seo D-C, Jin D-L, Kim JS. Social big data analysis of information spread and perceived infection risk during the 2015 middle east respiratory syndrome outbreak in South Korea. Cyberpsychol Behav Soc Netw. 2017;20:22–9. https://doi.org/10.1089/cyber.2016.0126.

    Article  Google Scholar 

  114. Bento AI, Nguyen T, Wing C, Lozano-Rojas F, Ahn Y-Y, Simon K. Evidence from internet search data shows information-seeking responses to news of local COVID-19 cases. Proc Natl Acad Sci U S A. 2020;117:11220–2. https://doi.org/10.1073/pnas.2005335117.

    Article  CAS  Google Scholar 

  115. Saha K, Torous J, Caine ED, De Choudhury M. Psychosocial effects of the COVID-19 pandemic: large-scale quasi-experimental study on social media. J Med Internet Res. 2020;22:e22600. https://doi.org/10.2196/22600.

    Article  Google Scholar 

  116. Cullen W, Gulati G, Kelly BD. Mental health in the COVID-19 pandemic. QJM Int J Med. 2020;113:hcaa110. https://doi.org/10.1093/qjmed/hcaa110.

    Article  CAS  Google Scholar 

  117. Usher K, Durkin J, Bhullar N. The COVID‐19 pandemic and mental health impacts. Int J Ment Health Nurs. 2020;29:315–8. https://doi.org/10.1111/inm.12726.

    Article  Google Scholar 

  118. Zhang X, Yang Q, Albaradei S, Lyu X, Alamro H, Salhi A, et al. Rise and fall of the global conversation and shifting sentiments during the COVID-19 pandemic. Humanit Soc Sci Commun. 2021;8:1–10. https://doi.org/10.1057/s41599-021-00798-7.

    Article  Google Scholar 

  119. Zhang Y, Lyu H, Liu Y, Zhang X, Wang Y, Luo J. Monitoring depression trends on twitter during the COVID-19 pandemic: observational study. JMIR Infodemiol. 2021;1:e26769. https://doi.org/10.2196/26769.

    Article  Google Scholar 

  120. Koh JX, Liew TM. How loneliness is talked about in social media during COVID-19 pandemic: text mining of 4,492 Twitter feeds. J Psychiatr Res. 2022;145:317–24. https://doi.org/10.1016/j.jpsychires.2020.11.015.

    Article  Google Scholar 

  121. COVID-evidence. Database. n.d.. https://covid-evidence.org/database. Accessed 9 Mar 2022.

  122. Else H. How a torrent of COVID science changed research publishing — in seven charts. Nature. 2020;588:553. https://doi.org/10.1038/d41586-020-03564-y.

    Article  CAS  Google Scholar 

  123. Joshi B, Bakarola V, Shah P, Krishnamurthy R. deepMINE - natural language processing based automatic literature mining and research summarization for early-stage comprehension in pandemic situations specifically for COVID-19. bioRxiv:2020:2020.03.30.014555.

    Google Scholar 

  124. Roberts K, Alam T, Bedrick S, Demner-Fushman D, Lo K, Soboroff I, et al. TREC-COVID: rationale and structure of an information retrieval shared task for COVID-19. J Am Med Inform Assoc JAMIA. 2020;27:1431–6. https://doi.org/10.1093/jamia/ocaa091.

    Article  Google Scholar 

  125. Wise C, Ioannidis VN, Calvo MR, Song X, Price G, Kulkarni N, et al. COVID-19 knowledge graph: accelerating information retrieval and discovery for scientific literature. ArXiv200712731 Cs. 2020;

    Google Scholar 

  126. Khalil H, Tamara L, Rada G, Akl EA. Challenges of evidence synthesis during the 2020 COVID pandemic: a scoping review. J Clin Epidemiol. 2022;142:10–8. https://doi.org/10.1016/j.jclinepi.2021.10.017.

    Article  Google Scholar 

  127. Alper BS, Richardson JE, Lehmann HP, Subbian V. It is time for computable evidence synthesis: the COVID-19 knowledge accelerator initiative. J Am Med Inform Assoc JAMIA. 2020;27:1338–9. https://doi.org/10.1093/jamia/ocaa114.

    Article  Google Scholar 

  128. Bell RJ. Evidence synthesis in the time of COVID-19. Climacteric. 2021;24:211–3. https://doi.org/10.1080/13697137.2021.1904676.

    Article  CAS  Google Scholar 

  129. Rada GG, Verdugo-Paiva F, Ávila C, Morel-Marambio M, Bravo-Jeria R, Pesce F, et al. Evidence synthesis relevant to COVID-19: a protocol for multiple systematic reviews and overviews of systematic reviews. Medwave. 2020;20:e7868. https://doi.org/10.5867/medwave.2020.03.7867.

    Article  Google Scholar 

  130. Cuan-Baltazar JY, Muñoz-Perez MJ, Robledo-Vega C, Pérez-Zepeda MF, Soto-Vega E. Misinformation of COVID-19 on the internet: infodemiology study. JMIR Public Health Surveill. 2020;6:e18444. https://doi.org/10.2196/18444.

    Article  Google Scholar 

  131. Zhao Y, Zhou CC. Applying lexical link analysis to discover insights from public information on COVID-19. bioRxiv:2020:2020.05.06.079798.

    Google Scholar 

  132. Ting DSW, Carin L, Dzau V, Wong TY. Digital technology and COVID-19. Nat Med. 2020;26:459–61. https://doi.org/10.1038/s41591-020-0824-5.

    Article  CAS  Google Scholar 

  133. Mashamba-Thompson TP, Crayton ED. Blockchain and artificial intelligence technology for novel coronavirus disease 2019 self-testing. Diagnostics. 2020;10:198. https://doi.org/10.3390/diagnostics10040198.

    Article  Google Scholar 

  134. Lin Z, Xu P, Winata GI, Siddique FB, Liu Z, Shin J, et al. CAiRE: an end-to-end empathetic chatbot. Proc AAAI Conf Artif Intell. 2020;34:13622–3. https://doi.org/10.1609/aaai.v34i09.7098.

    Article  Google Scholar 

  135. Battineni G, Chintalapudi N, Amenta F. AI Chatbot design during an epidemic like the novel coronavirus. Healthcare. 2020;8:E154. https://doi.org/10.3390/healthcare8020154.

    Article  Google Scholar 

  136. Rodsawang C, Thongkliang P, Intawong T, Sonong A, Thitiwatthana Y, Chottanapund S. Designing a competent chatbot to counter the COVID-19 pandemic and empower risk communication in an emergency response system. Outb Surveill Investig Resp J. 2020;13(2):71.

    Google Scholar 

  137. Chatterjee P, Tesis A, Cymberknop LJ, Armentano RL. Internet of things and artificial intelligence in healthcare during COVID-19 pandemic—a south American perspective. Front Public Health. 2020;8:600213. https://doi.org/10.3389/fpubh.2020.600213.

    Article  Google Scholar 

  138. Li F, Valero M, Shahriar H, Khan RA, Ahamed SI. Wi-COVID: a COVID-19 symptom detection and patient monitoring framework using WiFi. Smart Health. 2021;19:100147. https://doi.org/10.1016/j.smhl.2020.100147.

    Article  Google Scholar 

  139. Taha-Mehlitz S, Hendie A, Taha A. The development of electronic health and artificial intelligence in surgery after the SARS-CoV-2 pandemic-a scoping review. J Clin Med. 2021;10:4789. https://doi.org/10.3390/jcm10204789.

    Article  CAS  Google Scholar 

  140. Di Carlo F, Sociali A, Picutti E, Pettorruso M, Vellante F, Verrastro V, et al. Telepsychiatry and other cutting-edge technologies in COVID-19 pandemic: bridging the distance in mental health assistance. Int J Clin Pract. 2021;75:e13716. https://doi.org/10.1111/ijcp.13716.

    Article  CAS  Google Scholar 

  141. Hallak JA, Scanzera AC, Azar DT, Chan RVP. Artificial intelligence in ophthalmology during COVID-19 and in the post COVID-19 era. Curr Opin Ophthalmol. 2020;31:447–53. https://doi.org/10.1097/ICU.0000000000000685.

    Article  Google Scholar 

  142. Asgary A, Valtchev SZ, Chen M, Najafabadi MM, Wu J. Artificial Intelligence model of drive-through vaccination simulation. Int J Environ Res Public Health. 2020;18:E268. https://doi.org/10.3390/ijerph18010268.

    Article  CAS  Google Scholar 

  143. Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science. 2021;371:916–21. https://doi.org/10.1126/science.abe6959.

    Article  CAS  Google Scholar 

  144. Cheng F-Y, Joshi H, Tandon P, Freeman R, Reich DL, Mazumdar M, et al. Using machine learning to predict ICU transfer in hospitalized COVID-19 patients. J Clin Med. 2020;9:1668. https://doi.org/10.3390/jcm9061668.

    Article  CAS  Google Scholar 

  145. Shashikumar SP, Wardi G, Paul P, Carlile M, Brenner LN, Hibbert KA, et al. Development and prospective validation of a deep learning algorithm for predicting need for mechanical ventilation. Chest. 2021;159:2264–73. https://doi.org/10.1016/j.chest.2020.12.009.

    Article  CAS  Google Scholar 

  146. Rozario D. Can machine learning optimize the efficiency of the operating room in the era of COVID-19? Can J Surg. 2020;63:E527–9. https://doi.org/10.1503/cjs.016520.

    Article  Google Scholar 

  147. Chang SL, Harding N, Zachreson C, Cliff OM, Prokopenko M. Modelling transmission and control of the COVID-19 pandemic in Australia. Nat Commun. 2020;11:5710. https://doi.org/10.1038/s41467-020-19393-6.

    Article  CAS  Google Scholar 

  148. Broniec W, An S, Rugaber S, Goel AK. Using VERA to explain the impact of social distancing on the spread of COVID-19. ArXiv200313762 Cs Q-Bio. 2020;

    Google Scholar 

  149. Soures N, Chambers D, Carmichael Z, Daram A, Shah DP, Clark K, et al. SIRNet: understanding social distancing measures with hybrid neural network model for COVID-19 infectious spread. ArXiv200410376 Q-Bio. 2020;

    Google Scholar 

  150. Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, et al. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med. 2020;26:1417–21. https://doi.org/10.1038/s41591-020-1001-6.

    Article  CAS  Google Scholar 

  151. Payedimarri AB, Concina D, Portinale L, Canonico M, Seys D, Vanhaecht K, et al. Prediction models for public health containment measures on COVID-19 using artificial intelligence and machine learning: a systematic review. Int J Environ Res Public Health. 2021;18:4499. https://doi.org/10.3390/ijerph18094499.

    Article  CAS  Google Scholar 

  152. Dandekar R, Barbastathis G. Quantifying the effect of quarantine control in COVID-19 infectious spread using machine learning. medRxiv:2020:2020.04.03.20052084.

    Google Scholar 

  153. Porcher S. Response2covid19, a dataset of governments’ responses to COVID-19 all around the world. Sci Data. 2020;7:423. https://doi.org/10.1038/s41597-020-00757-y.

    Article  CAS  Google Scholar 

  154. Miralles-Pechuán L, Jiménez F, Ponce H, Martínez-Villaseñor L. A deep Q-learning/genetic algorithms based novel methodology for optimizing COVID-19 pandemic government actions. ArXiv200507656 Phys Stat. 2020;

    Google Scholar 

  155. Ye Y, Hou S, Fan Y, Zhang Y, Qian Y, Sun S, et al. α-Satellite: an AI-driven system and benchmark datasets for dynamic COVID-19 risk assessment in the United States. IEEE J Biomed Health Inform. 2020;24:2755–64. https://doi.org/10.1109/JBHI.2020.3009314.

    Article  Google Scholar 

  156. Norouzi N, Zarazua de Rubens G, Choupanpiesheh S, Enevoldsen P. When pandemics impact economies and climate change: exploring the impacts of COVID-19 on oil and electricity demand in China. Energy Res Soc Sci. 2020;68:101654. https://doi.org/10.1016/j.erss.2020.101654.

    Article  Google Scholar 

  157. Guan D, Wang D, Hallegatte S, Davis SJ, Huo J, Li S, et al. Global supply-chain effects of COVID-19 control measures. Nat Hum Behav. 2020;4:577–87. https://doi.org/10.1038/s41562-020-0896-8.

    Article  Google Scholar 

  158. Lu D, Zhang J, Xue C, Zuo P, Chen Z, Zhang L, et al. COVID-19-induced lockdowns indicate the short-term control effect of air pollutant emission in 174 cities in China. Environ Sci Technol. 2021;55:4094–102. https://doi.org/10.1021/acs.est.0c07170.

    Article  CAS  Google Scholar 

  159. Chang S, Pierson E, Koh PW, Gerardin J, Redbird B, Grusky D, et al. Mobility network models of COVID-19 explain inequities and inform reopening. Nature. 2021;589:82–7. https://doi.org/10.1038/s41586-020-2923-3.

    Article  CAS  Google Scholar 

  160. Sousa-Pinto B, Anto A, Czarlewski W, Anto JM, Fonseca JA, Bousquet J. Assessment of the impact of media coverage on COVID-19–related google trends data: infodemiology study. J Med Internet Res. 2020;22:e19611. https://doi.org/10.2196/19611.

    Article  Google Scholar 

  161. Tummers J, Catal C, Tobi H, Tekinerdogan B, Leusink G. Coronaviruses and people with intellectual disability: an exploratory data analysis. J Intellect Disabil Res. 2020;64:475–81. https://doi.org/10.1111/jir.12730.

    Article  CAS  Google Scholar 

  162. Wang C, Zhao H, Zhang H. Chinese college students have higher anxiety in new semester of online learning during COVID-19: a machine learning approach. Front Psychol. 2020;11:587413. https://doi.org/10.3389/fpsyg.2020.587413.

    Article  Google Scholar 

  163. Ćosić K, Popović S, Šarlija M, Kesedžić I. Impact of human disasters and COVID-19 pandemic on mental health: potential of digital psychiatry. Psychiatr Danub. 2020;32:25–31. https://doi.org/10.24869/psyd.2020.25.

    Article  CAS  Google Scholar 

  164. Jha IP, Awasthi R, Kumar A, Kumar V, Sethi T. Learning the mental health impact of COVID-19 in the United States with explainable artificial intelligence. JMIR Ment Health. 2021;8:e25097.

    Article  Google Scholar 

  165. Bursztyn L, Rao A, Roth CP, Yanagizawa-Drott DH. Misinformation during a pandemic. Cambridge, MA: National Bureau of Economic Research; 2020. https://doi.org/10.3386/w27417.

    Book  Google Scholar 

  166. Lyu H, Zheng Z, Luo J. Misinformation versus facts: understanding the influence of news regarding COVID-19 vaccines on vaccine uptake. Health Data Sci. 2022;2022:9858292.

    Article  Google Scholar 

  167. Rovetta A, Bhagavathula AS. COVID-19-related web search behaviors and infodemic attitudes in Italy: infodemiological study. JMIR Public Health Surveill. 2020;6:e19374. https://doi.org/10.2196/19374.

    Article  Google Scholar 

  168. Chen T, Wu L, Li X, Zhang J, Yin H, Wang Y. Call attention to rumors: deep attention based recurrent neural networks for early rumor detection. ArXiv170405973 Cs. 2017;

    Google Scholar 

  169. Ruchansky N, Seo S, Liu Y. CSI: a hybrid deep model for fake news detection. In: Proc 2017 ACM Conf Inf Knowl Manag; 2017. p. 797–806. https://doi.org/10.1145/3132847.3132877.

    Chapter  Google Scholar 

  170. Depoux A, Martin S, Karafillakis E, Preet R, Wilder-Smith A, Larson H. The pandemic of social media panic travels faster than the COVID-19 outbreak. J Travel Med. 2020;27:taaa031. https://doi.org/10.1093/jtm/taaa031.

    Article  Google Scholar 

  171. Tasnim S, Hossain MM, Mazumder H. Impact of rumors and misinformation on COVID-19 in social media. J Prev Med Public Health. 2020;53:171–4. https://doi.org/10.3961/jpmph.20.094.

    Article  Google Scholar 

  172. Bin Naeem S, Kamel Boulos MN. COVID-19 misinformation online and health literacy: a brief overview. Int J Environ Res Public Health. 2021;18:8091. https://doi.org/10.3390/ijerph18158091.

    Article  CAS  Google Scholar 

  173. Uyheng J, Carley KM. Characterizing network dynamics of online hate communities around the COVID-19 pandemic. Appl Netw Sci. 2021;6:1–21. https://doi.org/10.1007/s41109-021-00362-x.

    Article  Google Scholar 

  174. Paka WS, Bansal R, Kaushik A, Sengupta S, Chakraborty T. Cross-SEAN: a cross-stitch semi-supervised neural attention model for COVID-19 fake news detection. Appl Soft Comput. 2021;107:107393. https://doi.org/10.1016/j.asoc.2021.107393.

    Article  Google Scholar 

  175. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med. 2015;13:1. https://doi.org/10.1186/s12916-014-0241-z.

    Article  Google Scholar 

  176. Moons KGM, de Groot JAH, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JS, Collins GS. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744. https://doi.org/10.1371/journal.pmed.1001744.

    Article  Google Scholar 

  177. Uyheng J, Carley KM. Bots and online hate during the COVID-19 pandemic: case studies in the United States and the Philippines. J Comput Soc Sci. 2020;3:445–68. https://doi.org/10.1007/s42001-020-00087-4.

    Article  Google Scholar 

  178. Mankins J. Technology readiness levels, a white paper. Washington, DC: NASA; 1995.

    Google Scholar 

  179. Santi P, Larousserie D, Cabut S, Herzberg N, Morin H. Coronavirus: le « lancetgate »révèle des failles de l’édition scientifique. Le Monde. 2020. https://www.lemonde.fr/sciences/article/2020/06/15/covid-19-le-lancetgate-revele-des-failles-de-l-edition-scientifique_6042946_1650684.html. Accessed 15 Mar 2022.

  180. Kahneman D. Thinking, fast and slow. New York, NY: Penguin; 2012. 512 p.

    Google Scholar 

  181. Davies A, Veličković P, Buesing L, Blackwell S, Zheng D, Tomašev N, Tanburn R, Battaglia P, Blundell C, Juhász A, Lackenby M, Williamson G, Hassabis D, Kohli P. Advancing mathematics by guiding human intuition with AI. Nature. 2021;600:70–4. https://doi.org/10.1038/s41586-021-04086-x.

    Article  CAS  Google Scholar 

  182. Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Precise4Q consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:310. https://doi.org/10.1186/s12911-020-01332-6.

    Article  Google Scholar 

  183. OECD. Whistleblower protection. Paris: OECD; n.d.. https://www.oecd.org/corruption/ethics/whistleblower-protection/. Accessed 15 Mar 2022.

  184. Leplâtre S, Lemaître F. Emotion en Chine à l’annonce de la mort du docteur Li Wenliang, lanceur d’alerte sur le coronavirus. Le Monde. 2020. https://www.lemonde.fr/international/article/2020/02/06/emotion-a-l-annonce-de-la-mort-du-docteur-li-wenliang-lanceur-d-alerte-du-coronavirus_6028699_3210.html. Accessed 15 Mar 2022.

  185. Meyer-Vacherand E. Emprisonnée, la lanceuse d’alerte chinoise Zhang Zhan serait entre la vie et la mort. Le Temps. 2021. https://www.letemps.ch/monde/emprisonnee-lanceuse-dalerte-chinoise-zhang-zhan-serait-entre-vie-mort. Accessed 15 Mar 2022.

  186. Latour B. Où suis-je? Paris: Empêcheurs de penser en rond; 2021. 192 p.

    Google Scholar 

  187. Simondon G. Du mode d’existence des objets techniques. Paris: Aubier; 2021. 368 p.

    Google Scholar 

  188. Heaven WD. Hundreds of AI tools have been built to catch COVID. None of them helped. MIT Technol Rev. 2021. https://www.technologyreview.com/2021/07/30/1030329/machine-learning-ai-failed-covid-hospital-diagnosis-pandemic/. Accessed 15 Mar 2022.

  189. IPPC. 5th report on climate changes. https://www.ipcc.ch/languages-2/francais/publications/. Accessed 15 Mar 2022.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lefèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lefèvre, T., Colineaux, H., Morgand, C., Tournois, L., Delpierre, C. (2022). AI, Epidemiology and Public Health in the Covid Pandemic. In: Lidströmer, N., Eldar, Y.C. (eds) Artificial Intelligence in Covid-19. Springer, Cham. https://doi.org/10.1007/978-3-031-08506-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08506-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08505-5

  • Online ISBN: 978-3-031-08506-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics