Skip to main content

Offline and Online Monitoring of Scattered Uncertain Logs Using Uncertain Linear Dynamical Systems

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2022)

Abstract

Monitoring the correctness of distributed cyber-physical systems is essential. We address the analysis of the log of a black-box cyber-physical system. Detecting possible safety violations can be hard when some samples are uncertain or missing. In this work, the log is made of values known with some uncertainty; in addition, we make use of an over-approximated yet expressive model, given by a non-linear extension of dynamical systems. Given an offline log, our approach is able to monitor the log against safety specifications with a limited number of false alarms. As a second contribution, we show that our approach can be used online to minimize the number of sample triggers, with the aim at energetic efficiency. We apply our approach to two benchmarks, an anesthesia model and an adaptive cruise controller.

This work is partially supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015), and the National Science Foundation (NSF) of the United States of America under grant number 2038960.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/bineet-coderep/MoULDyS.

  2. 2.

    See example at https://flowstar.org/benchmarks/2-dimensional-ltv-system/.

References

  1. Althoff, M.: An introduction to CORA 2015. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 34, pp. 120–151. EasyChair (2015). https://doi.org/10.29007/zbkv

  2. Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: HSCC, pp. 93–102. ACM (2011). https://doi.org/10.1145/1967701.1967717

  3. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty. In: ICECCS, pp. 10–20. IEEE Computer Society (2018). https://doi.org/10.1109/ICECCS2018.2018.00010

  4. Bakhirkin, A., Ferrère, T., Nickovic, D., Maler, O., Asarin, E.: Online timed pattern matching using automata. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 215–232. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_13

    Chapter  MATH  Google Scholar 

  5. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_5

    Chapter  Google Scholar 

  6. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: RV-CuBES. Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair (2017)

    Google Scholar 

  7. Becchi, A., Zaffanella, E.: Revisiting polyhedral analysis for hybrid systems. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 183–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_10

    Chapter  Google Scholar 

  8. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  9. Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In: RTSS, pp. 13–24. IEEE Computer Society (2016). https://doi.org/10.1109/RTSS.2016.011

  10. Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes for non-linear continuous systems. In: FMCAD, pp. 59–66. IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987596

  11. Combastel, C., Raka, S.A.: On computing envelopes for discrete-time linear systems with affine parametric uncertainties and bounded inputs. IFAC Proc. Volumes 44(1), 4525–4533 (2011). https://doi.org/10.3182/20110828-6-IT-1002.02585

    Article  Google Scholar 

  12. Dauer, J.C., Finkbeiner, B., Schirmer, S.: Monitoring with verified guarantees. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 62–80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_4

    Chapter  Google Scholar 

  13. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  14. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_5

    Chapter  Google Scholar 

  15. Gan, V., Dumont, G.A., Mitchell, I.: Benchmark problem: a PK/PD model and safety constraints for anesthesia delivery. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 34, pp. 1–8. EasyChair (2014). https://doi.org/10.29007/8drm

  16. Ghosh, B., Duggirala, P.S.: Robust reachable set: accounting for uncertainties in linear dynamical systems. ACM Trans. Embed. Comput. Syst. 18(5s), 97:1–97:22 (2019). https://doi.org/10.1145/3358229

  17. Ghosh, B., Duggirala, P.S.: Reachability of linear uncertain systems: sampling based approaches. Technical Report 2109.07638, arXiv (2021). https://arxiv.org/abs/2109.07638

  18. Ghosh, B., Duggirala, P.S.: Robustness of safety for linear dynamical systems: symbolic and numerical approaches. Technical Report 2109.07632, arXiv (2021). https://arxiv.org/abs/2109.07632

  19. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58485-4_43

    Chapter  Google Scholar 

  20. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative monitoring of STL with edit distance. Formal Methods Syst. Des. 53(1), 83–112 (2018). https://doi.org/10.1007/s10703-018-0319-x

    Article  MATH  Google Scholar 

  21. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_15

    Chapter  Google Scholar 

  22. Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized linear systems. In: EMSOFT, pp. 237–246. IEEE (2015). https://doi.org/10.1109/EMSOFT.2015.7318279

  23. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  24. Mamouras, K., Chattopadhyay, A., Wang, Z.: A compositional framework for quantitative online monitoring over continuous-time signals. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 142–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_8

    Chapter  Google Scholar 

  25. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-physical system models. FMSD 49(1-2), 33–74 (2016). https://doi.org/10.1007/s10703-016-0241-z

  26. Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid systems. Technical Report (2018). http://arxiv.org/abs/1811.06502

  27. Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches. IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016). https://doi.org/10.1109/TCST.2015.2501351

    Article  Google Scholar 

  28. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE Computer Society (2012). https://doi.org/10.1109/LICS.2012.64

  29. Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 178–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8_11

    Chapter  Google Scholar 

  30. Testylier, R., Dang, T.: NLTOOLBOX: a library for reachability computation of nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 469–473. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_37

    Chapter  MATH  Google Scholar 

  31. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_16

    Chapter  MATH  Google Scholar 

  32. Waga, M., Akazaki, T., Hasuo, I.: A Boyer-Moore type algorithm for timed pattern matching. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 121–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_8

    Chapter  MATH  Google Scholar 

  33. Waga, M., André, É.: Online parametric timed pattern matching with automata-based skipping. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 371–389. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_26

    Chapter  Google Scholar 

  34. Waga, M., André, É., Hasuo, I.: Model-bounded monitoring of hybrid systems. ACM Trans. Cyber-Phys. Syst. (2022). https://doi.org/10.1145/3529095

  35. Waga, M., André, É., Hasuo, I.: Parametric timed pattern matching. ACM Trans. Softw. Eng. Methodol. (2022). https://doi.org/10.1145/3517194

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bineet Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, B., André, É. (2022). Offline and Online Monitoring of Scattered Uncertain Logs Using Uncertain Linear Dynamical Systems. In: Mousavi, M.R., Philippou, A. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2022. Lecture Notes in Computer Science, vol 13273. Springer, Cham. https://doi.org/10.1007/978-3-031-08679-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08679-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08678-6

  • Online ISBN: 978-3-031-08679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics