Skip to main content

Development of AI-Enabled Apps by Patients and Domain Experts Using the Punya Platform: A Case Study for Diabetes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13263))

Abstract

It is challenging for programmers to build a mobile health app that is rich in AI features, and near impossible for non-technical users such as domain experts and patients. However, it is exactly these users that possess the domain knowledge and experience on how to best manage health conditions, and how AI features can help achieve that goal. End-user development environments, such as MIT Punya, can help lay users to better collaborate on mobile health apps; and even open the door for these users, given some training, to prototype their own mobile health apps. As a subfield of AI, Semantic Web technology can help with integrating online data sources with patient health data, and reasoning over the integrated data to issue smart health recommendations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://punya.mit.edu/;http://punya.appinventor.mit.edu/.

  2. 2.

    https://community.appinventor.mit.edu/.

  3. 3.

    A video of a portion of the demo is available at https://www.youtube.com/watch?v=fFv-sPmd_G4.

References

  1. Bluetooth SIG: glucose profile 1.0 specification. https://www.bluetooth.com/specifications/specs/glucose-profile-1-0/ (2012). Accessed 28 Mar 2022

  2. Bluetooth SIG: continuous glucose monitoring profile 1.0.1 specification (2015). https://www.bluetooth.com/specifications/specs/continuous-glucose-monitoring-profile-1-0-1/. Accessed 28 Mar 2022

  3. Bluetooth SIG: weight scale profile 1.0 specification. https://www.bluetooth.com/specifications/specs/weight-scale-profile/. Accessed 28 Mar 2022

  4. Bluetooth SIG: Bluetooth core specification 5.3 (2021). https://www.bluetooth.com/specifications/specs/core-specification-5-3/. Accessed 28 Mar 2022

  5. Dooley, D.M., et al.: Foodon: a harmonized food ontology to increase global food traceability, quality control and data integration. NPJ Sci. Food 2(1), 1–10 (2018)

    Article  Google Scholar 

  6. Haussmann, S., et al.: FoodKG: a semantics-driven knowledge graph for food recommendation. In: Ghidini, C. (ed.) ISWC 2019. LNCS, vol. 11779, pp. 146–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30796-7_10

    Chapter  Google Scholar 

  7. Loseto, G., et al.: Linked data (in low-resource) platforms: a mapping for constrained application protocol. In: Groth, P. (ed.) ISWC 2016. LNCS, vol. 9982, pp. 131–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_14

    Chapter  Google Scholar 

  8. Patton, E.W.: MIT app inventor BluetoothLE extension (2020). https://iot.appinventor.mit.edu/#/bluetoothle/bluetoothleintro. Accessed 29 Mar 2022

  9. Patton, E.W., Van Woensel, W., Seneviratne, O., Loseto, G., Scioscia, F., Kagal, L.: The punya platform: building mobile research apps with linked data and semantic features. In: Hotho, A. (ed.) ISWC 2021. LNCS, vol. 12922, pp. 563–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_33

    Chapter  Google Scholar 

  10. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  11. Seneviratne, O., Harris, J., Chen, C.H., McGuinness, D.L.: Personal health knowledge graph for clinically relevant diet recommendations. arXiv preprint arXiv:2110.10131 (2021)

  12. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol (CoAP)(2014). http://www.ietf.org/rfc/rfc7252.txt. Accessed 28 Mar 2022

  13. Speicher, S., Arwe, J., Malhotra, A.: Linked data platform 1.0 (2015). http://www.w3.org/TR/ldp/. Accessed 28 Mar 2022

  14. Tang, D.: Empowering novices to understand and use machine learning with personalized image classification models, intuitive analysis tools, and MIT App Inventor. Master’s thesis, Massachusetts Institute of Technology (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Van Woensel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patton, E., Van Woensel, W., Seneviratne, O., Loseto, G., Scioscia, F., Kagal, L. (2022). Development of AI-Enabled Apps by Patients and Domain Experts Using the Punya Platform: A Case Study for Diabetes. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics