Skip to main content

Emerging and Advanced Technologies in Biodegradable Plastics for Sustainability

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Over the past decades, plastics’ growing interest and manufacturing have jeopardized numerous lives and pristine environments due to their accumulation and persistent contamination of degraded small plastic particles called microplastics (MPs). Hence, plastic recycling, composting, incineration, and sanitary landfill offer an answer to the troubling issue, yet every one of them has immense impediments and stays uncontrolled, and they lack environmental sustainability. Therefore, biodegradable plastics (BPs) from renewable raw materials address the best chance toward accomplishing sustainable development goals started universally by the United Nations (UN) in 2015. Ongoing advances in improving bioplastics have advocated their utilization in industrial applications. BPs have been effectively applied in certain businesses in which bioplastics are being created for food packaging as the best-selling product, fertilizer bags, 3D printing polymers, fishnets, medical implants, etc. Hence, studies on BPs should be reinforced, and the item advancement on BPs should be advanced and explored in the future. Further interventions in bioplastics will assist with building up the green economy globally. A brief introduction on BPs, along with the emerging and advanced technologies in biodegradable plastic research, future direction, challenges, and their role in sustainable development, has been explicitly reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASTM:

American Society for Testing and Materials

BPs:

Biodegradable plastics

C.S:

Corn starch

CA:

Citric acid

CH4:

Methane

CMC:

Carboxy methyl cellulose

CNC:

Cellulose nanocrystals

CO2:

Carbon dioxide

CW:

Cheese whey

EPS:

Extracellular polymeric substance

FDA:

Food and Drug Administration

FMCGs:

Faster-moving consumer goods

GMOs:

Genetically modified organisms

H2O:

Water

ISO:

International Organisation for Standardization

LCA:

Life cycle assessment

LCM:

Life cycle management

LDH:

Layered double hydroxide

MCC:

Microcrystalline cellulose

MMT:

Montmorillonite

MPs:

Microplastics

NMs:

Nanomaterials

NPD:

New product development

NPs:

Nanoplastics

ODM:

Original Design Manufacturer

OEM:

Original Equipment Manufacturer

PBS:

Polybutylene succinate

PCL:

Polycaprolactone

PE:

Polyethylene

PEG:

Polyethylene glycol

PES:

Polyethylene succinate

PET:

Polyethylene terephthalate

PHA:

Polyhydroxyalkanoates

PHB:

Polyhydroxybutyrate

PHBV:

Polyhydroxybutyrate valerate

PLA:

Polylactic acid

PLAPU:

PLA-based polyurethane

PLGA:

Poly(lactide-coglycol)

PLM:

Product life cycle management

PP:

Polypropylene

PS:

Polystyrene

PTFE:

Polytetrafluoroethylene

PV:

Pervaporation

PVA:

Polyvinyl alcohol

PVC:

Polyvinyl chloride

PVOH:

Polyvinyl alcohol

SD:

Sustainable development

TDPA:

Totally degradable plastic additive

TPS:

Thermoplastic starch

UN:

United Nations

References

Uncategorized References

  1. González-Pleiter M, Tamayo-Belda M, Pulido-Reyes G, Amariei G, Leganés F, Rosal R, and Fernández-Piñas F (2019) Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environmental Science: Nano 6(5):1382–1392

    Google Scholar 

  2. Geyer R JJ, and Law KL (2017) Production, use, and fate of all plastics ever made. Science Advances 3(7):e1700782

    Article  Google Scholar 

  3. Satti SM and Shah AA (2020) Polyester-based biodegradable plastics: an approach towards sustainable development. Letters in Applied Microbiology 70(6):413–430

    Article  CAS  Google Scholar 

  4. Mazhandu ZS, Muzenda E, Mamvura TA, Belaid M, and Nhubu T (2020) Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. Sustainability 12(20)

    Google Scholar 

  5. Kubowicz S and Booth AM (2017) Biodegradability of Plastics: Challenges and Misconceptions. Environmental Science & Technology 51(21):12058–12060

    Article  CAS  Google Scholar 

  6. Narancic T, Cerrone F, Beagan N, and O’Connor KE (2020) Recent Advances in Bioplastics: Application and Biodegradation. Polymers 12(4)

    Google Scholar 

  7. Alhanish A and Ali GAM, Recycling the Plastic Wastes to Carbon Nanotubes, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 701–727.

    Chapter  Google Scholar 

  8. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, and Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research 25(8):7287–7298

    Article  CAS  Google Scholar 

  9. Kumar A, Nighojkar A, Nighojkar S, Garg S, Matkawala F, and Shah S (2020) Emerging Trend of Bio-plastics and Its Impact on Society. Biotechnology Journal International:1–10

    Google Scholar 

  10. Yasin S, Bakr ZH, Ali GAM, and Saeed I, Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique, in Waste Recycling Technologies for Nanomaterials Manufacturing, ASH Makhlouf, GAM Ali, Editors. 2021, Springer International Publishing: Cham. p. 805–821.

    Chapter  Google Scholar 

  11. Shen M, Zeng G, Zhang Y, Wen X, Song B, and Tang W (2019) Can biotechnology strategies effectively manage environmental (micro)plastics? Science of the Total Environment 697:134200

    Article  CAS  Google Scholar 

  12. Satti SM aSA (2020) Polyester-based biodegradable plastics: an approach towards sustainable development. Letters in Applied Microbiology 70(6):413–430

    Google Scholar 

  13. Otto S, Strenger M, Maier-Nöth A, and Schmid M (2021) Food packaging and sustainability – Consumer perception vs. correlated scientific facts: A review. Journal of Cleaner Production 298

    Google Scholar 

  14. Gill M (2014) Bioplastic: a better alternative to plastics. International Journal of Research in Applied 2(8):115–120

    Google Scholar 

  15. Adhikari D, Mukai M, Kubota K, Kai T, Kaneko N, Araki KS, and Kubo M (2016) Degradation of Bioplastics in Soil and Their Degradation Effects on Environmental Microorganisms. Journal of Agricultural Chemistry and Environment 05(01):23–34

    Article  CAS  Google Scholar 

  16. Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics. International Journal of Research in Engineering and Innovation 3(1):59–64

    Google Scholar 

  17. Halley PJ and Dorgan JR (2011) Next-generation biopolymers: Advanced functionality and improved sustainability. Materials Research Society Bulletin 36(9):687–691

    Article  CAS  Google Scholar 

  18. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, and Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of Cleaner Production 23(1):47–56

    Article  Google Scholar 

  19. Muller J, Gonzalez-Martinez C, and Chiralt A (2017) Combination of Poly(lactic) Acid and Starch for Biodegradable Food Packaging. Materials 10(8)

    Google Scholar 

  20. Zaki DNH (2018) Biodegradable plastic production by Bacillus spp. isolated from agricultural wastes and genetic analysis of PHA synthesis. Al-Mustansiriyah Journal of Science 29(1)

    Google Scholar 

  21. Lambert S and Wagner M (2017) Environmental performance of bio-based and biodegradable plastics: the road ahead. The Royal Society of Chemistry 46(22):6855–6871

    Article  CAS  Google Scholar 

  22. Thakur S, Chaudhary J, Sharma B, Verma A, Tamulevicius S, and Thakur VK (2018) Sustainability of bioplastics: Opportunities and challenges. Current Opinion in Green and Sustainable Chemistry 13:68–75

    Article  Google Scholar 

  23. Araque LM, Alvarez VA, and Gutiérrez TJ, Composite Foams Made from Biodegradable Polymers for Food Packaging Applications, in Polymers for Food Applications. 2018. p. 347–355.

    Google Scholar 

  24. Asgher M, Qamar, S. A., Bilal, M., & Iqbal, H. M (2020) Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Research International 137:109625

    Google Scholar 

  25. Shamsuddin IM, N S, M A, and Mk A (2018) Biodegradable polymers for sustainable environmental and economic development. MOJ Bioorganic & Organic Chemistry 2(4)

    Google Scholar 

  26. RameshKumar S, Shaiju P, O’Connor KE, and P RB (2020) Bio-based and biodegradable polymers - State-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry 21:75–81

    Google Scholar 

  27. Ezgi Bezirhan A and Havva Duygu O (2015) A Review: Investigation of Bioplastics. Journal of Civil Engineering and Architecture 9(2)

    Google Scholar 

  28. Dilkes-Hoffman LS, Lane JL, Grant T, Pratt S, Lant PA, and Laycock B (2018) Environmental impact of biodegradable food packaging when considering food waste. Journal of Cleaner Production 180:325–334

    Article  CAS  Google Scholar 

  29. Selvamurugan Muthusamy M and Pramasivam S (2019) Bioplastics – An Eco-friendly Alternative to Petrochemical Plastics. Current World Environment 14(1):49–59

    Article  Google Scholar 

  30. Yu J, & Chen, L. X (2008) The greenhouse gas emissions and fossil energy requirement of bioplastics from cradle to gate of a biomass refinery. Environmental Science & Technology 42(18):6961–6966

    Google Scholar 

  31. Chen X, & Yan, N (2020) A brief overview of renewable plastics. Materials Today Sustainability 7(8):100031

    Article  Google Scholar 

  32. Zhang C, Show PL, and Ho SH (2019) Progress and perspective on algal plastics - A critical review. Bioresource Technology 289:121700

    Article  CAS  Google Scholar 

  33. Shen M, Song B, Zeng G, Zhang Y, Huang W, Wen X, and Tang W (2020) Are biodegradable plastics a promising solution to solve the global plastic pollution? Environmental Pollution 263:114469

    Article  CAS  Google Scholar 

  34. Reddy RL, Reddy, V. S., & Gupta, G. A (2013) Study of bio-plastics as green and sustainable alternative to plastics. International Journal of Emerging Technology and Advanced Engineering 3(5):76–81

    Google Scholar 

  35. Khoo HH, Ee WL, and Isoni V (2016) Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green Chemistry 18(7):1912–1922

    Article  CAS  Google Scholar 

  36. Ögmundarson Ó, Herrgård MJ, Forster J, Hauschild MZ, and Fantke P (2020) Addressing environmental sustainability of biochemicals. Nature Sustainability 3(3):167–174

    Article  Google Scholar 

  37. Ren X (2003) Biodegradable plastics: a solution or a challenge? Journal of Cleaner Production 11(1):27–40

    Article  Google Scholar 

  38. Emadian SM, Onay TT, and Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Management 59:526–536

    Article  CAS  Google Scholar 

  39. Rydz J, Musioł M, Zawidlak-Węgrzyńska B, and Sikorska W, Present and Future of Biodegradable Polymers for Food Packaging Applications, in Biopolymers for Food Design. 2018. p. 431–467.

    Google Scholar 

  40. Prieto A (2016) To be, or not to be biodegradable... that is the question for the bio-based plastics. Microbial Biotechnology 9(5):652–7

    Article  Google Scholar 

  41. Tang X and Chen EYX (2019) Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. Chemistry 5(2):284–312

    Article  CAS  Google Scholar 

  42. Albertsson AC, & Hakkarainen, M (2017) Designed to degrade. Science 358(6365):872–873

    Article  CAS  Google Scholar 

  43. Shah AA, Kato S, Shintani N, Kamini NR, and Nakajima-Kambe T (2014) Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Applied Microbiology and Biotechnology 98(8):3437–47

    Article  CAS  Google Scholar 

  44. Tokiwa Y, Calabia BP, Ugwu CU, and Aiba S (2009) Biodegradability of plastics. International Journal of Molecular Sciences 10(9):3722–42

    Article  CAS  Google Scholar 

  45. Bastioli C (2001) Global status of the production of biobased packaging materials. Starch-Stärke 53(8):351–355

    Article  CAS  Google Scholar 

  46. Pan Y, Farmahini-Farahani, M., O’Hearn, P., Xiao, H., & Ocampo, H (2016) An overview of bio-based polymers for packaging materials. Journal of Bioresources and Bioproducts 1(3):106–113

    Google Scholar 

  47. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, and Thakur VK (2018) Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 23(4):383–395

    Article  Google Scholar 

  48. Mangaraj S, Yadav A, Bal LM, Dash SK, and Mahanti NK (2018) Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. Journal of Packaging Technology and Research 3(1):77–96

    Article  Google Scholar 

  49. Faris NA, Noriman NZ, Sam ST, Ruzaidi CM, Omar MF, and Kahar AWM (2014) Current Research in Biodegradable Plastics. Applied Mechanics and Materials 679:273–280

    Article  Google Scholar 

  50. Zhong Y, Godwin P, Jin Y, and Xiao H (2020) Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research 3(1):27–35

    Article  Google Scholar 

  51. Kasirajan S and Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 32(2):501–529

    Article  CAS  Google Scholar 

  52. Din MI, Ghaffar T, Najeeb J, Hussain Z, Khalid R, and Zahid H (2020) Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Additives & Contaminants: Part A 37(4):665–680

    Article  CAS  Google Scholar 

  53. Jabeen N, Majid I, Nayik GA, and Yildiz F (2015) Bioplastics and food packaging: A review. Cogent Food & Agriculture 1(1)

    Google Scholar 

  54. Serrano-Ruiz H, Martin-Closas, L., & Pelacho, A. M (2021) Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of The Total Environment 750:141228

    Google Scholar 

  55. Trache D, Hussin MH, Haafiz MK, and Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. The Royal Society of Chemistry 9(5):1763–1786

    CAS  Google Scholar 

  56. Ashok A, Rejeesh, C., & Renjith, R (2016) Biodegradable polymers for sustainable packaging applications: a review. International Journal of Bionics and Biomaterials 2(2):1–11

    Google Scholar 

  57. Dehghani S, Hosseini SV, and Regenstein JM (2018) Edible films and coatings in seafood preservation: A review. Food Chemistry 240:505–513

    Article  CAS  Google Scholar 

  58. John MJ, Anandjiwala RD, Pothan LA, and Thomas S (2012) Cellulosic fibre-reinforced green composites. Composite Interfaces 14(7–9):733–751

    Google Scholar 

  59. Akil H, Omar, M. F., Mazuki, A. M., Safiee, S. Z. A. M., Ishak, Z. M., & Bakar, A. A (2011) Kenaf fiber reinforced composites: A review. Materials & Design 32(8–9):4107–4121

    Google Scholar 

  60. Atasoy M, Owusu-Agyeman I, Plaza E, and Cetecioglu Z (2018) Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology 268:773–786

    Article  CAS  Google Scholar 

  61. Mohanty AK, Misra, M. A., & Hinrichsen, G. I (2000) Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering 276(1):1–24

    Google Scholar 

  62. Majid I, Thakur M, and Nanda V, Innovative and Safe Packaging Technologies for Food and Beverages: Updated Review, in Innovations in Technologies for Fermented Food and Beverage Industries. 2018. p. 257–287.

    Google Scholar 

  63. Divi RL, Chang, H. C., & Doerge, D. R (1997) Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochemical Pharmacology 54(10):1087–1096

    Google Scholar 

  64. Nanda MR, Misra M, and Mohanty AK (2011) The Effects of Process Engineering on the Performance of PLA and PHBV Blends. Macromolecular Materials and Engineering 296(8):719–728

    Article  CAS  Google Scholar 

  65. Villegas M, Romero AI, Parentis ML, Castro Vidaurre EF, and Gottifredi JC (2016) Acrylic acid plasma polymerized poly(3-hydroxybutyrate) membranes for methanol/MTBE separation by pervaporation. Chemical Engineering Research and Design 109:234–248

    Article  CAS  Google Scholar 

  66. Rai P, Mehrotra S, Priya S, Gnansounou E, and Sharma SK (2021) Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology 325:124739

    Article  CAS  Google Scholar 

  67. Gupta B, Revagade, N., & Hilborn, J (2007) Poly (lactic acid) fiber: An overview. Progress in Polymer Science 32(4):455–482

    Article  CAS  Google Scholar 

  68. Harding KG, Gounden T, and Pretorius S (2017) “Biodegradable” Plastics: A Myth of Marketing? Procedia Manufacturing 7:106–110

    Article  Google Scholar 

  69. Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud YA, Koutra E, Metwally MA, Kornaros M, and Sun J (2021) Plastic wastes biodegradation: Mechanisms, challenges and future prospects. Science of the Total Environment 780:146590

    Article  CAS  Google Scholar 

  70. Nazareth M, Marques MRC, Leite MCA, and Castro IB (2019) Commercial plastics claiming biodegradable status: Is this also accurate for marine environments? Journal of Hazardous Materials 366:714–722

    Article  CAS  Google Scholar 

  71. Napper IE and Thompson RC (2019) Environmental Deterioration of Biodegradable, Oxo-biodegradable, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over a 3-Year Period. Environmental Science & Technology 53(9):4775–4783

    Article  CAS  Google Scholar 

  72. Qin M, Chen C, Song B, Shen M, Cao W, Yang H, Zeng G, and Gong J (2021) A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? Journal of Cleaner Production 312

    Google Scholar 

  73. Trivedi P, Hasan, A., Akhtar, S., Siddiqui, M. H., Sayeed, U., & Khan, M. K. A (2016) Role of microbes in degradation of synthetic plastics and manufacture of bioplastics. Journal of Chemical and Pharmaceutical Research 8(3):211–216

    Google Scholar 

  74. Ho KLG, Pometto, A. L., & Hinz, P. N (1999) Effects of temperature and relative humidity on polylactic acid plastic degradation. Journal of Environmental Polymer Degradation 7(2):83–92

    Google Scholar 

  75. Tabasi RY and Ajji A (2015) Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation and Stability 120:435–442

    Article  CAS  Google Scholar 

  76. Luckachan GE and Pillai CKS (2011) Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment 19(3):637–676

    Article  CAS  Google Scholar 

  77. Tian H, Gao, J., Hao, J., Lu, L., Zhu, C., & Qiu, P (2013) Atmospheric pollution problems and control proposals associated with solid waste management in China: a review. Journal of Hazardous Materials (252):142–154

    Article  Google Scholar 

  78. Sohn YJ, Kim HT, Baritugo KA, Jo SY, Song HM, Park SY, Park SK, Pyo J, Cha HG, Kim H, Na JG, Park C, Choi JI, Joo JC, and Park SJ (2020) Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Journal of Biotechnology 15(6):e1900489

    Article  Google Scholar 

  79. Sudesh K and Iwata T (2008) Sustainability of Biobased and Biodegradable Plastics. CLEAN - Soil, Air, Water 36(5–6):433–442

    Article  CAS  Google Scholar 

  80. Ahmed ST, Leferink NGH, and Scrutton NS (2019) Chemo-enzymatic routes towards the synthesis of bio-based monomers and polymers. Molecular Catalysis 467:95–110

    Article  CAS  Google Scholar 

  81. Schneiderman DK and Hillmyer MA (2017) 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 50(10):3733–3749

    Article  CAS  Google Scholar 

  82. Zhang X, Fevre M, Jones GO, and Waymouth RM (2018) Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews 118(2):839–885

    Article  CAS  Google Scholar 

  83. Fomin VA, & Guzeev, V. V (2001) Biodegradable polymers, their present state and future prospects. International Polymer Science and Technology 28(11):76–84

    Google Scholar 

  84. Weber CJ, Haugaard, V., Festersen, R., & Bertelsen, G (2002) Production and applications of biobased packaging materials for the food industry. Food Additives & Contaminants 19(S1):172–177

    Article  CAS  Google Scholar 

  85. Shen L and Worrell E, Plastic Recycling, in Handbook of Recycling. 2014. p. 179–190.

    Google Scholar 

  86. Almenar E, Samsudin H, Auras R, and Harte J (2010) Consumer acceptance of fresh blueberries in bio-based packages. Journal of the Science of Food and Agriculture 90(7):1121–8

    Article  CAS  Google Scholar 

  87. Strawhecker KE, & Manias, E (2000) Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chemistry of Materials 12(10):2943–2949

    Article  CAS  Google Scholar 

  88. Rijpkema SJ, Langens S, van der Kolk MR, Gavriel K, Toebes BJ, and Wilson DA (2020) Modular Approach to the Functionalization of Polymersomes. Biomacromolecules 21(5):1853–1864

    Article  CAS  Google Scholar 

  89. Sinha Ray S and Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science 28(11):1539–1641

    Article  Google Scholar 

  90. Sorrentino A, Gorrasi G, and Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology 18(2):84–95

    Article  CAS  Google Scholar 

  91. Zhao R, Torley P, and Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. Journal of Materials Science 43(9):3058–3071

    Article  CAS  Google Scholar 

  92. Yang TH, Kim TW, Kang HO, Lee SH, Lee EJ, Lim SC, Oh SO, Song AJ, Park SJ, and Lee SY (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnology and Bioengineering 105(1):150–60

    Article  CAS  Google Scholar 

  93. Bystrzejewska-Piotrowska G, Golimowski J, and Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Management 29(9):2587–95

    Article  CAS  Google Scholar 

  94. Manias E, Touny, A., Wu, L., Strawhecker, K., Lu, B., & Chung, T. C (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials 13(10):3516–3523

    Google Scholar 

  95. Balaguer MP, Aliaga C, Fito C, and Hortal M (2016) Compostability assessment of nano-reinforced poly(lactic acid) films. Waste Management 48:143–155

    Article  CAS  Google Scholar 

  96. Galiano F, Briceño K, Marino T, Molino A, Christensen KV, and Figoli A (2018) Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science 564:562–586

    Article  CAS  Google Scholar 

  97. Madhumitha G, Fowsiya J, Mohana Roopan S, and Thakur VK (2018) Recent advances in starch–clay nanocomposites. International Journal of Polymer Analysis and Characterization 23(4):331–345

    Article  CAS  Google Scholar 

  98. Dilkes-Hoffman LS, Pratt S, Lant PA, and Laycock B, The Role of Biodegradable Plastic in Solving Plastic Solid Waste Accumulation, in Plastics to Energy. 2019. p. 469–505.

    Google Scholar 

  99. Chang D, Lee, C. K. M., & Chen, C. H (2014) Review of life cycle assessment towards sustainable product development. Journal of Cleaner Production 83:48–60

    Google Scholar 

  100. Gmelin H, & Seuring, S (2014) Determinants of a sustainable new product development. Journal of Cleaner production 69:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nik Fakhuruddin Nik Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Che Ab Aziz, N.I., Zakaria, Y., Md Muslim, N.Z., Nik Hassan, N.F. (2023). Emerging and Advanced Technologies in Biodegradable Plastics for Sustainability. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_21

Download citation

Publish with us

Policies and ethics