Skip to main content

ECOM: Epoch Randomness-Based Consensus Committee Configuration for IoT Blockchains

  • Chapter
  • First Online:
Principles and Practice of Blockchains

Abstract

The rapid advancement in Artificial Intelligence (AI) based on large-scale Internet of Things (IoT) networks leads to the proliferation of new smart applications that enable Smart Cities. Since the cryptocurrency Bitcoin, blockchain technology has evolved for extensive applications in various financial services and industrial applications. The increase in research interest from academic and industrial perspectives aims to exploit blockchain technology to enable a decentralized, verifiable, and traceable IoT networks. However, directly integrating cryptocurrency-oriented blockchain technologies into IoT systems faces performance and scalability issues. Splitting the whole blockchain network into multiple independent small-scale consensus networks is promising to overcome performance and scalability problems in heterogeneous IoT networks. In this chapter, following an in-depth review of state-of-the-art solutions for scaling blockchain networks, key design challenges and techniques are identified in terms of epoch randomness generation, network traffic model, and consensus committee configuration. Focusing on scalable and secure random committee selection, this chapter introduces an epoch randomness-enabled consensus committee configuration (ECOM) scheme. A proof-of-concept prototype is implemented and evaluated on a physical network that uses Raspberry Pis to simulate IoT devices. The experimental results show that the proposed ECOM protocol efficiently guarantees unpredictable randomness generation and committee selection under a small-scale byzantine network environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, M.H. Rehmani, Applications of blockchains in the Internet of Things: A comprehensive survey. IEEE Commun. Surv. Tutorials 21(2), 1676–1717 (2018)

    Article  Google Scholar 

  2. A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, P. Wuille, Enabling blockchain innovations with pegged sidechains, vol. 72 (2014). http://www.opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains

  3. L. Baird, The Swirlds hashgraph consensus algorithm: fair, fast, byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep (2016)

    Google Scholar 

  4. Bitcoin Cash. https://bitcoincash.org/, accessed: Dec. 22 2021

  5. E. Blasch, R. Xu, Y. Chen, G. Chen, D. Shen, Blockchain methods for trusted avionics systems, in Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON) (IEEE, New York, 2019), pp. 192–199

    Google Scholar 

  6. Cosmos. https://v1.cosmos.network/resources/whitepaper, accessed: Dec. 22 2021

  7. K. Croman, C. Decker, I. Eyal, A.E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E. Shi, E.G. Sirer, et al.: On scaling decentralized blockchains, in International Conference on Financial Cryptography and Data Security (Springer, Berlin, 2016), pp. 106–125

    Book  Google Scholar 

  8. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, D. Terry, Epidemic algorithms for replicated database maintenance, in Proceedings of the sixth annual ACM Symposium on Principles of distributed computing (1987), pp. 1–12

    Google Scholar 

  9. D. Ding, X. Jiang, J. Wang, H. Wang, X. Zhang, Y. Sun, Txilm: Lossy block compression with salted short hashing. arXiv preprint arXiv:1906.06500 (2019)

    Google Scholar 

  10. M. Dotan, Y.A. Pignolet, S. Schmid, S. Tochner, A. Zohar, Survey on blockchain networking: Context, state-of-the-art, challenges. ACM Comput. Surv. (CSUR) 54(5), 1–34 (2021)

    Google Scholar 

  11. I. Eyal, A.E. Gencer, E.G. Sirer, R. Van Renesse, Bitcoin-ng: A scalable blockchain protocol, in Proceedings of the 13th {USENIX} symposium on networked systems design and implementation ({NSDI} 16) (2016), pp. 45–59

    Google Scholar 

  12. P. Feldman, A practical scheme for non-interactive verifiable secret sharing, in Proceedings of the 28th Annual Symposium on Foundations of Computer Science (SFCS 1987) (IEEE, New York, 1987), pp. 427–438

    Google Scholar 

  13. A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and signature problems, in Conference on the Theory and Application of Cryptographic Techniques (Springer, Berlin, 1986), pp. 186–194

    Google Scholar 

  14. Flask: A Python Microframework. http://flask.pocoo.org/, accessed: Dec. 22 2021

  15. Y. Gilad, R. Hemo, S. Micali, G. Vlachos, N. Zeldovich, Algorand: Scaling byzantine agreements for cryptocurrencies, in Proceedings of the 26th Symposium on Operating Systems Principles (ACM, New York, 2017), pp. 51–68

    Book  Google Scholar 

  16. K. Jenkins, K. Hopkinson, K. Birman, A gossip protocol for subgroup multicast, in Proceedings 21st International Conference on Distributed Computing Systems Workshops (IEEE, New York, 2001), pp. 25–30

    Google Scholar 

  17. H. Kalodner, S. Goldfeder, X. Chen, S.M. Weinberg, Felten, E.W., Arbitrum: scalable, private smart contracts, in Proceedings of the 27th {USENIX} Security Symposium ({USENIX} Security 18) (2018), pp. 1353–1370

    Google Scholar 

  18. A. Kiayias, A. Russell, B. David, R. Oliynykov, Ouroboros: A provably secure proof-of-stake blockchain protocol, in Annual International Cryptology Conference (Springer, Berlin, 2017), pp. 357–388

    MATH  Google Scholar 

  19. E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, B. Ford, Omniledger: a secure, scale-out, decentralized ledger via sharding, in Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP) (IEEE, New York, 2018), pp. 583–598

    Google Scholar 

  20. J. Kreps, N. Narkhede, J. Rao, et al. Kafka: a distributed messaging system for log processing, in Proceedings of the NetDB, vol. 11 (2011), pp. 1–7

    Google Scholar 

  21. L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, Y. Yang, A survey of IoT applications in blockchain systems: architecture, consensus, and traffic modeling. ACM Comput. Surv. (CSUR) 53(1), 1–32 (2020)

    Google Scholar 

  22. S.D. Lerner, R.S.K. Chief Scientist, Lumino Transaction Compression Protocol (LTCP) (2017)

    Google Scholar 

  23. Y. Lewenberg, Y. Sompolinsky, A. Zohar, Inclusive block chain protocols, in International Conference on Financial Cryptography and Data Security (Springer, Berlin, 2015), pp. 528–547

    MATH  Google Scholar 

  24. X. Lin, R. Xu, Y. Chen, J. Lum, Enhance generalized exchange economy using blockchain: a time banking case study, in The IEEE Blockchain Technical Briefs (2019)

    Google Scholar 

  25. X. Lin, R. Xu, Y. Chen, J.K. Lum, A blockchain-enabled decentralized time banking for a new social value system, in Proceedings of the 2019 IEEE Conference on Communications and Network Security (CNS) (IEEE, New York, 2019), pp. 1–5

    Google Scholar 

  26. L. Luu, V. Narayanan, K. Baweja, C. Zheng, S. Gilbert, P. Saxena, SCP: A computationally-scalable byzantine consensus protocol for blockchains. https://www.weusecoins.com/assets/pdf/library/SCP (2015)

  27. L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, P. Saxena, A secure sharding protocol for open blockchains, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (ACM, New York, 2016), pp. 17–30

    Book  Google Scholar 

  28. P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer information system based on the XOR metric, in International Workshop on Peer-to-Peer Systems (Springer, Berlin, 2002), pp. 53–65

    MATH  Google Scholar 

  29. S. Micali, M. Rabin, S. Vadhan, Verifiable random functions, in Proceedings of the 40th Annual Symposium on Foundations of Computer Science (cat. No. 99CB37039) (IEEE, New York, 1999), pp. 120–130

    Google Scholar 

  30. D. Nagothu, R. Xu, S.Y. Nikouei, Y. Chen, A microservice-enabled architecture for smart surveillance using blockchain technology, in Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2018), pp. 1–4

    Book  Google Scholar 

  31. D. Nagothu, R. Xu, Y. Chen, E. Blasch, A. Aved, Defake: Decentralized ENF-consensus based deepfake detection in video conferencing, in Proceedings of the IEEE 23rd International Workshop on Multimedia Signal Processing, Tampere, Finland (2021), pp. 6–8

    Google Scholar 

  32. D. Nagothu, R. Xu, Y. Chen, E. Blasch, A. Aved, Detecting compromised edge smart cameras using lightweight environmental fingerprint consensus, in Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems (2021), pp. 505–510

    Google Scholar 

  33. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, in Decentralized Business Review (2008), p. 21260

    Google Scholar 

  34. S.Y. Nikouei, R. Xu, D. Nagothu, Y. Chen, A. Aved, E. Blasch, Real-time index authentication for event-oriented surveillance video query using blockchain, in Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2018), pp. 1–8

    Google Scholar 

  35. J. Poon, V. Buterin, Plasma: Scalable autonomous smart contracts, in White Paper (2017), pp. 1–47

    Google Scholar 

  36. J. Poon, T. Dryja, The bitcoin lightning network: Scalable off-chain instant payments (2016). https://www.bitcoinlightning.com/wp-content/uploads/2018/03/lightning-network-paper.pdf, accessed: Dec. 22 2021

  37. S. Popov, The tangle. White Paper 1(3), 1–28 (2018)

    Google Scholar 

  38. pyca/cryptography documentation. https://github.com/pyca/cryptography, accessed: Dec. 22 2021

  39. Raiden Network. https://raiden.network/, accessed: Dec. 22 2021

  40. A. Shamir, How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Stadler, Publicly verifiable secret sharing, in International Conference on the Theory and Applications of Cryptographic Techniques (Springer, Berlin, 1996), pp. 190–199

    MATH  Google Scholar 

  42. E. Syta, P. Jovanovic, E.K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M.J. Fischer, B. Ford, Scalable bias-resistant distributed randomness, in Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP) (IEEE, New York, 2017), pp. 444–460

    Book  Google Scholar 

  43. J. Teutsch, C. Reitwießner, A scalable verification solution for blockchains. arXiv preprint arXiv:1908.04756 (2019)

    Google Scholar 

  44. G. Wang, Z.J. Shi, M. Nixon, S. Han, SOK: Sharding on blockchain, in Proceedings of the 1st ACM Conference on Advances in Financial Technologies (2019), pp. 41–61

    Google Scholar 

  45. G. Wood, Polkadot: Vision for a heterogeneous multi-chain framework. White Paper 21, 2327–4662 (2016)

    Google Scholar 

  46. J. Xie, F.R. Yu, T. Huang, R. Xie, J. Liu, Y. Liu, A survey on the scalability of blockchain systems. IEEE Netw. 33(5), 166–173 (2019)

    Article  Google Scholar 

  47. R. Xu, Y. Chen, Fed-ddm: A federated ledgers based framework for hierarchical decentralized data marketplaces, in Proceedings of the 2021 International Conference on Computer Communications and Networks (ICCCN) (2021)

    Google Scholar 

  48. R. Xu, Y. Chen, E. Blasch, G. Chen, BlendCAC: A blockchain-enabled decentralized capability-based access control for IoTs, in Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (IEEE, New York, 2018), pp. 1027–1034

    Google Scholar 

  49. R. Xu, Y. Chen, E. Blasch, G. Chen, BlendCAC: A smart contract enabled decentralized capability-based access control mechanism for the IoT. Computers 7(3), 39 (2018)

    Google Scholar 

  50. R. Xu, X. Lin, Q. Dong, Y. Chen, Constructing trustworthy and safe communities on a blockchain-enabled social credits system, in Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (ACM, New York, 2018), pp. 449–453

    Google Scholar 

  51. Z. Xu, S. Han, L. Chen, Cub, a consensus unit-based storage scheme for blockchain system, in Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE) (IEEE, New York, 2018), pp. 173–184

    Google Scholar 

  52. R. Xu, S. Chen, L. Yang, Y. Chen, G. Chen, Decentralized autonomous imaging data processing using blockchain, in Multimodal Biomedical Imaging XIV, vol. 10871 (International Society for Optics and Photonics, Bellingham, 2019), p. 108710U

    Google Scholar 

  53. R. Xu, Y. Chen, E. Blasch, G. Chen, Exploration of blockchain-enabled decentralized capability-based access control strategy for space situation awareness. Opt. Eng. 58, 58–58–16 (2019). https://doi.org/10.1117/1.OE.58.4.041609

  54. R. Xu, S.Y. Nikouei, Y. Chen, E. Blasch, A. Aved, BlendMAS: A blockchain-enabled decentralized microservices architecture for smart public safety, in Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain) (IEEE, New York, 2019), pp. 564–571

    Book  Google Scholar 

  55. R. Xu, G.S. Ramachandran, Y. Chen, B. Krishnamachari, BlendSM-DDM: Blockchain-enabled secure microservices for decentralized data marketplaces, in Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2019)

    Google Scholar 

  56. R. Xu, S.Y. Nikouei, D. Nagothu, A. Fitwi, Y. Chen, BlendSPS: A blockchain-enabled decentralized smart public safety system. Smart Cities 3(3), 928–951 (2020)

    Article  Google Scholar 

  57. R. Xu, Y. Chen, E. Blasch, G. Chen, A. Aved, D. Shen, Hybrid blockchain-enabled secure microservices fabric for decentralized multi-domain avionics systems, in Sensors and Systems for Space Applications XIII, vol. 11422 (International Society for Optics and Photonics, Bellingham, 2020), p. 114220J

    Google Scholar 

  58. R. Xu, Z. Zhai, Y. Chen, J.K. Lum, Bit: A blockchain integrated time banking system for community exchange economy, in Proceedings of the 2020 IEEE International Smart Cities Conference (ISC2) (IEEE, New York, 2020), pp. 1–8

    Google Scholar 

  59. R. Xu, Y. Chen, E. Blasch, Microchain: A light hierarchical consensus protocol for IoT systems, in Blockchain Applications in IoT Ecosystem (Springer, Berlin, 2021), pp. 129–149

    Book  Google Scholar 

  60. R. Xu, D. Nagothu, Y. Chen, EconLedger: A proof-of-ENF consensus based lightweight distributed ledger for IoVT networks. Future Internet 13(10), 248 (2021)

    Google Scholar 

  61. M. Zamani, M. Movahedi, M. Raykova, Rapidchain: Scaling blockchain via full sharding, in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (ACM, New York, 2018), pp. 931–948

    Google Scholar 

  62. Q. Zhou, H. Huang, Z. Zheng, J. Bian, Solutions to scalability of blockchain: A survey. IEEE Access 8, 16440–16455 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, R., Nagothu, D., Chen, Y. (2023). ECOM: Epoch Randomness-Based Consensus Committee Configuration for IoT Blockchains. In: Daimi, K., Dionysiou, I., El Madhoun, N. (eds) Principles and Practice of Blockchains. Springer, Cham. https://doi.org/10.1007/978-3-031-10507-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10507-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10506-7

  • Online ISBN: 978-3-031-10507-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics