Skip to main content

Microfluidic Devices for Analysis of Neuronal Development

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

Investigation of brain structure and function can be conducted using various approaches from whole organism behavior to the activity of individual molecules. Within this broad scope of investigation, the fundamental unit of brain function is the individual neuron in either the central or peripheral nervous system (CNS/PNS). This individual cellular nature stands in contrast to other bodily functions such as the circulatory system where the constituent cells form a support system for the continuous flow of blood through the body. A similarly continuous or reticular nature for neurons was proposed by Camillo Golgi who in 1873 in his small apartment kitchen developed a more complete means of observing neuronal structure that he named “La reazione nera” or “the black reaction,” the Golgi stain (Pannese E., J History Neurosci 8(2):132–140, 1999). Using Golgi’s method, Santiago Ramón y Cajal established convincing evidence that neurons were not fused together in the fashion proposed by Golgi but instead functioned as independent cellular units. Ramón y Cajal’s view of neurons eventually gained widespread acceptance with both men receiving the Nobel Prize in Physiology or Medicine in 1906.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho.Org: A central resource for neuronal morphologies. The journal of neuroscience : The official journal of the society for. Neuroscience, 27(35), 9247–9251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranes, K., Alon, N., Shefi, O., Chejanovsky, N., & Sharoni, A. (2012). Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnology and Bioengineering, 109(7), 1791–1797.

    Article  CAS  PubMed  Google Scholar 

  • Bhaduri, A., Neumann, E., Kriegstein, A., & Sweedler, J. (2021). Identification of lipid heterogeneity and diversity in the developing human brain. JACS Au.

    Google Scholar 

  • Biffi, E., Pedrocchi, A., Ferrigno, G., Menegon, A., Piraino, F., Fiore, G. B., et al. (2012). A microfluidic platform for controlled biochemical stimulation of twin neuronal networks. Biomicrofluidics, 6(2).

    Google Scholar 

  • Blasiak, A., Kilinc, D., & Lee, G. U. (2017). Neuronal cell bodies remotely regulate axonal growth response to localized netrin-1 treatment via second messenger and DCC dynamics. Frontiers in Cellular Neuroscience, 10.

    Google Scholar 

  • Boos, J. A., Misun, P. M., Brunoldi, G., Furer, L. A., Aengenheister, L., Modena, M., et al. (2021). Microfluidic co-culture platform to recapitulate the maternal-placental-embryonic axis. Advanced Biology, 5(8).

    Google Scholar 

  • Brewer, B. M., Webb, D. J., & Li, D. (2015). The fabrication of microfluidic platforms with pneumatically/hydraulically controlled PDMS valves and their use in neurobiological research (Vol. 103). Humana Press.

    Google Scholar 

  • Buchroithner, B., Mayr, S., Hauser, F., Priglinger, E., Stangl, H., Santa-Maria, A. R., et al. (2021). Dual channel microfluidics for mimicking the blood-brain barrier. ACS Nano, 15(2), 2984–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campenot, R. B. (1977). Local control of neurite development by nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 74(10), 4516–4519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cangellaris, O. V., Corbin, E. A., Froeter, P., Michaels, J. A., Li, X., & Gillette, M. U. (2018). Aligning synthetic hippocampal neural circuits via self-rolled-up silicon nitride microtube arrays. ACS Applied Materials and Interfaces, 10(42), 35705–35714.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Boettiger, A., Moffitt, J., Wang, S., & Zhuang, X. (2015). Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348(6233), 412.

    Article  CAS  Google Scholar 

  • Chennampally, P., Sayed-Zahid, A., Soundararajan, P., Sharp, J., Cox, G. A., Collins, S. D., et al. (2021). A microfluidic approach to rescue ALS motor neuron degeneration using rapamycin. Scientific Reports, 11(1), 1–12.

    Google Scholar 

  • Chizari, S., Udani, S., Farzaneh, A., Stoecklein, D., Carlo, D. D., & Hopkins, J. B. (2020). Scanning two-photon continuous flow lithography for the fabrication of multi-functional microparticles. Optics Express, 28(26), 40088–40098.

    Article  CAS  PubMed  Google Scholar 

  • Collins, F., & Dawson, A. (1983). An effect of nerve growth factor on parasympathetic neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 80(7), 2091–2094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daridon, A., Lichtenberg, J., Verpoorte, E., De Rooij, N. F., Fascio, V., Wütrich, R., et al. (2001). Multi-layer microfluidic glass chips for microanalytical applications. Fresenius’ Journal of Analytical Chemistry, 371(2), 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324(5935), 1673–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, X., Shen, K., & Bülow, H. E. (2015). Intrinsic and extrinsic mechanisms of dendritic morphogenesis (Vol. 77). Annual Reviews Inc.

    Google Scholar 

  • Duffy, D. C., Schueller, O. J. A., Brittain, S. T., & Whitesides, G. M. (1999). Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow. Journal of Micromechanics and Microengineering, 9(3), 211–217.

    Article  CAS  Google Scholar 

  • Ekgasit, S., Kaewmanee, N., Jangtawee, P., Thammacharoen, C., & Donphoongpri, M. (2016). Elastomeric PDMS planoconvex lenses fabricated by a confined sessile drop technique. ACS Applied Materials and Interfaces, 8(31), 20474–20482.

    Article  CAS  PubMed  Google Scholar 

  • Engler, A. J., Carag-Krieger, C., Johnson, C. P., Raab, M., Discher, D. E., Sanger, J. W., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. Journal of Cell Science, 121(22), 3794–3802.

    Article  CAS  PubMed  Google Scholar 

  • Fleszar, M. G., Wiśniewski, J., Krzystek-Korpacka, M., Piechowicz, J., Gamian, A., Lorenc-Kukuła, K., et al. (2018). Quantitative analysis of l-arginine, dimethylated arginine derivatives, l-citrulline, and dimethylamine in human serum using liquid chromatography–mass spectrometric method. Chromatographia, 81(6), 911–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funano, S.-I., Ota, N., & Tanaka, Y. (2021). A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery. Lab on a Chip, 21(11), 2244–2254.

    Article  CAS  PubMed  Google Scholar 

  • Gale, B. K., Jafek, A. R., Lambert, C. J., Goenner, B. L., Moghimifam, H., Nze, U. C., et al. (2018). A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions, 3(3).

    Google Scholar 

  • Giboz, J., Copponnex, T., & Mélé, P. (2007). Microinjection molding of thermoplastic polymers: A review. Journal of Micromechanics and Microengineering, 17(6), R96–R109.

    Article  CAS  Google Scholar 

  • Hiroaki, O., Midori, K., & Takemichi, K. (2019). 加藤 丈達, 尾上 弘晃, & 根岸-加藤 みどり: Hydrogel microchamber by two-photon stereolithography for reconstructing three-dimensional neural network. The Proceedings of the Symposium on Micro-Nano Science and Technology, 20.

    Google Scholar 

  • Hsu, S., Thakar, R., Liepmann, D., & Li, S. (2005). Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces. Biochemical and Biophysical Research Communications, 337(1), 401–409.

    Article  CAS  PubMed  Google Scholar 

  • Hua, F., Sun, Y., Gaur, A., Meitl, M. A., Bilhaut, L., Rotkina, L., et al. (2004). Polymer imprint lithography with molecular-scale resolution. Nano Letters, 4(12), 2467–2471.

    Article  CAS  Google Scholar 

  • Iliescu, C., Taylor, H., Avram, M., Miao, J., & Franssila, S. (2012). A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics, 6(1).

    Google Scholar 

  • Ionescu-Zanetti, C., Shaw, R., Seo, J., Jan, Y., Jan, L., & Lee, L. (2005). Mammalian electrophysiology on a microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9112–9117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isshiki, Y., Kaneko, T., Tamada, A., Muguruma, K., & Yokokawa, R. (2020). Co-culture of a brain organoid derived from human iPSCs and vasculature on a chip. In 2020 IEEE 33rd international conference on micro electro mechanical systems (MEMS), micro electro mechanical systems (MEMS), 2020 IEEE 33rd international conference on (pp. 1024–1027).

    Google Scholar 

  • Jain, A., & Gillette, M. U. (2015). Development of microfluidic devices for the manipulation of neuronal synapses (Vol. 103). Humana Press.

    Google Scholar 

  • Juskova, P., Ollitrault, A., Serra, M., Viovy, J.-L., & Malaquin, L. (2018). Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: Application to microfluidic deterministic lateral displacement device. Analytica Chimica Acta, 1000, 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Kilinc, D., Vreulx, A.-C., Mendes, T., Flaig, A., Marques-Coelho, D., Verschoore, M., et al. (2020). Pyk2 overexpression in postsynaptic neurons blocks amyloid β 1-42 -induced synaptotoxicity in microfluidic co-cultures. Brain Communications, 2(2).

    Google Scholar 

  • Kim, S.-J., Jung, J.-W., Seo, K., Park, S.-B., Roh, K.-H., Lee, S.-R., et al. (2008). Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 19(8), 2953–2962.

    CAS  PubMed  Google Scholar 

  • Kim, T. K., Kim, J. K., & Jeong, O. C. (2011). Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectronic Engineering, 88(8), 1982–1985.

    Article  CAS  Google Scholar 

  • Klank, H., Kutter, J. P., & Geschke, O. (2002). CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2(4), 242–246.

    Article  CAS  PubMed  Google Scholar 

  • Kopparthy, V. L., & Crews, N. D. (2018). Microfab in a microwave oven: Simultaneous patterning and bonding of glass microfluidic devices. Journal of microelectromechanical systems, microelectromechanical systems, journal of. Journal of Microelectromechanical Systems, 27(3), 434–439.

    Article  CAS  Google Scholar 

  • Lee, J. N., Park, C., & Whitesides, G. M. (2003). Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Analytical Chemistry, 75(23), 6544–6554.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. M., Upadhya, A., Reece, P. J., & Phan, T. G. (2014). Fabricating low cost and high performance elastomer lenses using hanging droplets. Biomedical Optics Express, 5(5), 1626–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, W. H., Ngernsutivorakul, T., Mabrouk, O. S., Wong, J.-M. T., Dugan, C. E., Kennedy, R. T., et al. (2016). Microfabrication and in vivo performance of a microdialysis probe with embedded membrane. Analytical Chemistry, 88(2), 1230–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leipzig, N. D., & Shoichet, M. S. (2009). The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials, 30(36), 6867–6878.

    Article  CAS  PubMed  Google Scholar 

  • Li Jeon, N., Baskaran, H., Dertinger, S. K. W., Whitesides, G. M., Van De Water, L., & Toner, M. (2002). Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nature Biotechnology, 20(8), 826.

    Article  PubMed  Google Scholar 

  • Lin, F. (2009). A microfluidics-based method for chemoattractant gradients. Methods in Enzymology, 461, 333–347.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.-H., Chang, G.-L., Lee, G.-B., & Lin, Y.-H. (2001). A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. Journal of Micromechanics and Microengineering, 11(6), 726–732.

    Article  CAS  Google Scholar 

  • Lin, T.-Y., Do, T., Kwon, P., & Lillehoj, P. B. (2017). 3D printed metal molds for hot embossing plastic microfluidic devices. Lab on a Chip, 17(2), 241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., & Hu, Z. (2018). Aligned contiguous microfiber platform enhances neural differentiation of embryonic stem cells. Scientific Reports, 8(1).

    Google Scholar 

  • Liu, K., Xiang, J., Ai, Z., Zhang, S., Fang, Y., Chen, T., et al. (2017). PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsystem Technologies, 23(6), 1937–1942.

    Article  CAS  Google Scholar 

  • Lopacińska, J. M., Emnéus, J., & Dufva, M. (2013). Poly(Dimethylsiloxane) (PDMS) affects gene expression in PC12 cells differentiating into neuronal-like cells. PLoS One, 8(1), 1–11.

    Article  Google Scholar 

  • Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H., & Ismagilov, R. F. (2005). Dynamics of drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature, 434(7037), 1134–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, X., Li, R., Jin, Z., Fan, Y., Zhou, X., & Zhang, Y. (2020). Injection molding and characterization of PMMA-based microfluidic devices. Microsystem Technologies, 26(4), 1317–1324.

    Article  CAS  Google Scholar 

  • Manz, A., Harrison, D. J., Verpoorte, E. M. J., Fettinger, J. C., Paulus, A., Lüdi, H., et al. (1992). Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip. Journal of Chromatography A, 593(1–2), 253–258.

    Article  CAS  Google Scholar 

  • Mariani, S., Robbiano, V., Iglio, R., La Mattina, A. A., Nadimi, P., Barillaro, G., et al. (2020). Moldless printing of silicone lenses with embedded nanostructured optical filters. Advanced Functional Materials, 30(4).

    Google Scholar 

  • Marín, O., Valiente, M., Ge, X., & Tsai, L.-H. (2010). Guiding neuronal cell migrations. Cold Spring Harbor Perspectives in Biology, 2(2), a001834.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattern, K., Erfle, P., Dietzel, A., Trotha, J. W., & Köster, R. W. (2020). NeuroExaminer: An all-glass microfluidic device for whole-brain in vivo imaging in zebrafish. Communications Biology, 3(1).

    Google Scholar 

  • McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J., et al. (2000). Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 21(1), 27–40.

    Article  CAS  PubMed  Google Scholar 

  • Middelkamp, H. H. T., Verboven, A. H. A., De Sá Vivas, A. G., Schoenmaker, C., Klein Gunnewiek, T. M., Passier, R., et al. (2021). Cell type-specific changes in transcriptomic profiles of endothelial cells, iPSC-derived neurons and astrocytes cultured on microfluidic chips. Scientific Reports, 11(1), 1–12.

    Article  Google Scholar 

  • Millet, L. J., & Gillette, M. U. (2012a). New perspectives on neuronal development via microfluidic environments. Trends in Neuroscience, 35(12), 752–761.

    Article  CAS  Google Scholar 

  • Millet, L. J., & Gillette, M. U. (2012b). Over a century of neuron culture: From the hanging drop to microfluidic devices. Yale Journal of Biology and Medicine, 85, 501–521.

    PubMed  PubMed Central  Google Scholar 

  • Millet, L. J., Gillette, M., Stewart, M. E., Sweedler, J. V., & Nuzzo, R. G. (2007). Microfluidic devices for culturing primary mammalian neurons at low densities. Lab on a Chip, 7(8), 987–994.

    Article  CAS  PubMed  Google Scholar 

  • Millet, L. J., Stewart, M. E., Nuzzo, R. G., & Gillette, M. U. (2010a). Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab on a Chip, 10(12), 1525–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millet, L. J., Bora, A., Sweedler, J. V., & Gillette, M. U. (2010b). Direct cellular peptidomics of supraoptic magnocellular and hippocampal neurons in low-density co-cultures. ACS Chem Neuroscience, 1(1), 36–48.

    Article  CAS  Google Scholar 

  • Osaki, T., Uzel, S. G. M., & Kamm, R. D. (2018). Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Science Advances, 4(10).

    Google Scholar 

  • Ostrovidov, S., Jiang, J., Sakai, Y., & Fujii, T. (2004). Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures. Biomedical Microdevices, 6(4), 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Pannese, E. (1999). The Golgi stain: Invention, diffusion and impact on neurosciences. Journal of the History of the Neurosciences, 8(2), 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Park, J., Kim, S., Li, J., & Han, A. (2015). Multi-compartment neuron–glia coculture microsystem (Vol. 103). Humana Press Inc.

    Google Scholar 

  • Piruska, A., Nikcevic, I., Heineman, W. R., Limbach, P. A., Seliskar, C. J., Lee, S. H., & Ahn, C. (2005). The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip, 5(12), 1348–1354.

    Article  CAS  PubMed  Google Scholar 

  • Qin, D., Xia, Y., Rogers, J. A., Jackman, R. J., Zhao, X. M., & Whitesides, G. M. (1998). Microfabrication, microstructures and microsystems. In A. Manz & H. Becker (Eds.), Microsystem Technology in Chemistry and Life Science. Topics in current chemistry (Vol. 194). Springer.

    Google Scholar 

  • Robb, W. L. (1968). Thin silicone membranes-their permeation properties and some applications (Vol. 146).

    Google Scholar 

  • Seeley, J., & Greene, L. (1983). Short-latency local actions of nerve growth factor at the growth cone. Proceedings of the National Academy of Sciences of the United States of America, 80(9), 2789–2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelly, M., Cancedda, L., Heilshorn, S., Sumbre, G., & Poo, M. (2007). LKB1/STRAD promotes axon initiation during neuronal polarization. Cell, 129(3), 565–577.

    Article  CAS  PubMed  Google Scholar 

  • Shelly, M., Cancedda, L., Lim, B., Popescu, A. T., Cheng, P.-L., Gao, H., et al. (2011). Semaphorin3A regulates neuronal polarization by suppressing axon formation and promoting dendrite growth. Neuron, 71(3), 433–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Gelais, R., Masson, J., & Peter, Y.-A. (2008). High resolution integrated microfluidic Fabry-Perot refractometer in silicon. In 2008 IEEE/LEOS international conference on optical MEMs and Nanophotonics, optical MEMs and Nanophotonics, 2008 IEEE/LEOS international conference on (pp. 17–18).

    Google Scholar 

  • Tan, W., & Desai, T. A. (2003). Microfluidic patterning of cells in extracellular matrix biopolymers: Effects of channel size, cell type, and matrix composition on pattern integrity. Tissue Engineering, 9(2), 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., Qiu, G., Yue, Y., Zhang, X., Schmitt, J., Wang, J., & Cao, X. (2020). Self-aligned 3D microlenses in a chip fabricated with two-photon stereolithography for highly sensitive absorbance measurement. Lab on a Chip, 20(13), 2334–2342.

    Article  CAS  PubMed  Google Scholar 

  • Tayalia, P., Mooney, D. J., Mazur, E., Mendonca, C. R., & Baldacchini, T. (2008). 3D cell-migration studies using two-photon engineered polymer scaffolds. Advanced Materials, 20(23), 4494–4498.

    Article  CAS  Google Scholar 

  • Toepke, M. W., & Beebe, D. J. (2006). PDMS absorption of small molecules and consequences in microfluidic applications. Lab on a Chip, 6(12), 1484–1486.

    Article  CAS  PubMed  Google Scholar 

  • Urrios, A., Posas, F., Gonzalez-Suarez, A. M., Garcia-Cordero, J. L., Rigat-Brugarolas, L. G., Samitier, J., et al. (2016). 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on a Chip, 16(12), 2287–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenta, A. C., D’Amico, C. I., Dugan, C. E., Grinias, J. P., & Kennedy, R. T. (2021). A microfluidic chip for on-line derivatization and application to in vivo neurochemical monitoring. The Analyst, 146(3), 825–834.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., & Han, H. (2018). A new neural network model based on the recent discovery of brain microenvironment. In 2018 IEEE international conference on mechatronics and automation (ICMA), mechatronics and automation (ICMA), 2018 IEEE international conference on (pp. 1526–1530).

    Google Scholar 

  • Wang, H. Y., Foote, R. S., Jacobson, S. C., Schneibel, J. H., & Ramsey, J. M. (1997). Low temperature bonding for microfabrication of chemical analysis devices. Sensors and Actuators, B: Chemical, 45(3), 199–207.

    Article  CAS  Google Scholar 

  • Wang, Z., Volinsky, A. A., & Gallant, N. D. (2014). Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument. Journal of Applied Polymer Science, 131(22).

    Google Scholar 

  • Wang, A., Li, Y., Zhao, G., Lu, J., Han, H., Wang, R., et al. (2018). Transportation in the brain extracellular space of the rat brain can be regulated by neuronal activity. In 2018 IEEE international conference on mechatronics and automation (ICMA), mechatronics and automation (ICMA), 2018 IEEE international conference on (pp. 370–375).

    Google Scholar 

  • Zhang, M., Wu, J., Wang, L., Xiao, K., & Wen, W. (2010). A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab on a Chip, 10, 1199.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Zhang, Y., Xie, J., Li, C., Chen, W., Liu, B., et al. (2014). Stiff substrates enhance cultured neuronal network activity. Scientific Reports, 1–8.

    Google Scholar 

  • Zhang, Z., Zhou, R., Brames, D. P., & Wang, C. (2015). A low-cost fabrication system for manufacturing soft-lithography microfluidic master molds. Micro and Nanosystems, 7(1), 4–12.

    Article  CAS  Google Scholar 

  • Zhong, J., Riordon, J., Xu, Y., Persad, A. H., Sinton, D., Zandavi, S. H., et al. (2018). Capillary condensation in 8 nm deep channels. Journal of Physical Chemistry Letters, 9(3), 497–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jennifer W. Mitchell for insightful discussions. Content is solely the responsibility of the authors and does not represent the official views of the funding agencies. The authors declare no competing financial interest. Preparation of this review was supported by awards from the National Institute of Mental Health (1R21 MH 117377); the National Heart, Lung, and Blood Institute (R61 HL 159948); and the National Science Foundation (NSF DGE 17-35252 and NSF STC CBET 0939511) to M.U.G. M.D.N. was supported by an NSF National Research Traineeship on Miniature Brain Machinery (NSF DGE 17-35252).

Declaration of Interests

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miles D. Norsworthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norsworthy, M.D., Gillette, M.U. (2022). Microfluidic Devices for Analysis of Neuronal Development. In: Nance, E. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-11409-0_4

Download citation

Publish with us

Policies and ethics