Skip to main content

Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression?

  • Chapter
  • First Online:
DNA Methyltransferases - Role and Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1389))

Abstract

DNA methylation is an essential epigenetic mark, strongly associated with gene expression regulation. Aberrant DNA methylation patterns underlie various diseases and efforts to intervene with DNA methylation signatures are of great clinical interest. Technological developments to target writers or erasers of DNA methylation to specific genomic loci by epigenetic editing resulted in successful gene expression modulation, also in in vivo models. Application of epigenetic editing in human health could have a huge impact, but clinical translation is still challenging. Despite successes for a wide variety of genes, not all genes mitotically maintain their (de)methylation signatures after editing, and reprogramming requires further understanding of chromatin context-dependency. In addition, difficulties of current delivery systems and off-target effects are hurdles to be tackled. The present review describes findings towards effective and sustained DNA (de)methylation by epigenetic editing and discusses the need for multi-effector approaches to achieve highly efficient long-lasting reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D, Naldini L, Lombardo A (2016) Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:219–232 e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailus BJ, Pyles B, Mcalister MM, O’Geen H, Lockwood SH, Adams AN, Nguyen JT, Yu A, Berman RF, Segal DJ (2016) Protein delivery of an artificial transcription factor restores widespread Ube3a expression in an Angelman syndrome mouse brain. Mol Ther 24:548–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker S, Boch J (2021) TALE and TALEN genome editing technologies. Gene Genome Editing 2:100007

    Article  CAS  Google Scholar 

  • Berdasco M, Esteller M (2019) Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet 20:109–127

    Article  CAS  PubMed  Google Scholar 

  • Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH (2015) TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest 125:1998–2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Bintu L, Yong J, Antebi YE, Mccue K, Kazuki Y, Uno N, Oshimura M, Elowitz MB (2016) Dynamics of epigenetic regulation at the single-cell level. Science 351:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broche J, Kungulovski G, Bashtrykov P, Rathert P, Jeltsch A (2021) Genome-wide investigation of the dynamic changes of epigenome modifications after global DNA methylation editing. Nucleic Acids Res 49:158–176

    Article  CAS  PubMed  Google Scholar 

  • Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, Guerra MV, Stehberg J, Neve RL, Inestrosa NC, Wyneken U, Fuenzalida M, Härtel S, Sena-Esteves M, Varela-Nallar L, Rots MG, Montecino M, van Zundert B (2017) Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain 140:3252–3268

    Article  PubMed  PubMed Central  Google Scholar 

  • Cano-Rodriguez D, Gjaltema R, Jilderda R, Jellema P, Dokter-Fokkens J, Ruiters M, Rots MG (2016) Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 7:1–11

    Article  Google Scholar 

  • Chen H, Kazemier HG, De Groote ML, Ruiters MH, Xu GL, Rots MG (2014) Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res 42:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yan X, Ping Y (2020) Optical manipulation of CRISPR/Cas9 functions: from ultraviolet to near-infrared light. ACS Mater Lett 2(6):644–653

    Article  CAS  Google Scholar 

  • Chen H, Wang L, Zeng X, Schwarz H, Nanda HS, Peng X, Zhou Y (2021) Exosomes, a new star for targeted delivery. Front Cell Dev Biol 9:751079

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J (2016) CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:46545–46556

    Article  PubMed  PubMed Central  Google Scholar 

  • Colella P, Ronzitti G, Mingozzi F (2018) Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 8:87–104

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, Deng D (2015) P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol 16:252

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groote ML, Verschure PJ, Rots MG (2012) Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40:10596–10613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devesa-Guerra I, Morales-Ruiz T, Perez-Roldan J, Parrilla-Doblas JT, Dorado-Leon M, Garcia-Ortiz MV, Ariza RR, Roldan-Arjona T (2020) DNA methylation editing by CRISPR-guided excision of 5-methylcytosine. J Mol Biol 432:2204–2216

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich M (2019) DNA hypermethylation in disease: mechanisms and clinical relevance. Epigenetics 14:1141–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harb Perspect Biol 6

    Google Scholar 

  • Galonska C, Charlton J, Mattei AL, Donaghey J, Clement K, Gu H, Mohammad AW, Stamenova EK, Cacchiarelli D, Klages S, Timmermann B, Cantz T, Scholer HR, Gnirke A, Ziller MJ, Meissner A (2018) Genome-wide tracking of dCas9-methyltransferase footprints. Nat Commun 9:597

    Article  PubMed  PubMed Central  Google Scholar 

  • Geel TM, Ruiters MHJ, Cool RH, Halby L, Voshart DC, Andrade Ruiz L, Niezen-Koning KE, Arimondo PB, Rots MG (2018) The past and presence of gene targeting: from chemicals and DNA via proteins to RNA. Philos Trans R Soc Lond B Biol Sci 373

    Google Scholar 

  • Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, Seitzer J, O’Connell D, Walsh KR, Wood K, Phillips J, Xu Y, Amaral A, Boyd AP, Cehelsky JE, Mckee MD, Schiermeier A, Harari O, Murphy A, Kyratsous CA, Zambrowicz B, Soltys R, Gutstein DE, Leonard J, Sepp-Lorenzino L, Lebwohl D (2021) CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385:493–502

    Article  CAS  PubMed  Google Scholar 

  • Gomez JA, Beitnere U, Segal DJ (2019) Live-animal epigenome editing: convergence of novel techniques. Trends Genet 35:527–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  PubMed  Google Scholar 

  • Gregory DJ, Zhang Y, Kobzik L, Fedulov AV (2013) Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Halmai J, Deng P, Gonzalez CE, Coggins NB, Cameron D, Carter JL, Buchanan FKB, Waldo JJ, Lock SR, Anderson JD, O’Geen H, Segal DJ, Nolta J, Fink KD (2020) Artificial escape from XCI by DNA methylation editing of the CDKL5 gene. Nucleic Acids Res 48:2372–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanzawa N, Hashimoto K, Yuan X, Kawahori K, Tsujimoto K, Hamaguchi M, Tanaka T, Nagaoka Y, Nishina H, Morita S, Hatada I, Yamada T, Ogawa Y (2020) Targeted DNA demethylation of the Fgf21 promoter by CRISPR/dCas9-mediated epigenome editing. Sci Rep 10:5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofacker D, Broche J, Laistner L, Adam S, Bashtrykov P, Jeltsch A (2020) Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int J Mol Sci 21

    Google Scholar 

  • Horii T, Morita S, Hino S, Kimura M, Hino Y, Kogo H, Nakao M, Hatada I (2020) Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol 21:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YH, Su J, Lei Y, Brunetti L, Gundry MC, Zhang X, Jeong M, Li W, Goodell MA (2017) DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol 18:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Huisman C, Van Der Wijst MG, Schokker M, Blancafort P, Terpstra MM, Kok K, Van Der Zee AG, Schuuring E, Wisman GB, Rots MG (2016) Re-expression of selected epigenetically silenced candidate tumor suppressor genes in cervical cancer by TET2-directed demethylation. Mol Ther 24:536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo M, Zhang J, Huang W, Wang Y (2021) Interplay among metabolism, epigenetic modifications, and gene expression in cancer. Front Cell Dev Biol 9:793428

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain S, Shukla S, Yang C, Zhang M, Fatma Z, Lingamaneni M, Abesteh S, Lane ST, Xiong X, Wang Y, Schroeder CM, Selvin PR, Zhao H (2021) TALEN outperforms Cas9 in editing heterochromatin target sites. Nat Commun 12:606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeziorska DM, Murray RJS, De Gobbi M, Gaentzsch R, Garrick D, Ayyub H, Chen T, Li E, Telenius J, Lynch M, Graham B, Smith AJH, Lund JN, Hughes JR, Higgs DR, Tufarelli C (2017) DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proc Natl Acad Sci U S A 114:E7526–E7535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josipovic G, Tadic V, Klasic M, Zanki V, Beceheli I, Chung F, Ghantous A, Keser T, Madunic J, Boskovic M, Lauc G, Herceg Z, Vojta A, Zoldos V (2019) Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res 47:9637–9657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurkowski TP, Ravichandran M, Stepper P (2015) Synthetic epigenetics-towards intelligent control of epigenetic states and cell identity. Clin Epigenetics 7:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemaladewi DU, Bassi PS, Erwood S, Al-Basha D, Gawlik KI, Lindsay K, Hyatt E, Kember R, Place KM, Marks RM, Durbeej M, Prescott SA, Ivakine EA, Cohn RD (2019) A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572:125–130

    Article  CAS  PubMed  Google Scholar 

  • Kressler C, Gasparoni G, Nordstrom K, Hamo D, Salhab A, Dimitropoulos C, Tierling S, Reinke P, Volk HD, Walter J, Hamann A, Polansky JK (2020) Targeted de-methylation of the FOXP3-TSDR is sufficient to induce physiological FOXP3 expression but not a functional treg phenotype. Front Immunol 11:609891

    Article  CAS  PubMed  Google Scholar 

  • Kretzmann JA, Evans CW, Moses C, Sorolla A, Kretzmann AL, Wang E, Ho D, Hackett MJ, Dessauvagie BF, Smith NM, Redfern AD, Waryah C, Norret M, Iyer KS, Blancafort P (2019) Tumour suppression by targeted intravenous non-viral CRISPRa using dendritic polymers. Chem Sci 10:7718–7727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kungulovski G, Nunna S, Thomas M, Zanger UM, Reinhardt R, Jeltsch A (2015) Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lainscek D, Kadunc L, Keber MM, Bratkovic IH, Romih R, Jerala R (2018) Delivery of an artificial transcription regulator dCas9-VPR by extracellular vesicles for therapeutic gene activation. ACS Synth Biol 7:2715–2725

    Article  CAS  PubMed  Google Scholar 

  • Ledhord H (2018) First test of in-body gene editing shows promise. Nature. https://doi.org/10.1038/d41586-018-06195-6

  • Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang YH, Zhou Y, Li W, Goodell MA (2017) Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun 8:16026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR (2020) Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 4:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Pang J, Cheng H, Liu WP, Di JM, Xiao HJ, Luo Y, Zhang H, Huang WT, Chen MK, Li LY, Shao CK, Feng YH, Gao X (2015) Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 6:10030–10044

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O’Keefe DD, Nunez-Delicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171:1495–1507 e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin L, Liu Y, Xu F, Huang J, Daugaard TF, Petersen TS, Hansen B, Ye L, Zhou Q, Fang F, Yang L, Li S, Floe L, Jensen KT, Shrock E, Chen F, Yang H, Wang J, Liu X, Xu X, Bolund L, Nielsen AL, Luo Y (2018) Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases. Gigascience 7:1–19

    Article  PubMed  Google Scholar 

  • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247 e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Wu H, Krzisch M, Wu X, Graef J, Muffat J, Hnisz D, Li CH, Yuan B, Xu C, Li Y, Vershkov D, Cacace A, Young RA, Jaenisch R (2018) Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172:979–992 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo CL, Choudhury SR, Irudayaraj J, Zhou FC (2017) Epigenetic editing of Ascl1 gene in neural stem cells by optogenetics. Sci Rep 7:42047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Liu Z, Mao W, Wang X, Zheng X, Chen S, Cao B, Huang S, Zhang X, Zhou T, Zhang Y, Huang X, Sun Q, Li JD (2020) Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice. Cell Death Dis 11:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo N, Li J, Chen Y, Xu Y, Wei Y, Lu J, Dong R (2021) Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery. Drug Deliv 28:10–18

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, Costello JF, Wilkinson MF, Joung JK (2013) Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31:1137–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx N, Grunwald-Gruber C, Bydlinski N, Dhiman H, Ngoc Nguyen L, Klanert G, Borth N (2018) CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced beta-galactoside alpha-2,6-sialyltransferase 1 in CHO cells. Biotechnol J 13:e1700217

    Article  PubMed  Google Scholar 

  • Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N (2019) CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363

    Google Scholar 

  • McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, Kramer A, Martens A, Edwards JR, Challen GA (2016) Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open 5:866–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlambo T, Nitsch S, Hildenbeutel M, Romito M, Muller M, Bossen C, Diederichs S, Cornu TI, Cathomen T, Mussolino C (2018) Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res 46:4456–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Nakamura M, Ivec AE, Gao Y, Qi LS (2021a) Durable CRISPR-based epigenetic silencing. BioDesign Res 8

    Google Scholar 

  • Nakamura M, Gao Y, Dominguez AA, Qi LS (2021b) CRISPR technologies for precise epigenome editing. Nat Cell Biol 23:11–22

    Article  CAS  PubMed  Google Scholar 

  • Nicoglou A, Merlin F (2017) Epigenetics: A way to bridge the gap between biological fields. Stud Hist Philos Biol Biomed Sci 66:73–82

    Article  PubMed  Google Scholar 

  • Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, Ramadoss GN, Shi Q, Hung KL, Samelson AJ, Pogson AN, Kim JYS, Chung A, Leonetti MD, Chang HY, Kampmann M, Bernstein BE, Hovestadt V, Gilbert LA, Weissman JS (2021) Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184:2503–2519 e17

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Geen H, Bates SL, Carter SS, Nisson KA, Halmai J, Fink KD, Rhie SK, Farnham PJ, Segal DJ (2019) Ezh2-dCas9 and KRAB-dCas9 enable engineering of epigenetic memory in a context-dependent manner. Epigenetics Chromatin 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada M, Kanamori M, Someya K, Nakatsukasa H, Yoshimura A (2017) Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenetics Chromatin 10:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Onodera A, Gonzalez-Avalos E, Lio CJ, Georges RO, Bellacosa A, Nakayama T, Rao A (2021) Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biol 22:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou K, Yu M, Moss NG, Wang YJ, Wang AW, Nguyen SC, Jiang C, Feleke E, Kameswaran V, Joyce EF, Naji A, Glaser B, Avrahami D, Kaestner KH (2019) Targeted demethylation at the CDKN1C/p57 locus induces human beta cell replication. J Clin Invest 129:209–214

    Article  PubMed  Google Scholar 

  • Petryk N, Bultmann S, Bartke T, Defossez PA (2021) Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res 49:3020–3032

    Article  CAS  PubMed  Google Scholar 

  • Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, Polo JM, Ford E, Lister R (2018) A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res 28:1193–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Policarpi C, Dabin J, Hackett JA (2021) Epigenetic editing: Dissecting chromatin function in context. Bioessays 43:e2000316

    Article  PubMed  Google Scholar 

  • Qiu M, Glass Z, Chen J, Haas M, Jin X, Zhao X, Rui X, Ye Z, Li Y, Zhang F, Xu Q (2021) Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci U S A 118

    Google Scholar 

  • Qu J, Zhu L, Zhou Z, Chen P, Liu S, Locy ML, Thannickal VJ, Zhou Y (2018) Reversing mechanoinductive DSP expression by CRISPR/dCas9-mediated epigenome editing. Am J Respir Crit Care Med 198:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivenbark AG, Stolzenburg S, Beltran AS, Yuan X, Rots MG, Strahl BD, Blancafort P (2012) Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7:350–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapozhnikov DM, Szyf M (2021) Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat Commun 12:5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunderson EA, Stepper P, Gomm JJ, Hoa L, Morgan A, Allen MD, Jones JL, Gribben JG, Jurkowski TP, Ficz G (2017) Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat Commun 8:1450

    Article  PubMed  PubMed Central  Google Scholar 

  • Sgro A, Blancafort P (2020) Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 48:12453–12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shayevitch R, Askayo D, Keydar I, Ast G (2018) The importance of DNA methylation of exons on alternative splicing. RNA 24:1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491

    Article  CAS  PubMed  Google Scholar 

  • Slaska-Kiss K, Zsibrita N, Koncz M, Albert P, Csabradi A, Szentes S, Kiss A (2021) Lowering DNA binding affinity of SssI DNA methyltransferase does not enhance the specificity of targeted DNA methylation in E. coli. Sci Rep 11:15226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP (2017) Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Stolzenburg S, Beltran AS, Swift-Scanlan T, Rivenbark AG, Rashwan R, Blancafort P (2015) Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34:5427–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzenburg S, Goubert D, Rots MG (2016) Rewriting DNA methylation signatures at will: the curable genome within reach? Adv Exp Med Biol 945:475–490

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Maeda S, Furuhata E, Shimizu Y, Nishimura H, Kishima M, Suzuki H (2017) A screening system to identify transcription factors that induce binding site-directed DNA demethylation. Epigenetics Chromatin 10:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarjan DR, Flavahan WA, Bernstein BE (2019) Epigenome editing strategies for the functional annotation of CTCF insulators. Nat Commun 10:4258

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakore PI, Kwon JB, Nelson CE, Rouse DC, Gemberling MP, Oliver ML, Gersbach CA (2018) RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat Commun 9:1674

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiane A, Schepers M, Riemens R, Rombaut B, Vandormael P, Somers V, Prickaerts J, Hellings N, Van Den Hove D, Vanmierlo T (2021) DNA methylation regulates the expression of the negative transcriptional regulators ID2 and ID4 during OPC differentiation. Cell Mol Life Sci 78:6631–6644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van MV, Fujimori T, Bintu L (2021) Nanobody-mediated control of gene expression and epigenetic memory. Nat Commun 12:537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizoso M, Van Rheenen J (2021) Diverse transcriptional regulation and functional effects revealed by CRISPR/Cas9-directed epigenetic editing. Oncotarget 12:1651–1662

    Article  PubMed  PubMed Central  Google Scholar 

  • Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, Klasic M, Zoldos V (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dai L, Wang Y, Deng J, Lin Y, Wang Q, Fang C, Ma Z, Wang H, Shi G, Cheng L, Liu Y, Chen S, Li J, Dong Z, Su X, Yang L, Zhang S, Jiang M, Huang M, Yang Y, Yu D, Zhou Z, Wei Y, Deng H (2019) Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett 448:132–143

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Han M, Qi LS (2021) Engineering 3D genome organization. Nat Rev Genet 22:343–360

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ (2020) Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun 11:3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weichenhan D, Lipka DB, Lutsik P, Goyal A, Plass C (2020) Epigenomic technologies for precision oncology. Semin Cancer Biol 84:60–68

    Article  PubMed  Google Scholar 

  • Wu X, Li G, Xie R (2018) Decoding the role of TET family dioxygenases in lineage specification. Epigenetics Chromatin 11:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H, Wang F, Jiang JH (2021) Inducible CRISPR-dCas9 transcriptional systems for sensing and genome regulation. Chembiochem 22:1894–1900

    Article  CAS  PubMed  Google Scholar 

  • Xiong T, Meister GE, Workman RE, Kato NC, Spellberg MJ, Turker F, Timp W, Ostermeier M, Novina CD (2017) Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci Rep 7:6732

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu GL, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17:376–378

    Article  CAS  PubMed  Google Scholar 

  • Xu SJ, Heller EA (2019) Recent advances in neuroepigenetic editing. Curr Opin Neurobiol 59:26–33

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, Ruan K, Wang F, Xu GL, Hu R (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Tan X, Tampe B, Wilhelmi T, Hulshoff MS, Saito S, Moser T, Kalluri R, Hasenfuss G, Zeisberg EM, Zeisberg M (2018) High-fidelity CRISPR/Cas9-based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat Commun 9:3509

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu SJ, Lombroso SI, Fischer DK, Carpenter MD, Marchione DM, Hamilton PJ, Lim CJ, Neve RL, Garcia BA, Wimmer ME, Pierce RC, Heller EA (2021) Chromatin-mediated alternative splicing regulates cocaine-reward behavior. Neuron 109:2943–2966 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Shen W, Zhang J, Yang B, Liu YN, Qi H, Yu X, Lu SY, Chen Y, Xu YZ, Li Y, Gage FH, Mi S, Yao J (2018) Author Correction: CRISPR interference-based specific and efficient gene inactivation in the brain. Nat Neurosci 21:894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Sabine Stolzenburg for her assistance in writing the chapter on targeted methylation in the earlier book version (Stolzenburg et al. 2016). FCM acknowledges his Scholarship funding from the Colombian Ministry of Science, Technology and Innovation (Minciencias -COLCIENCIAS/COLFUTURO-Doctorados en el exterior 2017 N°783) and Instituto Tecnológico Metropolitano (ITM). FS is supported by VALERE program, Vanvitelli per la Ricerca. H2020 European Cooperation in Science and Technology (COST) Training Actions (www.INC-COST.eu and www.EpiChemBio.eu) are acknowledged for facilitating network activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne G. Rots .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortés-Mancera, F.M., Sarno, F., Goubert, D., Rots, M.G. (2022). Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression?. In: Jeltsch, A., Jurkowska, R.Z. (eds) DNA Methyltransferases - Role and Function. Advances in Experimental Medicine and Biology, vol 1389. Springer, Cham. https://doi.org/10.1007/978-3-031-11454-0_18

Download citation

Publish with us

Policies and ethics