Skip to main content

Revisiting the Shape-Bias of Deep Learning for Dermoscopic Skin Lesion Classification

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Abstract

It is generally believed that the human visual system is biased towards the recognition of shapes rather than textures. This assumption has led to a growing body of work aiming to align deep models’ decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustness of these models under covariate shift. In this paper, we revisit the significance of shape-biases for the classification of skin lesion images. Our analysis shows that different skin lesion datasets exhibit varying biases towards individual image features. Interestingly, despite deep feature extractors being inclined towards learning entangled features for skin lesion classification, individual features can still be decoded from this entangled representation. This indicates that these features are still represented in the learnt embedding spaces of the models, but not used for classification. In addition, the spectral analysis of different datasets shows that in contrast to common visual recognition, dermoscopic skin lesion classification, by nature, is reliant on complex feature combinations beyond shape-bias. As a natural consequence, shifting away from the prevalent desire of shape-biasing models can even improve skin lesion classifiers in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BA-Transfomer architecture proposed by Wang et al. [30], trained on ISIC2016-2018 challenge datasets.

  2. 2.

    https://www.isic-archive.com/.

  3. 3.

    Reproducible code available on GitHub https://github.com/adriano-lucieri/shape-bias-in-dermoscopy.

  4. 4.

    https://github.com/fastai/imagenette.

References

  1. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)

    Article  Google Scholar 

  2. Barata, C., Ruela, M., Mendonça, T., Marques, J.S.: A bag-of-features approach for the classification of melanomas in dermoscopy images: The role of color and texture descriptors. In: Scharcanski, J., Celebi, M. (eds.) Computer Vision Techniques for the Diagnosis of Skin Cancer, pp. 49–69. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39608-3_3

  3. Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Sommella, P.: Dermoscopic image-analysis system: estimation of atypical pigment network and atypical vascular pattern. In: IEEE International Workshop on Medical Measurement and Applications, 2006. MeMea 2006. pp. 63–67. IEEE (2006)

    Google Scholar 

  4. Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J., Yap, M.H.: Analysis of the ISIC image datasets: usage, benchmarks and recommendations. Med. Image Anal. 75, 102305 (2022)

    Article  Google Scholar 

  5. Chen, G., Peng, P., Ma, L., Li, J., Du, L., Tian, Y.: Amplitude-phase recombination: Rethinking robustness of convolutional neural networks in frequency domain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 458–467 (2021)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Dinnes, J., et al.: Visual inspection and dermoscopy, alone or in combination, for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst. Rev. 12(12), CD011901 (2018)

    Google Scholar 

  8. Gachon, J., Beaulieu, P., Sei, J.F., Gouvernet, J., Claudel, J.P., Lemaitre, M., Richard, M.A., Grob, J.J.: First prospective study of the recognition process of melanoma in dermatological practice. Arch. Dermatol. 141(4), 434–438 (2005)

    Article  Google Scholar 

  9. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  10. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  12. Hasan, M.K., Elahi, M.T.E., Alam, M.A., Jawad, M.T., Martí, R.: Dermoexpert: skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation. Informatics in Medicine Unlocked, p. 100819 (2022)

    Google Scholar 

  13. Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., Madry, A.: Adversarial examples are not bugs, they are features. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  14. Kawahara, J., Daneshvar, S., Argenziano, G., Hamarneh, G.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inf. 23(2), 538–546 (2019). https://doi.org/10.1109/JBHI.2018.2824327

  15. Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for robustness to spurious correlations. arXiv preprint arXiv:2204.02937 (2022)

  16. Kittler, H., Rosendahl, C., Cameron, A., Tschandl, P.: Dermatoscopy: an algorithmic method based on pattern analysis. facultas (2016)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)

    Google Scholar 

  18. Kundu, R.V., Patterson, S.: Dermatologic conditions in skin of color: part i. special considerations for common skin disorders. Am. Family Phys. 87(12), 850–856 (2013)

    Google Scholar 

  19. López-Leyva, J.A., Guerra-Rosas, E., Álvarez-Borrego, J.: Multi-class diagnosis of skin lesions using the fourier spectral information of images on additive color model by artificial neural network. IEEE Access 9, 35207–35216 (2021)

    Article  Google Scholar 

  20. Marques, J.S., Barata, C., Mendonça, T.: On the role of texture and color in the classification of dermoscopy images. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4402–4405. IEEE (2012)

    Google Scholar 

  21. Menzies, S.W., Ingvar, C., Crotty, K.A., McCarthy, W.H.: Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch. Dermatol. 132(10), 1178–1182 (1996)

    Article  Google Scholar 

  22. Norman, G., Barraclough, K., Dolovich, L., Price, D.: Iterative diagnosis. Bmj 339 (2009)

    Google Scholar 

  23. Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. Mit Press (2008)

    Google Scholar 

  24. Ruela, M., Barata, C., Mendonca, T., Marques, J.S.: On the role of shape in the detection of melanomas. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 268–273. IEEE (2013)

    Google Scholar 

  25. Ruela, M., Barata, C., Mendonça, T., Marques, J.S.: What is the role of color in dermoscopy analysis? In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 819–826. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38628-2_97

    Chapter  Google Scholar 

  26. Stolz, W.: Abcd rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur. J. Dermatol. 4, 521–527 (1994)

    Google Scholar 

  27. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  28. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014). http://arxiv.org/abs/1312.6199

  29. Tang, P., Yan, X., Nan, Y., Xiang, S., Krammer, S., Lasser, T.: Fusionm4net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification. Med. Image Anal. 76, 102307 (2022)

    Article  Google Scholar 

  30. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_20

    Chapter  Google Scholar 

  31. Wang, Z., Yang, Y., Shrivastava, A., Rawal, V., Ding, Z.: Towards frequency-based explanation for robust CNN. arXiv preprint arXiv:2005.03141 (2020)

  32. Wen, D., et al.: Characteristics of publicly available skin cancer image datasets: a systematic review. The Lancet Digital Health (2021)

    Google Scholar 

  33. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14383–14392 (2021)

    Google Scholar 

  34. Yin, D., Gontijo Lopes, R., Shlens, J., Cubuk, E.D., Gilmer, J.: A fourier perspective on model robustness in computer vision. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  35. Zalaudek, I., et al.: Time required for a complete skin examination with and without dermoscopy: a prospective, randomized multicenter study. Arch. Dermatol. 144(4), 509–513 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Lucieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucieri, A., Schmeisser, F., Balada, C.P., Siddiqui, S.A., Dengel, A., Ahmed, S. (2022). Revisiting the Shape-Bias of Deep Learning for Dermoscopic Skin Lesion Classification. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics