Skip to main content

Machine Learning Application to Predict New Inorganic Compounds – Results and Perspectives

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2021)

Abstract

A brief overview of the problems is given in the field of inorganic chemistry and materials science, solved using machine learning (ML). The main ML methods limitations and the subject area peculiarities are considered that must be taken into account when using ML. Solved problems examples of new inorganic compounds design and the results of comparing predictions with new experimental data are given. Systems developed by the authors are considered that aimed at not yet obtained inorganic compounds design, based on ML methods, as well as promising directions for such systems development in order to improve the predictions accuracy for new substances and their corresponding properties values estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savitskii, E.M., Devingtal’, Yu.V., Gribulya, V.B.: Prediction of metallic compounds with composition A3B using computer. Dokl. Akad. Nauk SSSR 183, 1110–1112 (1968). (in Russ.)

    Google Scholar 

  2. Kiselyova, N.N., Pokrovskii, B.I., Komissarova, L.N., Vaschenko, N.D.: Simulation of the complicated oxides formation from initial components based on the cybernetic method of concept formation. Russ. J. Inorg. Chem. 22, 883–886 (1977). (in Russ.)

    Google Scholar 

  3. Kiselyova, N.N., Dudarev, V.A., Stolyarenko, A.V.: Integrated system of databases on the properties of inorganic substances and materials. High Temp. 54, 215–222 (2016). https://doi.org/10.1134/S0018151X16020085

    Article  Google Scholar 

  4. Kiselyova, N.N., Stolyarenko, A.V., Ryazanov, V.V., Sen’ko, O.V., Dokukin, A.A., Podbel’skii, V.V.: A system for computer-assisted design of inorganic compounds based on computer training. Pattern Recognit. Image Anal. 21, 88–94 (2011). https://doi.org/10.1134/S1054661811010081

    Article  Google Scholar 

  5. Dudarev, V.A., et al.: An information system for inorganic substances physical properties prediction based on machine learning methods. In: CEUR Workshop Proceedings (CEUR-WS.org), vol. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), pp. 89–102 (2020). http://ceur-ws.org/Vol-2790/paper09.pdf

  6. Site of Materials Genome Initiative. https://www.mgi.gov/. Accessed 30 Mar 2021

  7. Site of Novel Materials Discovery Laboratory. http://nomad-lab.eu/. Accessed 30 Mar 2021

  8. Site of Center for Materials Research by Information Integration. http://www.nims.go.jp/eng/research/MII-I/index.html. Accessed 30 Mar 2021

  9. Site of scikit. http://scikit-learn.org/. Accessed 30 Mar 2021

  10. Site of R. https://www.r-project.org/. Accessed 30 Mar 2021

  11. Devingtal’, Yu.V.: Coding of objects at application of separating hyper-plane for their classification. Izv. Akad. Nauk SSSR. Tekhn. Kibernetika. 139147 (1971). (in Russ.)

    Google Scholar 

  12. Seko, A., Hayashi. H., Tanaka, I.: Compositional descriptor-based recommender system for the materials discovery. J. Chem. Phys. 148, 241719/1-7 (2018). https://doi.org/10.1063/1.5016210

  13. Gladun, V.P.: Heuristic Search in Complex Environments. Naukova Dumka, Kiev (1977).(in Russ.)

    MATH  Google Scholar 

  14. Liu, C.-H., Tao, Y., Hsu, D., Du, Q., Billinge, S.J.L.: Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function. Acta Crystallogr. A 75, 633–643 (2019). https://doi.org/10.1107/S2053273319005606

    Article  Google Scholar 

  15. Xie, S.R., Kotlarz, P., Hennig, R.G., Nino, J.C.: Machine learning of octahedral tilting in oxide perovskites by symbolic classification with compressed sensing. Comp. Mater. Sci. 180, 109690/1-9 (2020). https://doi.org/10.1016/j.commatsci.2020.109690

  16. Senko, O.V.: An optimal ensemble of predictors in convex correcting procedures. Pattern Recognit Image Anal. 19, 465–468 (2009). https://doi.org/10.1134/S1054661809030110

    Article  Google Scholar 

  17. Yuan, G.-X., Ho, C.-H., Lin, C.-J.: An improved GLMNET for L1-regularized logistic regression. J. Mach. Learn. Res. 13, 1999–2030 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Yang, Y., Zou, H.A.: Coordinate majorization descent algorithm for L1 penalized learning. J. Stat. Comput. Simul. 2014(84), 1–12 (2014). https://doi.org/10.1080/00949655.2012.695374

    Article  Google Scholar 

  19. Ozhereliev, I.S., Senko, O.V., Kiselyova, N.N.: Method for searching outlier objects using parameters of learning instability. Sist. Sredstva inform. – Syst. Means Inform. 29, 122–134 (2019). https://doi.org/10.14357/08696527190211. (inRuss.)

    Article  Google Scholar 

  20. Dineev, V.D., Dudarev, V.A.: Extendable system for multicriterial outlier detection. In: CEUR Workshop Proceedings (CEUR-WS.org), vol. 2790. Supplementary Proceedings of the XXII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020), pp. 103–113 (2020). http://ceur-ws.org/Vol-2790/paper10.pdf. (in Russ.)

  21. Senko, O.V., Dokukin, A.A., Kiselyova, N.N., Khomutov, N.: Two-stage method for constructing linear regressions using optimal convex combinations. Dokl. Math. 97, 113–114 (2018). https://doi.org/10.1134/S1064562418020035

    Article  MathSciNet  Google Scholar 

  22. Kiselyova, N.N., Dudarev, V.A., Ryazanov, V.V., Sen’ko, O.V., Dokukin, A.A.: Predictions of chalcospinels with composition ABCX4 (X – S or Se). Inorg. Mater.: Appl. Res. 12, 328–336 (2021). https://doi.org/10.1134/S2075113321020246

    Article  Google Scholar 

  23. Vasala, S., Karppinen, M.: A2B’B’’O6 perovskites: a review. Progr. Solid State Chem. 43, 1–36 (2015). https://doi.org/10.1016/j.progsolidstchem.2014.08.001

    Article  Google Scholar 

  24. Awasthi, S.K., Chackraburtty, D.M., Tondon, V.K.: Studies on A2BB′O6 type compounds of actinides: Plutonium compounds. J. Inorg. Nucl. Chem. 30, 819–821 (1968). https://doi.org/10.1016/0022-1902(68)80442-7

    Article  Google Scholar 

  25. Landolt-Bornstein. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gr.III: Kristal- und Festkorperphysik. B.7. Kristallstrukturdaten anorganischer Verbindungen. T.e: Schlusselemente: d9-, d10-, d1...d3-, f-Elemente. Springer, Berlin, Heidelberg, New York (1976)

    Google Scholar 

  26. Sleight, A.W., Ward, R.: Compounds of hexavalent and pentavalent uranium with the ordered perovskite structure. Inorg. Chem. 1, 790–793 (1962). https://doi.org/10.1021/ic50004a015

    Article  Google Scholar 

  27. Torshin, I.Yu, Rudakov, K.V.: Topological data analysis in materials science: the case of high-temperature cuprate superconductors. Pattern Recognit. Image Anal. 30, 264–276 (2020). https://doi.org/10.1134/S1054661820020157

  28. Kauwe, S.K., Graser, J., Vazquez, A., Sparks, T.D.: Machine learning prediction of heat capacity for solid inorganics. Integr. Mater. Manuf. Innov. 7(2), 43–51 (2018). https://doi.org/10.1007/s40192-018-0108-9

    Article  Google Scholar 

  29. Seko, A., Hayashi, H., Nakayama, K., Takahashi, A., Tanaka, I.: Representation of compounds for machine-learning prediction of physical properties. Phys. Rev. B99, 144110/1-11 (2017). https://doi.org/10.1103/PhysRevB.95.144110

  30. Lee, J., Seko, A., Shitara, K., Tanaka, I.: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques. Phys. Rev. B93, 115104/1-12 (2016). https://doi.org/10.1103/PhysRevB.93.115104

  31. Chen, Y., et al.: Machine learning assisted multi-objective optimization for materials processing parameters: a case study in Mg alloy. J. Alloys Compounds. 844, 156159/1-7 (2020). https://doi.org/10.1016/j.jallcom.2020.156159

  32. Abueidda, D.W., Koric, S., Sobh, N.A., Sehitoglu, H.: Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plasticity. 136, 102852/1-30 (2021). https://doi.org/10.1016/j.ijplas.2020.102852

  33. Dang, Y., Liu, L., Li, Z.: Optimization of the controlling recipe in quasi-single crystalline silicon growth using artificial neural network and genetic algorithm. J. Crystal Growth. 522, 195–203 (2019). https://doi.org/10.1016/j.jcrysgro.2019.06.033

    Article  Google Scholar 

  34. Parwaiz, S., Malik, O.A., Pradhan, D., Khan, M.M.: Machine learning-based cyclic voltammetry behavior model for supercapacitance of co-doped Ceria/rGO nanocomposite. J. Chem. Inf. Model. 58, 2517–2527 (2018). https://doi.org/10.1021/acs.jcim.8b00612

    Article  Google Scholar 

  35. Yaseen, Z.M., et al.: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Software. 115, 112–125 (2018). https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  36. Kautz, E.J., Hagen, A.R., Johns, J.M., Burkes, D.E.: A machine learning approach to thermal conductivity modeling: a case study on irradiated uranium-molybdenum nuclear fuels. Comp. Mater. Sci. 161, 107–118 (2019). https://doi.org/10.1016/j.commatsci.2019.01.044

    Article  Google Scholar 

  37. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to V.V. Ryazanov, O. V. Sen’ko, A.A. Dokukin, V.S. Pereverzev-Orlov, M.A. Vitushko, and E.A. Vaschenko for their help in developing algorithms and programs. This work was supported in part by the Russian Foundation for Basic Research, project nos. 20-01-00609 and 18-07-00080. The study was carried out as part of the state assignment (project no. № 075-00328-21-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Dudarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiselyova, N., Dudarev, V., Stolyarenko, A. (2022). Machine Learning Application to Predict New Inorganic Compounds – Results and Perspectives. In: Pozanenko, A., Stupnikov, S., Thalheim, B., Mendez, E., Kiselyova, N. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2021. Communications in Computer and Information Science, vol 1620. Springer, Cham. https://doi.org/10.1007/978-3-031-12285-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12285-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12284-2

  • Online ISBN: 978-3-031-12285-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics