Skip to main content

Deciphering the Nexus Between Oxidative Stress and Spermatogenesis: A Compendious Overview

  • Chapter
  • First Online:
Oxidative Stress and Toxicity in Reproductive Biology and Medicine

Abstract

Oxidative stress (OS) and reactive oxygen species (ROS) are one of the main reasons for the multifactorial concern – male infertility. ROS are active components of cellular metabolism that are intrinsic to cellular functioning and are present at minimal and unreactive levels in normal cells. They are an integral component of the sperm developmental physiology, capacitation, and function. As said “anything in excess is poison,” so is the case with ROS. These, when produced in excess to the antioxidants present in the seminal plasma, cause multiple malformations during the process of spermatogenesis such as lipid peroxidation, interfere with capacitation, sperm DNA fragmentation and damage to the membrane of the sperm which in turn reduces the motility of the sperm and its ability to fuse with the oocyte. Exposure of spermatozoa to oxidative stress is a major causative agent of male infertility. Thus, a delicate balance between the beneficial and detrimental effects of ROS for proper functions is of utter importance. In this chapter, the influence of ROS in OS which is a key player in male infertility along with the diagnosis, available treatment, and prevention of extensive ROS buildup within the spermatozoa are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasihormozi S, Kouhkan A, Alizadeh AR, Shahverdi AH, Nasr-Esfahani MH, SadighiGilani MA, Salman Yazdi R, Matinibehzad A, Zolfaghari Z. Association of vitamin D status with semen quality and reproductive hormones in Iranian subfertile men. Andrology. 2017;5(1):113–8.

    Article  Google Scholar 

  • Abid S, Maitra A, Meherji P, Patel Z, Kadam S, Shah J, et al. Clinical and laboratory evaluation of idiopathic male infertility in a secondary referral center in India. J Clin Lab Anal. 2008;22:29–38.

    Article  Google Scholar 

  • Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95(4):503–7.

    Article  Google Scholar 

  • Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin. 2002;29(4):817–27.

    Article  Google Scholar 

  • Agarwal A, Ikemoto I, Loughlin KR. Relationship of sperm parameters with levels of reactive oxygen species in semen specimens. J Urol. 1994;152(1):107–10.

    Article  Google Scholar 

  • Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11. Spermatozoa can self-repair modest amounts of DNA damage.

    Google Scholar 

  • Agarwal A. Clinical relevance of oxidative stress in patients with male factor infertility: evidence-based analysis. AUA Update Ser. 2007;26:1–12.

    Google Scholar 

  • Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):1–9.

    Article  Google Scholar 

  • Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online. 2004;8(6):616–27.

    Article  Google Scholar 

  • Agarwal A, Parekh N, Selvam MKP, Henkel R, Shah R, Homa ST, Ramasamy R, Ko E, Tremellen K, Esteves S, Majzoub A. Male oxidative stress infertility (MOSI): proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J Men’s Health. 2019;37(3):296–312.

    Google Scholar 

  • Agbaje I, Rogers DA, McVicar CM, McClure N, Atkinson AB, Mallidis C, Lewis SEM. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22(7):1871–7.

    Article  Google Scholar 

  • Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence-based review. Int J Reprod BioMed. 2016;14(12):729.

    Article  Google Scholar 

  • Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and sperm function--in sickness and in health. J Androl. 2012;33:1096–106.

    Article  Google Scholar 

  • Aitken RJ, Wingate JK, De Iuliis GN, McLaughlin EA. Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Mol Hum Reprod. 2007;13:203–11.

    Article  Google Scholar 

  • Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. BioEssays. 1994;16(4):259–67.

    Article  Google Scholar 

  • Aitken R, Baker HG. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 1995;10:1736.

    Article  Google Scholar 

  • Aitken RJ, West K, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl. 1994;15(4):343–52.

    Google Scholar 

  • Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, Irvine S. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Molecular Reproduction and Development: Incorporating Gamete Research. 1997;47(4):468–82.

    Article  Google Scholar 

  • Aktan G, Doğru-Abbasoğlu S, Küçükgergin C, Kadıoğlu A, Özdemirler-Erata G, Koçak-Toker N. Mystery of idiopathic male infertility: is oxidative stress an actual risk? Fertil Steril. 2013;99(5):1211–5.

    Article  Google Scholar 

  • Armstrong JS, Bivalacqua TJ, Chamulitrat W, Sikka S, Hellstrom WJ. A comparison of the NADPH oxidase in human sperm and white blood cells. Int J Androl. 2002;25(4):223–9.

    Article  Google Scholar 

  • Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol. 2018;200:158–67.

    Article  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120(4):483–95.

    Article  Google Scholar 

  • Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77(1):93–113.

    Article  Google Scholar 

  • Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22(6):1506–12.

    Article  Google Scholar 

  • Bui AD, Sharma R, Henkel R, Agarwal A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia. 2018;50(8):e13012.

    Article  Google Scholar 

  • Buyse M, Sargent DJ, Grothey A, Matheson A, De Gramont A. Biomarkers and surrogate end points—the challenge of statistical validation. Nat Rev Clin Oncol. 2010;7(6):309–17.

    Article  Google Scholar 

  • Cheeseman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull. 1993;49(3):481–93.

    Article  Google Scholar 

  • Chen SJ, Allam JP, Duan YG, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013;288(1):191–9.

    Article  Google Scholar 

  • Christiansen E, Tollefsrud A, Purvis K. Sperm quality in men with chronic abacterial prostatovesiculitis verified by rectal ultrasonography. Urology. 1991;38(6):545–9.

    Article  Google Scholar 

  • Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15(2):213–27.

    Article  Google Scholar 

  • de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl. 1992;13:379–86.

    Google Scholar 

  • de la Calle JFV, Rachou E, le Martelot MT, Ducot B, Multigner L, Thonneau PF. Male infertility risk factors in a French military population. Hum Reprod. 2001;16(3):481–6.

    Article  Google Scholar 

  • Eid Hammadeh M, Filippos A, A. and Faiz Hamad, M. Reactive oxygen species and antioxidant in seminal plasma and their impact on male fertility. Int J Fertil Steril. 2009;3(3):87–110.

    Google Scholar 

  • Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A. Intake of food groups and idiopathic asthenozoospermia: a case–control study. Hum Reprod. 2012;27(11):3328–36.

    Article  Google Scholar 

  • Esteves SC, Agarwal A. Novel concepts in male infertility. Int Braz J Urol. 2011;37:5–15.

    Article  Google Scholar 

  • Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734–45.

    Article  Google Scholar 

  • Gagnon C, Iwasaki A, De Lamirande EVE, Kovalski N. Reactive oxygen species and human Spermatozoa a. Ann N Y Acad Sci. 1991;637(1):436–44.

    Article  Google Scholar 

  • Gallegos G, Ramos B, Santiso R, Goyanes V, Gosálvez J, Fernández JL. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycoplasma. Fertil Steril. 2008;90(2):328–34.

    Article  Google Scholar 

  • Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–52.

    Article  Google Scholar 

  • Gomez E, Irvine DS, Aitken RJ. Evaluation of a spectrophotometric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: relationships with semen quality and sperm function. Int J Androl. 1998;21:81–94.

    Article  Google Scholar 

  • Gomez E, Buckingham DW, Brindle J, Lanzafame F, Irvine DS, Aitken RJ. Development of an image analysis system to monitor the retention of residual cytoplasm by human spermatozoa: correlation with biochemical markers of the cytoplasmic space, oxidative stress, and sperm function. J Androl. 1996;17(3):276–87.

    Google Scholar 

  • Griveau JF, Lannou DL. Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl. 1997;20(2):61–9.

    Article  Google Scholar 

  • Hecht D, Zick Y. Selective inhibition of protein tyrosine phosphatase activities by H2O2 and vanadate in vitro. Biochem Biophys Res Commun. 1992;188(2):773–9.

    Article  Google Scholar 

  • Hassanin AM, Ahmed HH, Kaddah AN. A global view of the pathophysiology of varicocele. Andrology. 2018;6(5):654–61.

    Article  Google Scholar 

  • Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg HR, Schill WB, Kruger TF. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.

    Article  Google Scholar 

  • Henkel RR. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13(1):43.

    Article  Google Scholar 

  • Hibasami H, Achiwa Y, Katsuzaki H, Imai K, Yoshioka K, Nakanishi K, Ishii Y, Hasegawa M, Komiya T. Honokiol induces apoptosis in human lymphoid leukemia Molt 4B cells. Int J Mol Med. 1998;2(6):671–4.

    Google Scholar 

  • Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26.

    Article  Google Scholar 

  • Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57(2):409–16.

    Article  Google Scholar 

  • Kobayashi H, Gil-Guzman ENRIQUE, Mahran AM, Sharma RK, Nelson DR, Agarwal A. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl. 2001;22(4):568–74.

    Google Scholar 

  • Kobori Y, Suzuki K, Iwahata T, Shin T, Sadaoka Y, Sato R, Nishio K, Yagi H, Arai G, Soh S, Okada H. Improvement of seminal quality and sexual function of men with oligoasthenoteratozoospermia syndrome following supplementation with L-arginine and Pycnogenol®. ArchivioItaliano di Urologia e Andrologia. 2015;87(3):190–3.

    Article  Google Scholar 

  • Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68:519–24.

    Article  Google Scholar 

  • Kurkowska W, Bogacz A, Janiszewska M, Gabryś E, Tiszler M, Bellanti F, Kasperczyk S, Machoń-Grecka A, Dobrakowski M, Kasperczyk A. Oxidative stress is associated with reduced sperm motility in normal semen. Am J Mens Health. 2020;14(5):1557988320939731.

    Article  Google Scholar 

  • Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online. 2009;19(5):638–59.

    Article  Google Scholar 

  • Lewis B, Aitken RJ. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J Androl. 2001;22(4):611–22.

    Google Scholar 

  • Lindsay TJ, Vitrikas K. Evaluation and treatment of infertility. Am Fam Physician. 2015;91(5):308–14.

    Google Scholar 

  • Mahfouz R, Sharma R, Thiyagarajan A, Kale V, Gupta S, Sabanegh E, Agarwal A. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.

    Article  Google Scholar 

  • Maiorino M, Coassin M, Roveri A, Ursini F. Microsomal lipid peroxidation: effect of vitamin E and its functional interaction with phospholipid hydroperoxide glutathione peroxidase. Lipids. 1989;24(8):721–6.

    Article  Google Scholar 

  • Malaspina D. Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophr Bull. 2001;27(3):379–93.

    Article  Google Scholar 

  • Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, Aitken RJ. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod. 2015;2:502–15.

    Article  Google Scholar 

  • Moghbelinejad S, Mozdarani H, Ghoraeian P, Asadi R. Basic and clinical genetic studies on male infertility in Iran during 2000-2016: A review. Int J Reprod BioMed. 2018;16(3):131.

    Article  Google Scholar 

  • Mojarrad M, Saburi E, Golshan A, Moghbeli M. Genetics and molecular biology of male infertility among Iranian population: an update. Am J Transl Res. 2021;13(6):5767.

    Google Scholar 

  • Nomura M, Kitamura M, Matsumiya K, Tsujimura A, Okuyama A, Matsumoto M, Toyoshima K, Seya T. Genomic analysis of idiopathic infertile patients with sperm-specific depletion of CD46. Exp Clin Immunogenet. 2001;18(1):42–50.

    Article  Google Scholar 

  • O’brien KLF, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93(1):1–12.

    Google Scholar 

  • Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.

    Article  Google Scholar 

  • O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med. 2006;41(4):528–40.

    Google Scholar 

  • Ollero M, Powers RD, Alvarez JG. Variation of docosahexaenoic acid content in subsets of human spermatozoa at different stages of maturation: implications for sperm lipoperoxidative damage. Mol Reprod Dev Incorporating Gamete Research. 2000;55(3):326–34.

    Article  Google Scholar 

  • Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62(2):387–93.

    Article  Google Scholar 

  • Riffo MS, Parraga M. Study of the acrosome reaction and the fertilizing ability of hamster epididymal cauda spermatozoa treated with antibodies against phospholipase A2 and/or lysophosphatidylcholine. J Exp Zool. 1996;275:459–68.

    Article  Google Scholar 

  • Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod. 2004;70(2):518–22.

    Article  Google Scholar 

  • Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, Kirkman-Brown J, Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17.

    Article  Google Scholar 

  • Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346(6287):847–50.

    Article  Google Scholar 

  • Safarinejad MR, Asgari SA, Farshi A, Ghaedi G, Kolahi AA, Iravani S, Khoshdel AR. The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod Toxicol. 2013;36:18–23.

    Article  Google Scholar 

  • Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4:31–7.

    Article  Google Scholar 

  • Sakamoto H, Mashima T, Kizaki A, Dan S, Hashimoto Y, Naito M, Tsuruo T. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood, The Journal of the American Society of Hematology. 2000;95(10):3214–8.

    Google Scholar 

  • Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.

    Google Scholar 

  • Schnurr K, Hellwing M, Seidemann B, Jungblut P, Kühn H, Rapoport SM, Schewe T. Oxygenation of biomembranes by mammalian lipoxygenases: the role of ubiquinone. Free Radic Biol Med. 1996;20(1):11–21.

    Article  Google Scholar 

  • Sharma RK, Pasqualotto FF, Nelson DR, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.

    Google Scholar 

  • Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16:464–8.

    Google Scholar 

  • Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001;8:851–62.

    Article  Google Scholar 

  • Suarez SS, Ho HC. Hyperactivated motility in sperm. Reprod Domest Anim. 2003;38(2):119–124.

    Article  Google Scholar 

  • Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17:530–7.

    Google Scholar 

  • Takeshima T, Usui K, Mori K, Asai T, Yasuda K, Kuroda S, Yumura Y. Oxidative stress and male infertility. Reprod Med Biol. 2021;20(1):41–52.

    Article  Google Scholar 

  • Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Aasada H, Yamagata Y, Sugino N. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2012;60:EJ12–0263.

    Google Scholar 

  • Thonneau P, Marchand S, Tallec A, Ferial ML, Ducot B, Lansac J, Lopes P, Tabaste JM, Spira A. Incidence and main causes of infertility in a resident population (1 850 000) of three French regions (1988–1989). Hum Reprod. 1991;6(6):811–6.

    Article  Google Scholar 

  • Tomlinson MJ, Barratt CLR, Cooke ID. Prospective study of leukocytes and leukocyte subpopulations in semen suggests they are not a cause of male infertility. Fertil Steril. 1993;60(6):1069–75.

    Article  Google Scholar 

  • Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabet Endocrinol. 2017;5(7):544–53.

    Article  Google Scholar 

  • Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  Google Scholar 

  • Tremellen K. Antioxidant therapy for the enhancement of male reproductive health: a critical review of the literature. In: Male Infertility; 2012. p. 389–399.

    Google Scholar 

  • Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 2001;13(7):1864–71.

    Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  Google Scholar 

  • Veeramachaneni DR, Moeller CL, Sawyer HR. Sperm morphology in stallions: ultrastructure as a functional and diagnostic tool. Veterinary Clinics: Equine Practice. 2006;22(3):683–92.

    Google Scholar 

  • Vicari LO, Castiglione R, Salemi M, Vicari BO, Mazzarino MC, Vicari E. Effect of levofloxacin treatment on semen hyperviscosity in chronic bacterial prostatitis patients. Andrologia. 2016;48(4):380–8.

    Article  Google Scholar 

  • Wang X, Sharma RK, Sikka SC, Thomas AJ Jr, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.

    Article  Google Scholar 

  • Wallach EE, Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63(6):1143–57.

    Article  Google Scholar 

  • Weir DG, Scott JM. Brain function in the elderly: role of vitamin B12 and folate. Br Med Bull. 1999;55(3):669–82.

    Article  Google Scholar 

  • Whittington K, Harrison SC, Williams KM, Day JL, Mclaughlin EA, Hull MG, Ford WCL. Reactive oxygen species (ROS) production and the outcome of diagnostic tests of sperm function. Int J Androl. 1999;22(4):236–42.

    Article  Google Scholar 

  • Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28(6):684–703.

    Article  Google Scholar 

  • Yu B, Qi Y, Liu D, Gao X, Chen H, Bai C, Huang Z. Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril. 2014;101(1):51–7.

    Article  Google Scholar 

  • Zafar A, Eqani SAMAS, Bostan N, Cincinelli A, Tahir F, Shah STA, Hussain A, Alamdar A, Huang Q, Peng S, Shen H. Toxic metals signature in the human seminal plasma of Pakistani population and their potential role in male infertility. Environ Geochem Health. 2015;37(3):515–27.

    Article  Google Scholar 

  • Zhang L, Maiorino M, Roveri A, Ursini F. Phospholipid hydroperoxide glutathione peroxidase: specific activity in tissues of rats of different age and comparison with other glutathione peroxidases. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid. Metabolism. 1989;1006(1):140–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Kumar Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, C.J. et al. (2022). Deciphering the Nexus Between Oxidative Stress and Spermatogenesis: A Compendious Overview. In: Roychoudhury, S., Kesari, K.K. (eds) Oxidative Stress and Toxicity in Reproductive Biology and Medicine. Advances in Experimental Medicine and Biology, vol 1391. Springer, Cham. https://doi.org/10.1007/978-3-031-12966-7_1

Download citation

Publish with us

Policies and ethics