Skip to main content

Deposition Process

  • Chapter
  • First Online:
Additive Manufacturing Classification

Abstract

Deposition process: beam solid deposition (laser, electron beam based); arc welding based deposition using gas Tungsten arc, gas metal arc, and plasma arc; cold spray based deposition; friction based deposition such as additive friction stir deposition and friction surfacing based AM; extrusion based deposition using filaments, pellets; air and ion depositions; water deposition, slurry deposition; and layerless deposition are described. Powder depositions such as coaxial continuous, coaxial discrete, and off-axial are given while laser–powder interactions are briefly explained. The difference between feedstocks: wire and powder is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng S, Zlatin M, Selvaganapathy PR, Brook MA (2018) Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks. Addit Manuf 24:86–92

    CAS  Google Scholar 

  2. Gannarapu A, Arda Gozen B (2019) Micro-extrusion-based additive manufacturing with liquid metals and alloys: flow and deposition driven by oxide skin mechanics. Extreme Mech Lett 33:100554

    Google Scholar 

  3. Izadi M, Farzaneh A, Mohammed M et al (2020) A review of laser engineered net shaping (LENS) build and process parameters of metallic parts. Rapid Prototyp J 26(6):1059–1078

    Article  Google Scholar 

  4. Chaturvedi M, Scutelnicu E, Rusu CC et al (2021) Wire arc additive manufacturing: review on recent findings and challenges in industrial applications and materials characterization. Metals 11(6):939

    Article  CAS  Google Scholar 

  5. Rajan K, Samykano M, Kadirgama K et al (2022) Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol 1–40

    Google Scholar 

  6. Yu HZ (2022) Emerging processes—friction stir based. In: Caballero FG (ed) Encyclopedia of materials: metals and alloys. Elsevier, pp 153–161

    Google Scholar 

  7. Castrejon-Pita JR, Baxter WRS, Morgan J et al (2013) Future, opportunities and challenges of inkjet technologies. At Sprays 23(6)

    Google Scholar 

  8. Pathak S, Saha GC (2017) Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: a critical review. Coatings 7(8):122

    Article  Google Scholar 

  9. Brant A, Sundaram M (2022) Electrochemical additive manufacturing of graded NiCoFeCu structures for electromagnetic applications. Manuf Lett 31:52–55

    Article  Google Scholar 

  10. Kumar S (2020) Other solid deposition process. In: Additive manufacturing processes. Springer, Cham, pp 111–130

    Google Scholar 

  11. Grong O, Sandnes L, Berto F (2019) A status report on the hybrid metal extrusion & bonding (HYB) process and its applications. Mater Des Process Commun 1(2)

    Google Scholar 

  12. Blackburn S, Szymiczek M (2021) Extrusion. In: Pomeroy M (ed) Encyclopedia of materials: technical ceramics and glasses. Elsevier, pp 162–178

    Google Scholar 

  13. Blindheim J, Grong O, Welo T, Steinert M (2020) On the mechanical integrity of AA6082 3D structures deposited by hybrid metal extrusion & bonding additive manufacturing. J Mater Process Technol 282:116684

    Article  CAS  Google Scholar 

  14. Vilar R (2014) Laser powder deposition. In: Comprehensive materials processing, vol 10. Elsevier Ltd, pp 163–216

    Google Scholar 

  15. Huang W, Xiao J, Chen S, Jiang X (2020) Control of wire melting behavior during laser hot wire deposition of aluminum alloy. Opt Laser Technol 150:107978

    Article  Google Scholar 

  16. Yan Z, Liu W, Tang Z et al (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441

    Article  CAS  Google Scholar 

  17. Tarasov SY, Filippov AV, Shamarin NN et al (2019) Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J Alloys Compd 803:364–370

    Article  CAS  Google Scholar 

  18. Feng Y, Zhan B, He J, Wang K (2018) The double-wire feed and plasma arc additive manufacturing process for deposition in Cr-Ni stainless steel. J Mater Process Technol 259:206–215

    Article  CAS  Google Scholar 

  19. Nieto DM, López VC, Molina SI (2018) Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit Manuf 23:79–85

    Google Scholar 

  20. Steen WM, Majumder J (2010) Laser material processing. Springer-Verlag London Limited

    Google Scholar 

  21. Wang L, Zhu G, Shi T et al (2018) Laser direct metal deposition process of thin-walled parts using variable spot by inside-beam powder feeding. Rapid Prototyp J 24(1):18–27

    Article  Google Scholar 

  22. Chen H, Lu Y, Luo D et al (2020) Epitaxial laser deposition of single crystal Ni-based superalloys: repair of complex geometry. J Mater Process Technol 285:116782

    Article  CAS  Google Scholar 

  23. Zhao T, Wang Y, Xu T et al (2021) Some factors affecting porosity in directed energy deposition of AlMgScZr-alloys. Opt Laser Technol 143:107337

    Article  CAS  Google Scholar 

  24. Shamsaei N, Yadollahi A, Bian L, Thompson SM (2015) An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control. Addit Manuf 8:12–35

    Google Scholar 

  25. Oliveira UD, Ocelík V, De Hosson JTM (2005) Analysis of coaxial laser cladding processing conditions. Surf Coat Technol 197(2–3):127–136

    Article  Google Scholar 

  26. Eisenbarth D, Esteves PMB, Wirth F, Wegener K (2019) Spatial powder flow measurement and efficiency prediction for laser direct metal deposition. Surf Coat Technol 362:397–408

    Article  CAS  Google Scholar 

  27. Gao X, Yao XX, Niu FY, Zhang Z (2022) The influence of nozzle geometry on powder flow behaviors in directed energy deposition additive manufacturing. Adv Powder Technol 33(3):103487

    Article  Google Scholar 

  28. Vilar R (1999) Laser cladding. J Laser Appl 11(2):64–79

    Article  CAS  Google Scholar 

  29. Turichin G, Zemlyakov E, Klimova O, Babkin K (2016) Hydrodynamic instability in high-speed direct laser deposition for additive manufacturing. Phys Procedia 83:674–683

    Article  CAS  Google Scholar 

  30. Yuan L, Pan Z, Ding D et al (2021) Fabrication of metallic parts with overhanging structures using the robotic wire arc additive manufacturing. J Manuf Process 63:24–34

    Article  Google Scholar 

  31. Wu J, Zhao P, Wei H et al (2018) Development of powder distribution model of discontinuous coaxial powder stream in laser direct metal deposition. Powder Technol 340:449–458

    Article  CAS  Google Scholar 

  32. Kumar S (2020) Beam based solid deposition process. In: Additive manufacturing processes. Springer, Cham, pp 93–109

    Google Scholar 

  33. Li L, Huang Y (2018) Interaction of l-beam, powder stream and molten pool in laser deposition processing with coaxial nozzle. J Phys Conf Ser 1063:012078

    Article  Google Scholar 

  34. Meacock C, Vilar R (2008) Laser powder microdeposition of CP2 titanium. Mater Des 29:353–361

    Article  CAS  Google Scholar 

  35. Geldart D (1973) Types of gas fluidization. Powder Technol 7:285–292

    Article  CAS  Google Scholar 

  36. Sergachev DV, Kovalev OB, Grachev GN et al (2020) Diagnostics of powder particle parameters under laser radiation in direct material deposition. Opt Laser Technol 121:105842

    Article  CAS  Google Scholar 

  37. McLaskey GC, Glaser SD (2010) Hertzian impact: experimental study of the force pulse and resulting stress waves. J Accoust Soc Am 128(3):1087–1096

    Article  Google Scholar 

  38. Kumar S (2020) Future additive manufacturing processes. In: Additive manufacturing processes. Springer, Cham, pp 187–202

    Google Scholar 

  39. Haley JC, Schoenung JM, Lavernia EJ (2019) Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing. Mater Sci Eng A 761:138052

    Article  CAS  Google Scholar 

  40. Pirch N, Linnenbrink S, Gasser A, Schleifenbaum H (2019) Laser-aided directed energy deposition of metal powder along edges. Int J Heat Mass Transf 143:118464

    Article  Google Scholar 

  41. Hassen AA, Noakes M, Nandwana P et al (2020) Scaling up metal additive manufacturing process to fabricate molds for composite manufacturing. Addit Manuf 32:101093

    CAS  Google Scholar 

  42. Schmidt M, Merklein M, Bourell D et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66(2):561–583

    Article  Google Scholar 

  43. Kumar P, Jain NK (2020) Effect of material form on deposition characteristics in micro-plasma transferred arc additive manufacturing process. CIRP J Manuf Sci Technol 30:195–205

    Article  Google Scholar 

  44. Blinn B, Lion P, Jordan O et al (2021) Process-influenced fatigue behavior of AISI 316L manufactured by powder-and wire-based laser direct energy deposition. Mater Sci Eng A 818:141383

    Article  CAS  Google Scholar 

  45. Watson JK, Taminger KMB, Hafley RA, Petersen DD (2002) Development of a prototype low voltage electron beam freeform fabrication system. In: SFF proceedings, pp 458–465

    Google Scholar 

  46. Taminger KMB, Hafley RA (2013) Electron beam freeform fabrication: a rapid metal deposition process. In: Proceedings of the 3rd annual automotive composites conference, Troy, MI

    Google Scholar 

  47. Kumar S (2022) Comparison. In: Additive manufacturing solutions. Springer, Cham, pp 57–92

    Google Scholar 

  48. Dilip JJS, Babu S, Rajan SV et al (2013) Use of friction surfacing for additive manufacturing. Mater Manuf Process 28:1–6

    Article  Google Scholar 

  49. Schultz JP, Creehan KD (2014) Friction stir fabrication. US patent US 8893954 B2

    Google Scholar 

  50. Rao KP, Sankar A, Rafi HK (2012) Friction surfacing on nonferrous substrate: a feasibility study. Int J Adv Manuf Technol 65(5–8):755–762

    Google Scholar 

  51. Gandra J, Krohn H, Miranda RM et al (2014) Friction surfacing—a review. J Mater Process Technol 214(5):1062–1093

    Article  Google Scholar 

  52. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78

    Article  Google Scholar 

  53. Ali Y, Henckell P, Hildebrand J et al (2019) Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol 269:109–116

    Article  CAS  Google Scholar 

  54. Chi B, Jiao Z, Yang W (2017) Design and experimental study on the freeform fabrication with polymer melt deposition. Rapid Prototyp J 23(3):633–641

    Article  Google Scholar 

  55. Brenken B, Barocio E, Favaloro A et al (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21:1–16

    CAS  Google Scholar 

  56. Wang Z, Liu R, Sparks T, Liou F (2016) Large scale deposition system by an industrial robot (I): design of fused pellet modeling system and extrusion process analysis. 3D Print Addit Manuf 3(1):39–47

    Google Scholar 

  57. Kumar N, Jain PK, Tandon P, Pandey PM (2018) Investigation on the effects of process parameters in CNC assisted pellet based fused layer modeling process. J Manuf Process 35:428–436

    Article  Google Scholar 

  58. Roschli A, Gaul KT, Boulger AM et al (2019) Designing for big area additive manufacturing. Addit Manuf 25:275–285

    Google Scholar 

  59. Boyle BM, Xiong PT, Mensch TE et al (2019) 3D printing using powder melt extrusion. Addit Manuf 29:100811

    CAS  Google Scholar 

  60. Lieberwirth C, Harder A, Seitz H (2017) Extrusion based additive manufacturing. J Mech Eng Autom 7:79–83

    Google Scholar 

  61. Bellini A (2002) Fused deposition of ceramics: a comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design. Drexel University

    Google Scholar 

  62. Feilden E, Blanca EGT, Giuliani F et al (2016) Robocasting of structural ceramic parts with hydrogel inks. J Eur Ceram Soc 36(10):2525–2533

    Article  CAS  Google Scholar 

  63. Mondal D, Willett TL (2020) Mechanical properties of nanocomposite biomaterials improved by extrusion during direct ink writing. J Mech Behav Biomed Mater 104:103653

    Article  CAS  Google Scholar 

  64. Singh G, Missiaen JM, Bouvard D, Chaix JM (2021) Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: analysis of 3D extrusion printing, debinding and sintering. Addit Manuf 47:102287

    CAS  Google Scholar 

  65. O’Dowd P, Hoskins S, Geisow A, Walters P (2015) Modulated extrusion for textured 3D printing. In: NIP & digital fabrication conference, vol 1, pp 173–178

    Google Scholar 

  66. Kanada Y (2015) Support-less horizontal filament stacking by layer-less FDM. In: SFF proceedings, pp 56–70

    Google Scholar 

  67. Gu X, Hou Z, Xu J et al (2017) A novel additive manufacturing method for spiral parts. In: 2017 IEEE 7th annual international conference on CYBER technology in automation, control, and intelligent systems, pp 791–796

    Google Scholar 

  68. Guo S, Gosselin F, Guerin N et al (2015) Solvent-cast three-dimensional printing of multifunctional microsystems. Small 9(24):4118–4122

    Article  Google Scholar 

  69. Hauser C, Sutcliffe C, Egan M, Fox P (2005) Spiral growth manufacturing (SGM)—a continuous additive manufacturing technology for processing metal powder by selective laser melting. In: SFF symposium proceedings, Texas, USA

    Google Scholar 

  70. Dudley K (2015) 3D printing using spiral buildup. US patent US20140265034A1

    Google Scholar 

  71. Kumar S (2022) Fabrication strategy. In: Additive manufacturing solutions. Springer, Cham, pp 111–144

    Google Scholar 

  72. Jordon JB, Allison PG, Phillips BJ et al (2020) Direct recycling of machine chips through a novel solid-state additive manufacturing process. Mater Des 193:108850

    Article  Google Scholar 

  73. Goh GL, Agarwala S, Tan YJ, Yeong WY (2018) A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sens Actuators B Chem 260:227–235

    Article  CAS  Google Scholar 

  74. Wilkinson NJ, Smith MAA, Kay RW et al (2019) A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing. Int J Adv Manuf Technol 1–21

    Google Scholar 

  75. Castellano PMH, Vega ANB, Padilla ND et al (2017) Design and manufacture of structured surfaces by electroforming. Procedia Manuf 13:402–409

    Article  Google Scholar 

  76. Matsuzaki R, Kanatani T, Todoroki A (2019) Multi-material additive manufacturing of polymers and metals using fused filament fabrication and electroforming. Addit Manuf 29:100812

    CAS  Google Scholar 

  77. Kamraj A, Lewis S, Sundaram M (2016) Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing. Procedia CIRP 42:788–792

    Article  Google Scholar 

  78. Mora J, Dudoff JK, Moran BD et al (2018) Projection based light-directed electrophoretic deposition for additive manufacturing. Addit Manuf 22:330–333

    CAS  Google Scholar 

  79. Habib MA, Gan SW, Rahman M (2009) Fabrication of complex shape electrodes by localized electrochemical deposition. J Mater Process Technol 209(9):4453–4458

    Article  CAS  Google Scholar 

  80. Lin JC, Chang TK, Yang JH et al (2010) Localized electrochemical deposition of micrometer copper columns by pulse plating. Electrochim Acta 55(6):888–1894

    Article  Google Scholar 

  81. Paul R, Anand S (2015) Optimization of layered manufacturing process for reducing form errors with minimal support structures. J Manuf Syst 36:231–243

    Article  Google Scholar 

  82. Brant A, Sundaram M (2016) A novel electrochemical micro additive manufacturing method of overhanging metal parts without reliance on support structures. Procedia Manuf 5:928–943

    Article  Google Scholar 

  83. Manukyan N, Kamaraj A, Sundaram M (2019) Localized electrochemical deposition using ultra-high frequency pulsed power. Procedia Manuf 34:197–204

    Article  Google Scholar 

  84. Singh P, Dutta D (2001) Multi-direction slicing for layered manufacturing. J Comput Inf Sci Eng 1(2):129–142

    Article  Google Scholar 

  85. Coupek D, Friedrich J, Battran D, Riedel O (2018) Reduction of support structures and building time by optimized path planning algorithms in multi-axis additive manufacturing. Procedia CIRP 67:221–226

    Article  Google Scholar 

  86. Pikalova EY, Kalinina EG (2019) Electrophoretic deposition in the solid oxide fuel cell technology: fundamentals and recent advances. Renew Sustain Energy Rev 116:109440

    Article  Google Scholar 

  87. Derby B (2015) Additive manufacturing of ceramic components by ink jet printing. Engineering 1(1):113–123

    Article  CAS  Google Scholar 

  88. Lee JH, Kweon JW, Cho WS et al (2018) Formulation and characterization of black ceramic ink for a digital ink-jet printing. Ceram Int 44:14151–14157

    Article  CAS  Google Scholar 

  89. Cappi B, Özkol E, Ebert J, Telle R (2008) Direct inkjet printing of Si3N4: characterization of ink, green bodies and microstructure. J Eur Ceram Soc 28(13):2625–2628

    Article  CAS  Google Scholar 

  90. Ball AK, Das R, Das D et al (2018) Design, development and experimental investigation of E-jet based additive manufacturing process. Mater Today Proc 5:7355–7362

    Article  Google Scholar 

  91. Jayabal DKK, Zope K, Cormier D (2018) Fabrication of support-less engineered lattice structures via jetting of molten aluminum droplets. In: SFF symposium proceedings, pp 757–764

    Google Scholar 

  92. Simonelli M, Aboulkhair N, Rasa M et al (2019) Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Addit Manuf 30:100930

    CAS  Google Scholar 

  93. Wijshoff H (2018) Drop dynamics in the inkjet printing process. Curr Opin Colloid Interface Sci 36:20–27

    Article  CAS  Google Scholar 

  94. Meisel N, Dillard D, Williams C (2018) Impact of material concentration and distribution on composite parts manufactured via multi-material jetting. Rapid Prototyp J 24(5):872–879

    Article  Google Scholar 

  95. Leu M, Isanaka SP, Richards VL (2009) Increase of heat transfer to reduce build time in rapid freeze prototyping. In: SFF symposium proceedings, pp 219–230

    Google Scholar 

  96. Barnett E, Angeles J, Pasini D, Sijpkes P (2009) Robot-assisted rapid prototyping for ice structures. In: 2009 IEEE international conference on robotics and automation, Kobe

    Google Scholar 

  97. Kumar S (2022) Application. In: Additive manufacturing solutions. Springer, Cham, pp 93–110

    Google Scholar 

  98. Zhang W, Leu MC (2000) Investment casting with ice patterns made by rapid freeze prototyping. In: SFF symposium proceedings, pp 66–72

    Google Scholar 

  99. Pham CB, Leong KF, Lim TC, Chian KS (2008) Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyp J 14(4):246–253

    Article  Google Scholar 

  100. Sames WJ, List FA, Pannala S et al (2016) The metallurgy and processing science of additive manufacturing. Int Mater Rev 1–46

    Google Scholar 

  101. Vega EJ, Cabeza MG, Muñoz-Sánchez BN et al (2014) A novel technique to produce metallic microdrops for additive manufacturing. Int J Adv Manuf Technol 70:1395–1402

    Article  Google Scholar 

  102. Zuo H, Li H, Qi L, Zhong S (2016) Influence of interfacial bonding between metal droplets on tensile properties of 7075 aluminum billets by additive manufacturing technique. J Mater Sci Technol 32(5):485–488

    Article  Google Scholar 

  103. Fang X, Wei Z, Du J et al (2017) Forming metal components through a fused-coating based additive manufacturing. Rapid Prototyp J 23(5):893–903

    Article  Google Scholar 

  104. Özkol E, Ebert J, Uibel K et al (2009) Development of high solid content aqueous 3Y-TZP suspensions for direct inkjet printing using a thermal inkjet printer. J Eur Ceram Soc 29(3):403–409

    Article  Google Scholar 

  105. Hagen D, Kovar D, Beaman JJ, Gammage M (2019) Laser flash sintering of additive manufacturing of ceramics. ARL-TR-8657, Defence Tech Info Centre, US

    Google Scholar 

  106. Ren X, Shao H, Lin T, Zheng H (2016) 3D gel-printing—an additive manufacturing method for producing complex shaped parts. Mater Des 101:80–87

    Article  CAS  Google Scholar 

  107. Tang S, Yang L, Li G et al (2019) 3D printing of highly-loaded slurries via layered extrusion forming: parameters optimization and control. Addit Manuf 28:546–553

    CAS  Google Scholar 

  108. Wu W, Liu W, Jiang J et al (2019) Preparation and performance evaluation of silica gel/tricalcium silicate composite slurry for 3D printing. J Non-Cryst Solids 503–504:334–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S. (2022). Deposition Process. In: Additive Manufacturing Classification . Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-14220-8_3

Download citation

Publish with us

Policies and ethics