Skip to main content

The Atomistic Perspective of Nanoscale Laser Ablation

  • Chapter
  • First Online:
Ultrafast Laser Nanostructuring

Abstract

Materials irradiated by ultrashort laser pulses can undergo a variety of surface relief and structural modifications due to melting, spallation, and ablation processes. The possibility of instant and localized energy deposition into materials makes the short laser pulses a perspective tool in precise material modifications under controlled conditions. Thus, with certain laser irradiation parameters, the absorbed energy can trigger one or several laser-induced phase transition processes in the solid leading to material ejection, generation of subsurface voids, or nanostructures growth on the surface. The resulting material modifications can change its topographical, morphological, magnetic, and optical properties. While the ablation and spallation processes were utilized in laser welding and drilling technology, the functionalized surfaces have found a number of applications in micro-optics, waveguides, Raman spectroscopy, and biosensors. Generation of material modifications in a designed way, however, requires a detailed understanding of the dynamics of fast, nonequilibrium, and interrelated laser-induced processes at nanoscale. In this work, a combined particle-based mesoscopic numerical approach suitable for the investigation of ablation and nanostructuring mechanism of solids on the experimental scale is proposed. The combined model is applied to investigate the laser-induced processes and their dependences on the surrounding media and laser irradiation parameters: wavelength, pulse duration, and fluence. Good agreement between the modeling and the experimental results justifies the proposed approach as a powerful numerical tool revealing the fundamental physics of the underlying the ablation and nanostructuring processes. This will pave the way toward predesigned topography for functionalized surfaces on the nanoscales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 42006 (2012)

    Article  Google Scholar 

  2. G.A. Martsinovskiĭ, G.D. Shandybina, D.S. Smirnov, S.V. Zabotnov, L.A. Golovan, V.Y. Timoshenko, P.K. Kashkarov, Ultrashort excitations of surface polaritons and waveguide modes in semiconductors. Opt. Spectrosc. 105, 67–72 (2008)

    Article  ADS  Google Scholar 

  3. C. Kunz, J. Bonse, D. Spaltmann, C. Neumann, A. Turchanin, J.F. Bartolomé, F.A. Müller, S. Gräf, Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures. Appl. Surf. Sci. 499, 143917 (2020)

    Article  Google Scholar 

  4. C. Florian, S.V. Kirner, J. Krüger, J. Bonse, Surface functionalization by laser-induced periodic surface structures. J. Laser Appl. 32, 022063 (2020)

    Article  ADS  Google Scholar 

  5. K. Czajkowski, M. Ratzke, O. Varlamova, J. Reif, Femtosecond-laser-induced periodic surface structures on magnetic layer targets: The roles of femtosecond-laser interaction and of magnetization. Appl. Surf. Sci. 417, 84–87 (2017)

    Article  ADS  Google Scholar 

  6. F.A. Müller, C. Kunz, S. Gräf, Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 9, 476 (2016)

    Article  ADS  Google Scholar 

  7. S. Parvate, P. Dixit, S. Chattopadhyay, Superhydrophobic surfaces: Insights from theory and experiment. J. Phys. Chem. B 124, 1323–1360 (2020)

    Article  Google Scholar 

  8. H. Messaoudi, S. Kumar Das, J. Lange, F. Heinrich, S. Schrader, M. Frohme, R. Grunwald, Femtosecond-laser induced periodic surface structures for surface enhanced Raman spectroscopy of biomolecules, in Progress in Nonlinear Nano-Optics, (Springer International Publishing, Cham, 2015), pp. 207–219

    Chapter  Google Scholar 

  9. A. Nakhoul, C. Maurice, M. Agoyan, A. Rudenko, F. Garrelie, F. Pigeon, J.-P. Colombier, Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nano 11, 1020 (2021)

    Google Scholar 

  10. J. Bonse, S. Gräf, Maxwell meets Marangoni - a review of theories on laser-induced periodic surface structures. Laser Photon. Rev. 14, 2000215 (2020)

    Article  ADS  Google Scholar 

  11. A. Ablez, K. Toyoda, K. Miyamoto, T. Omatsu, Microneedle structuring of Si(111) by irradiation with picosecond optical vortex pulses. New J. Phys. 13, 62006 (2020)

    Google Scholar 

  12. T. Omatsu, K. Miyamoto, K. Toyoda, R. Morita, Y. Arita, K. Dholakia, A new twist for materials science: The formation of Chiral structures using the angular momentum of light. Adv. Optical Mater. 7, 1801672 (2019)

    Article  Google Scholar 

  13. S. Syubaev, A. Zhizhchenko, O. Vitrik, S. Kudryashov, A. Porfiev, S. Fomchenkov, S. Khonina, A. Kuchmizhak, Zero-OAM laser printing of chiral nanoneedles. Opt. Lett. 42, 5022–5025 (2017)

    Article  ADS  Google Scholar 

  14. Y. Nakata, M. Yoshida, N. Miyanaga, Parallel fabrication of spiral surface structures by interference pattern of circularly polarized beams. Sci. Rep. 8, 13448 (2018)

    Article  ADS  Google Scholar 

  15. S.A. Centoni, B. Sadigh, G.H. Gilmer, T.J. Lenosky, T.D. de la Rubia, C.B. Musgrave, First-principles calculation of intrinsic defect formation volumes in silicon. Phys. Rev. B 72, 195206 (2005)

    Article  ADS  Google Scholar 

  16. A. Blumenstein, E.S. Zijlstra, D.S. Ivanov, S.T. Weber, T. Zier, F. Kleinwort, B. Rethfeld, J. Ihlemann, P. Simon, M.E. Garcia, Transient optics of gold during laser irradiation: From first principles to experiment. Phys. Rev. B 101, 165140 (2020)

    Article  ADS  Google Scholar 

  17. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V.V. Bulatov, Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550, 492–495 (2017)

    Article  ADS  Google Scholar 

  18. T. Oppelstrup, V.V. Bulatov, G.H. Gilmer, M.H. Kalos, B. Sadigh, First-passage Monte Carlo algorithm: Diffusion without all the hops. Phys. Rev. Lett. 97, 230602 (2006)

    Article  ADS  Google Scholar 

  19. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.P. Colombier, Light absorption by surface nanoholes and nanobumps. Appl. Surf. Sci. 470, 228–233 (2019)

    Article  ADS  Google Scholar 

  20. Y.P. Meshcheryakov, N.M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Appl. Phys. A Mater. Sci. Process. 82, 363 (2005)

    Article  ADS  Google Scholar 

  21. I. Milov, V. Zhakhovsky, D. Ilnitsky, K. Migdal, V. Khokhlov, Y. Petrov, N. Inogamov, V. Lipp, N. Medvedev, B. Ziaja, V. Medvedev, A. Makhotkin, E. Louis, F. Bijkerk, Two-level ablation and damage morphology of Ru films under femtosecond extreme UV irradiation. Appl. Surf. Sci. 528, 146952 (2020)

    Article  Google Scholar 

  22. S. Galitskiy, D.S. Ivanov, A.M. Dongare, Dynamic evolution of microstructure during laser shock loading and spall failure of single crystal al at the atomic scales. J. Appl. Phys. 124, 205901 (2018)

    Article  ADS  Google Scholar 

  23. A. Blumenstein, M.E. Garcia, B. Rethfeld, P. Simon, J. Ihlemann, D.S. Ivanov, Formation of periodic nano ridge patterns by ultrashort UV laser irradiation of gold. Nano 10, 1998 (2020)

    Google Scholar 

  24. M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, A wide-range model for simulation of pump-probe experiments with metals. Appl. Surf. Sci. 258, 9480–9483 (2012)

    Article  ADS  Google Scholar 

  25. C.-Y. Shih, C. Chen, C. Rehbock, A. Tymoczko, U. Wiedwald, M. Kamp, U. Schuermann, L. Kienle, S. Barcikowski, L.V. Zhigilei, Limited elemental mixing in nanoparticles generated by ultrashort pulse laser ablation of AgCu bilayer thin films in a liquid environment: Atomistic modeling and experiments. J. Phys. Chem. C 125, 2132–2155 (2021)

    Article  Google Scholar 

  26. N. Medvedev, Z. Li, B. Ziaja, Thermal and nonthermal melting of silicon under femtosecond x-ray irradiation. Phys. Rev. B 91, 054113 (2015)

    Article  ADS  Google Scholar 

  27. T. Kramer, S. Remund, B. Jäggi, M. Schmid, B. Neuenschwander, Ablation dynamics – From absorption to heat accumulation/ultra-fast laser matter interaction. Adv. Opt. Technol 7, 129–144 (2018)

    Article  ADS  Google Scholar 

  28. T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Laser-generated plasma plume expansion: Combined continuous-microscopic modeling. Phys. Rev. E 66, 066406 (2002)

    Article  ADS  Google Scholar 

  29. N.A. Inogamov, V.A. Khokhlov, Y.V. Petrov, V.V. Zhakhovsky, Hydrodynamic and molecular-dynamics modeling of laserablation in liquid: From surf ace melting till bubble formation. Opt. Quant. Electron. 52, 63 (2020)

    Article  Google Scholar 

  30. A.N. Volkov, L.V. Zhigilei, Hydrodynamic multi-phase model for simulation of laser-induced non-equilibrium phase transformations. J. Phys. Conf. Ser. 59, 640 (2007)

    Article  ADS  Google Scholar 

  31. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation. J. Phys. D. Appl. Phys. 50, 193001 (2017)

    Article  ADS  Google Scholar 

  32. Q.S. Mei, K. Lu, “Melting and superheating of crystalline solids” from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175 (2007)

    Article  Google Scholar 

  33. S. Williamson, G. Mourou, J.C.M. Li, Time-resolved laser-induced phase transformation in aluminum. Phys. Rev. Lett. 52, 2364 (1984)

    Article  ADS  Google Scholar 

  34. B. Lin, H.E. Elsayed-Ali, Temperature dependent reflection electron diffraction study of In(1 1 1) and observation of laser-induced transient surface superheating. Surf. Sci. 498, 275 (2002)

    Article  ADS  Google Scholar 

  35. E.W.J. Brcka, Complete description of the material transfer and the deposition by PLD of thin films of ceramic materials. Int. J. High Temp. Chem. Proc. 2, S417 (1993)

    Google Scholar 

  36. M. Aden, E. Beyer, H. Kunze, G. Herziger, Laser-induced vaporization of a metal surface. Int. J. Phys. D 25, S57 (1992)

    ADS  Google Scholar 

  37. W. Schulz, V. Kostrykin, H. Zefferer, D. Petring, R. Poprawe, A free boundary problem related to laser beam fusion cutting: ODE approximation. Int. J. Heat Mass Transf. 40, 2913 (1997)

    Article  MATH  Google Scholar 

  38. W. Schulz, V. Kostrykin, M. Nießen, J. Michel, D. Petring, E.W. Kreutz, R. Poprawe, Dynamics of ripple formation and melt flow in laser beam cutting. J. Phys. D. Appl. Phys. 32, 1219 (1999)

    Article  ADS  Google Scholar 

  39. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002)

    Article  ADS  Google Scholar 

  40. V. Schmidt, W. Husinsky, G. Betz, Dynamics of laser desorption and ablation of metals at the threshold on the Femtosecond time scale. Phys. Rev. Lett. 85, 3516 (2000)

    Article  ADS  Google Scholar 

  41. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevich, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Femtosecond X-ray measurement of Coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  42. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, An atomic-level view of melting using Femtosecond electron diffraction. Science 302, 1382 (2003)

    Article  ADS  Google Scholar 

  43. M.B. Agranat, S.I. Ashitkov, V.E. Fortov, A.V. Kirillin, A.V. Kostanovskii, S.I. Anisimov, P.S. Kondratenko, Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces. Appl. Phys. A Mater. Sci. Process. 69, 637 (1999)

    Article  ADS  Google Scholar 

  44. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, Thermal and nonthermal melting of Gallium Arsenide after Femtosecond laser excitation. Phys. Rev. B 58, R11805 (1998)

    Article  ADS  Google Scholar 

  45. Z. Lin, L.V. Zhigilei, Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation. J. Phys. Conf. Ser. 59, 11 (2007)

    Article  ADS  Google Scholar 

  46. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Phys. Rev. B 69, 054102 (2004)

    Article  ADS  Google Scholar 

  47. P. Stampfli, K.H. Bennemann, Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Phys. Rev. B 42, 7163 (1990)

    Article  ADS  Google Scholar 

  48. V. Recoules, J. Clérouin, G. Zérah, P.M. Anglade, S. Mazevet, Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 055503 (2006)

    Article  ADS  Google Scholar 

  49. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh. Eksp. Teor. Fiz 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)]

    ADS  Google Scholar 

  50. Y. Shen, Y. Gan, W. Qi, Y. Shen, Z. Chen, Effect of the hot electron blast force on ultrafast laser ablation of nickel thin film. Appl. Opt. 54, 1737–1742 (2015)

    Article  ADS  Google Scholar 

  51. M.L. Wilkins, Methods in Computational Physics, vol 3 (Academic press, New York, 1964), pp. 211–261

    Google Scholar 

  52. J. Hohlfeld, J.G. Müller, S.-S. Wellershoff, E. Matthias, Time-resolved thermoreflectivity of thin gold films and its dependence on film thickness. Appl. Phys. A Mater. Sci. Process. 64, 387 (1997)

    Google Scholar 

  53. Z.H. Jin, K. Lu, Melting of surface-free bulk single crystals. Philos. Mag. Lett. 78, 29 (1998)

    Article  Google Scholar 

  54. F.F. Abraham, J.Q. Broughton, Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics. Phys. Rev. Lett. 56, 734 (1986)

    Article  ADS  Google Scholar 

  55. T.A. Wm, B.L. Holian, Droplet formation by rapid expansion of a liquid. Phys. Rev. E 59, 6742 (1999)

    Article  Google Scholar 

  56. L.V. Zhigilei, B.J. Garrison, Pressure waves in microscopic simulations of laser ablation. Mater. Res. Soc. Symp. Proc. 538, 491 (1999)

    Article  Google Scholar 

  57. R.F.W. Herrmann, J. Gerlach, E.E.B. Campbell, Ultrashort pulse laser ablation of silicon: An MD simulation study. Appl. Phys. A Mater. Sci. Process. 66, 35 (1998)

    Article  ADS  Google Scholar 

  58. L.V. Zhigilei, Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl. Phys. A Mater. Sci. Process. 76, 339 (2003)

    Article  ADS  Google Scholar 

  59. Z. Lin, E.M. Bringa, E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686 (2010)

    Article  Google Scholar 

  60. D.S. Ivanov, V.P. Lipp, B. Rethfeld, M.E. Garcia, Molecular-dynamics study of the mechanism of short-pulse laser ablation of single-crystal and polycrystalline metallic targets. J. Opt. Technol. 81, 250 (2014)

    Article  Google Scholar 

  61. E. Ohmura, I. Fukumoto, Modified molecular dynamics simulation on laser ablation of metal. Int. J. Japan Soc. Prec. Eng. 31, 206 (1997)

    Google Scholar 

  62. Z. Lin, L.V. Zhigilei, V. Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  63. J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000)

    Article  Google Scholar 

  64. S.I. Anisimov, B. Rethfeld, On the theory of ultrashort laser pulse interaction with a metal. Proc. SPIE Int. Soc. Opt. Eng. 3093, 192 (1997)

    ADS  Google Scholar 

  65. Y.V. Petrov, N.A. Inogamov, S.I. Anisimov, K.P. Migdal, V.A. Khokhlov, K.V. Khishchenko, Thermal conductivity of condensed gold in states with the strongly excited electron subsystem. J. Phys. Conf. Ser. 653, 012087 (2015)

    Article  Google Scholar 

  66. J. Lindhard, M. Schar, Energy dissipation by ions in the keV region. Phys. Rev. 124, 128 (1961) (1961)

    Article  ADS  Google Scholar 

  67. J.E. Lennard-Jones, A.F. Devonshire, On the determination of molecular fields. II. From the equation of state of a gas. Proc. Roy. Soc. A 106, 463 (1924)

    Google Scholar 

  68. F. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  69. V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, K. Nishihara, Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci. 255, 9592 (2009)

    Article  ADS  Google Scholar 

  70. B.W.H. Van Beest, G.J. Kramer, R.A. van Santen, Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955 (1990)

    Article  ADS  Google Scholar 

  71. C. Rajappa, S.B. Sringeri, Y. Subramanian, J. Gopalakrishnan, Universal scaling in the aging of the strong glass former SiO2. J. Chem. Phys. 140, 244512 (2014)

    Article  ADS  Google Scholar 

  72. A. Carre, J. Horbach, S. Ispas, W. Kob, New fitting scheme to obtain effective potential from Car-Parrinello molecular-dynamics simulations: Application to silica. EPL 82, 17001 (2008)

    Article  ADS  Google Scholar 

  73. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modelling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  74. C. Schafer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular dynamics simulations. Comput. Mater. Sci. 24, 421 (2002)

    Article  Google Scholar 

  75. D.S. Ivanov, L.V. Zhigilei, Effect of pressure relaxation on the mechanisms of short-pulse laser melting. Phys. Rev. Lett. 91, 105701 (2003)

    Article  ADS  Google Scholar 

  76. L.V. Zhigilei, D.S. Ivanov, E. Leveugle, B. Sadigh, E.M. Bringa, Computer modeling of laser melting and spallation of metal targets, high power laser ablation V. Proc. SPIE 5448, 505–519 (2004)

    Article  ADS  Google Scholar 

  77. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion. J. Chem. Phys. 113, 11892 (2009)

    Google Scholar 

  78. D.S. Ivanov, V.P. Lipp, A. Blumenstein, V.P. Veiko, E.B. Yakovlev, V.V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P, 78, Experimental and theoretical investigation of periodic nanostructuring of Au with UV laser near the ablation threshold. Phys. Rev. Appl. 4, 064006 (2015)

    Article  ADS  Google Scholar 

  79. H.M. van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B 35, 8166 (1987)

    Article  ADS  Google Scholar 

  80. J.K. Chen, D.Y. Tzou, J.E. Beraun, Numerical investigation of ultrashort laser damage in semiconductors. Int. J. Heat Mass Transf. 48, 501 (2005)

    Article  MATH  Google Scholar 

  81. A. Rämer, O. Osmani, B. Rethfeld, Laser damage in silicon: Energy absorption, relaxation, and transport. J. Appl. Phys. 116, 053508 (2014)

    Article  ADS  Google Scholar 

  82. T.E. Itina, N.S. Shcheblanov, Effect of laser field on collision frequencies and absorption during ultra-short laser interactions with dielectric materials. Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2013, Proc. SPIE 9065, 906506 (2013)

    Article  Google Scholar 

  83. V.P. Lipp, B. Rethfeld, M.E. Garcia, D.S. Ivanov, Atomistic-continuum modeling of short laser pulse melting of Si targets. Phys. Rev. B 90, 245306 (2014)

    Article  ADS  Google Scholar 

  84. Y. Gan, J.K. Chen, A hybrid method for integrated atomistic-continuum simulation of ultrashort-pulse laser interaction with semiconductors. Comput. Phys. Commun. 183, 278 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  85. P. Balling, J. Schou, Femtosecond-laser ablation dynamics of dielectrics: Basics and applications for thin films. Rep. Prog. Phys. 76, 036502 (2013)

    Article  ADS  Google Scholar 

  86. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures. Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  87. B. Rethfeld, Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401 (2004)

    Article  ADS  Google Scholar 

  88. A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B 61, 11437 (2000)

    Article  ADS  Google Scholar 

  89. M. Mero, A.J. Sabbah, J. Zeller, W. Rudolph, Femtosecond dynamics of dielectric films in the pre-ablation regime. Appl. Phys. A Mater. Sci. Process. 81, 317 (2005)

    Article  ADS  Google Scholar 

  90. J. Jasapara, M. Mero, W. Rudolph, Retrieval of the dielectric function of thin films from femtosecond pump-probe experiments. Appl. Phys. Lett. 80, 2637 (2002)

    Article  ADS  Google Scholar 

  91. M. Mero, J. Liu, A.J. Sabbah, J. Zeller, P.M. Alsing, J.K. McIver, W. Rudolph, J. Jasapara, Scaling laws of femtosecond laser induced breakdown in dielectric films, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD), (Optica Publishing Group, 2004) paper CThD4

    Google Scholar 

  92. N. Brouwer, B. Rethfeld, Transient electron excitation and nonthermal electron-phonon coupling in dielectrics irradiated by ultrashort laser pulses. Phys. Rev. B 95, 245139 (2017)

    Article  ADS  Google Scholar 

  93. A. Rämer, L. Haahr-Lillevang, B. Rethfeld, P. Balling, Modeling the transient optical parameters in laser-excited band gap materials. Opt. Eng. 56, 011015 (2016)

    Article  ADS  Google Scholar 

  94. G.J. Kramer, B.W.H. Van Beest, R.A. van Santen, Relation between crystal symmetry and ionicity in silica polymorphs. Nature 351, 636 (1991)

    Article  ADS  Google Scholar 

  95. S. Tsuneyuki, M. Tsukada, H. Aoki, Y. Matsui, First-principles interatomic potential of silica applied to molecular dynamics. Phys. Rev. Lett. 61, 869 (1988)

    Article  ADS  Google Scholar 

  96. T.F. Soules, G.H. Gilmer, M.J. Matthews, J.S. Stoken, M.D. Feit, Silica molecular dynamic force fields—A practical assessment. J. Non-Crystall. Sol. 357, 1564 (2011)

    Article  ADS  Google Scholar 

  97. V.P. Lipp, B. Rethfeld, M.E. Garcia, D.S. Ivanov, Solving a system of differential equations containing a diffusion equation with nonlinear terms on the example of laser heating in silicon. Appl. Sci. 10, 1853 (2020)

    Article  Google Scholar 

  98. A. Piróth, J. Sólyom, Fundamentals of the Physics of Solids: Volume 1: Structure and Dynamics (Springer Science, Budapest, 2002)

    Google Scholar 

  99. P. Ewald, Evaluation of optical and electrostatic lattice potentials. Ann. Phys. Leipzig. 64, 253 (1921)

    Article  ADS  Google Scholar 

  100. A.M. Dongare, Quasi-coarse-grained dynamics: Modelling of metallic materials at mesoscales. Philos. Mag. 94, 3877–3897 (2014)

    Article  ADS  Google Scholar 

  101. J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  102. Y. Wang, X. Xu, L. Zheng, Molecular dynamics simulation of ultrafast laser ablation of fused silica film. Appl. Phys. A Mater. Sci. Process. 92, 849 (2008)

    Article  ADS  Google Scholar 

  103. L. Shokeen, P.K. Schelling, Thermodynamics and kinetics of silicon under conditions of strong electronic excitation. J. Appl. Phys. 109, 073503 (2011)

    Article  ADS  Google Scholar 

  104. V.P. Lipp, D.S. Ivanov, B. Rethfeld, M.E. Garcia, On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling. J. Opt. Technol. 81, 254 (2014)

    Article  Google Scholar 

  105. E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Femtosecond-laser-induced bond breaking and structural modifications in silicon, TiO2, and defective graphene: An ab initio molecular dynamics study. Appl. Phys. A Mater. Sci. Process. 114, 1 (2014)

    Article  ADS  Google Scholar 

  106. M. Kempkes, T. Zier, K. Singer, M.E. Garcia, Ultrafast nonthermal NV center formation in diamond. Carbon 174, 524–530 (2021)

    Article  Google Scholar 

  107. B. Bauerhenne, V.P. Lipp, T. Zier, E.S. Zijlstra, M.E. Garcia, Self-learning method for construction of analytical interatomic potentials to describe laser-excited materials. Phys. Rev. Lett. 124, 085501 (2020)

    Article  ADS  Google Scholar 

  108. P. Plettenberg, Neural Network Interatomic Potential for Laser-Excited Silicon, Master-Thesis, University of Kassel, 2021

    Google Scholar 

  109. J. Behler, M. Parrinello, Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007)

    Article  ADS  Google Scholar 

  110. H. Katsuki, J.C. Delagnes, K. Hosaka, K. Ishioka, H. Chiba, E.S. Zijlstra, M.E. Garcia, H. Takahashi, K. Watanabe, M. Kitajima, Y. Matsumoto, K.G. Nakamura, K. Ohmori, All-optical control and visualization of ultrafast two-dimensional atomic motions in a single crystal of bismuth. Nat. Commun. 4, 2801 (2013)

    Article  ADS  Google Scholar 

  111. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon press, Oxford, 1987)

    MATH  Google Scholar 

  112. A.I. Kuznetsov, J. Koch, B.N. Chichkov, Nanostructuring of thin gold films by femtosecond lasers. Appl. Phys. A Mater. Sci. Process. 94, 221 (2009)

    Article  ADS  Google Scholar 

  113. D.S. Ivanov, A.I. Kuznetsov, V.P. Lipp, B. Rethfeld, B.N. Chichkov, M.E. Garcia, W. Schulz, Short laser pulse surface nanostructuring on thin metal films: Direct comparison of molecular dynamics modeling and experiment. Appl. Phys. A Mater. Sci. Process. 111, 675 (2013)

    Article  ADS  Google Scholar 

  114. J.L. Gustafson, Reevaluating Amdahl's law. Comm. ACM 31, 532 (1988)

    Article  Google Scholar 

  115. K. Lu, Y. Li, Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phys. Rev. Lett. 80, 4474 (1998)

    Article  ADS  Google Scholar 

  116. Z.H. Jin, P. Gambsch, K. Lu, E. Ma, Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87, 055703 (2001)

    Article  ADS  Google Scholar 

  117. R.W. Cahn, Melting from within. Nature 413, 582–583 (2002)

    Article  ADS  Google Scholar 

  118. J.R. Dwyer, C.T. Hebeisen, R. Ernstorfer, M. Harb, V.B. Deyirmenjian, R.E. Jordan, R.J. Dwayne Miller, Femtosecond electron diffraction: ‘Making the molecular movie’. Phil. Trans. R. Soc. A 364, 741–778 (2006)

    Article  ADS  Google Scholar 

  119. D.S. Ivanov, L.V. Zhigilei, Kinetic limit of heterogeneous melting in metals. Phys. Rev. Lett. 98, 195701 (2007)

    Article  ADS  Google Scholar 

  120. D.S. Ivanov, O. Osmani, B. Rethfeld, Computer modeling of nanostructuring on materials with tightly focused energy deposition, chapter I, in Laser Beams: Theory, Properties, and Applications, (Nova Science Publishers, New York, 2011)

    Google Scholar 

  121. J.W. Gibbs, Collected Works, vol 1 (Longmans, New York, 1931), pp. 55–372

    Google Scholar 

  122. J.Y. Tsao, M.J. Aziz, M.O. Thompson, P.S. Peercy, Asymmetric melting and freezing kinetics in silicon. Phys. Rev. Lett. 56, 2712 (1986)

    Article  ADS  Google Scholar 

  123. D.Y. Sun, M. Asta, J.J. Hoyt, Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys. Rev. B 69, 024108 (2004)

    Article  ADS  Google Scholar 

  124. F. Celestini, J.-M. Debierre, Measuring kinetic coefficients by molecular dynamics simulation of zone melting. Phys. Rev. E 65, 041605 (2002)

    Article  ADS  Google Scholar 

  125. D. Bäuerle, Laser Processing and Chemistry (Springer-Verlag, Berlin, Heidelberg, 2000)

    Book  Google Scholar 

  126. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994)

    Google Scholar 

  127. C.R. Phipps, J.R. Luke, G.G. McDuff, T. Lippert, Laser-driven micro-rocket. Appl. Phys. A Mater. Sci. Process. 77, 193–201 (2003)

    Article  ADS  Google Scholar 

  128. S.I. Anisimov, Vaporization of metal absorbing laser radiation. Sov. Phys. JETP 27, 182–183 (1968)

    ADS  Google Scholar 

  129. A. Miotello, R. Kelly, Laser-induced phase explosion: New physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A Mater. Sci. Process. 69, S67–S73 (1999)

    Article  ADS  Google Scholar 

  130. N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion. Appl. Phys. A Mater. Sci. Process. 73, 199–208 (2001)

    Article  ADS  Google Scholar 

  131. T.D. Bennett, C.P. Grigoropoulos, D.J. Krajnovich, Near-threshold laser sputtering of gold. J. Appl. Phys. 77, 849–864 (1995)

    Article  ADS  Google Scholar 

  132. V.V. Semak, J.G. Thomas, B.R. Campbell, Drilling of steel and HgCdTe with the femtosecond pulses produced by a commercial laser system. J. Phys. D. Appl. Phys. 37, 2925–2931 (2004)

    Article  ADS  Google Scholar 

  133. G. Paltauf, P.E. Dyer, Photomechanical processes and effects in ablation. Chem. Rev. 103, 487–518 (2003)

    Article  Google Scholar 

  134. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: Molecular dynamics study. Appl. Phys. A Mater. Sci. Process. 79, 1643–1655 (2004)

    Article  ADS  Google Scholar 

  135. J. Yang, Y. Zhao, N. Zhang, Y. Liang, M. Wang, Ablation of metallic targets by high-intensity ultrashort laser pulses. Phys. Rev. B 76, 165430 (2007)

    Article  ADS  Google Scholar 

  136. H. Masuhara, T. Asahi, Y. Hosokawa, Laser nanochemistry. Pure Appl. Chem. 78, 2205–2226 (2006)

    Article  Google Scholar 

  137. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion. Appl. Phys. A Mater. Sci. Process. 81, 345–356 (2005)

    Article  ADS  Google Scholar 

  138. K.H. Song, X. Xu, Explosive phase transformation in excimer laser ablation. Appl. Surf. Sci. 127-129, 111–116 (1998)

    Article  ADS  Google Scholar 

  139. C. Cheng, X. Xu, Mechanisms of decomposition of metal during femtosecond laser ablation. Phys. Rev. B 72, 165415 (2005)

    Article  ADS  Google Scholar 

  140. C. Porneala, D.A. Willis, Observation of nanosecond laser-induced phase explosion in aluminium. Appl. Phys. Lett. 89, 211121 (2006)

    Article  ADS  Google Scholar 

  141. L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, On the threshold behavior in the laser ablation of organic solids. Chem. Phys. Lett. 276, 269–273 (1997)

    Article  ADS  Google Scholar 

  142. L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman, Computer simulations of laser ablation of molecular substrates. Chem. Rev. 103, 321–348 (2003)

    Article  Google Scholar 

  143. E. Leveugle, L.V. Zhigilei, Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 102, 074914 (2007)

    Article  ADS  Google Scholar 

  144. A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003)

    Article  Google Scholar 

  145. M. Kashii, Y. Hosokawa, H. Kitano, H. Adachi, Y. Mori, K. Takano, H. Matsumura, T. Inoue, S. Murakami, K. Sugamoto, H. Yoshikawa, T. Sasaki, H. Masuhara, Femtosecond laser-induced cleaving of protein crystal in water solution. Appl. Surf. Sci. 253, 6447–6450 (2007)

    Article  ADS  Google Scholar 

  146. Y. Nakata, N. Miyanaga, T. Okada, Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Appl. Surf. Sci. 253, 6555–6557 (2007)

    Article  ADS  Google Scholar 

  147. M. Iqbal, S.A. Khan, D.S. Ivanov, R.A. Ganeev, V.V. Kim, G.S. Boltaev, N.A. Abbasi, S. Shaju, M.E. Garcia, B. Rethfeld, A.S. Alnaser, The mechanism of laser assisted generation of aluminum nanoparticles, their wettability and nonlinearity properties. Appl. Surf. Sci. 527, 146702 (2020)

    Article  Google Scholar 

  148. C.-Y. Shih, I. Gnilitskyi, M.V. Shugaev, E. Skoulas, E. Stratakis, L.V. Zhigilei, Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. Nanoscale 12, 7674–7687 (2020)

    Article  Google Scholar 

  149. R. Stoian, J.P. Colombier, Advances in ultrafast laser structuring of materials at the nanoscale. Nano 9(16), 4665–4688 (2020)

    Google Scholar 

  150. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.-P. Colombier, Self-organization of surfaces on the nanoscale by topography-mediated selection of quasicylindrical and plasmonic waves. Nano 8, 459–465 (2019)

    Google Scholar 

  151. C. Eisele, C.E. Nebel, M. Stutzmann, Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys. 89, 7722–7726 (2001)

    Article  ADS  Google Scholar 

  152. J.-T. Chen, W.-C. Lai, Y.-J. Kao, Y.-Y. Yang, J.-K. Sheu, Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Opt. Exp. 20, 5689–5695 (2012)

    Article  Google Scholar 

  153. C. Wang, Y.-C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, E. Edwards, Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures. Appl. Phys. Lett. 100, 023107 (2012)

    Article  ADS  Google Scholar 

  154. D.S. Ivanov, B.C. Rethfeld, The effect of pulse duration on the character of laser heating: Photo-mechanical vs. photo-thermal damage of metal targets. Appl. Surf. Sci. 255, 9724 (2009)

    Article  ADS  Google Scholar 

  155. D.S. Ivanov, V.P. Lipp, V.P. Veiko, E. Jakovlev, B. Rethfeld, M.E. Garcia, Molecular dynamics study of the short laser pulse ablation: Quality and efficiency in production. Appl. Phys. A Mater. Sci. Process. 117, 2133 (2014)

    Article  ADS  Google Scholar 

  156. L.V. Zhigilei, D.S. Ivanov, Channels of energy redistribution in short-pulse laser interactions with metal targets. Appl. Surf. Sci. 248, 433 (2005)

    Article  ADS  Google Scholar 

  157. P.T. Mannion, S.F. Favre, D.S. Ivanov, G.M. O’Connor, T.J. Glynn, J.G. Lunney, B. Doggett, Langmuir probe investigation of plasma expansion in Femto- and Picosecond laser ablation of selected metals. J. Phys. Conf. Ser. 59, 753 (2007)

    Article  ADS  Google Scholar 

  158. S.I. Kudryashov, A.A. Samokhvalov, Y.D. Golubev, D.S. Ivanov, M.E. Garcia, V.P. Veiko, Dynamic all-optical control in ultrashort double-pulse laser ablation. Appl. Surf. Sci. 30, 147940 (2021)

    Article  Google Scholar 

  159. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

  160. G.M. Burrow, T.K. Gaylord, Multi-beam interference advances and applications: Nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures. Micromachines 2(2), 221 (2011)

    Article  Google Scholar 

  161. F. Diebel, D. Leykam, S. Kroesen, C. Denz, A.S. Desyatnikov, Conical diffraction and composite Lieb bosons in photonic lattices. Phys. Rev. Lett. 116, 183902 (2016)

    Article  ADS  Google Scholar 

  162. N.M. Litchinitser, Structured light meets structured matter. Science 337(6098), 1054–1055 (2012)

    Article  ADS  Google Scholar 

  163. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Phot. 4(7), 477 (2010)

    Article  Google Scholar 

  164. J.D. Fowlkes, L. Kondic, J. Diez, Y. Wu, P.D. Rack, Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11(6), 2478 (2011)

    Article  ADS  Google Scholar 

  165. M. Hase, K. Mizoguchi, H. Harima, S. Nakashima, M. Tani, K. Sakai, M. Hangyo, Optical control of coherent optical phonons in bismuth films. Appl. Phys. Lett. 69(17), 2474 (1996)

    Article  ADS  Google Scholar 

  166. C.A.D. Roeser, M. Kandyla, A. Mendioroz, E. Mazur, Optical control of coherent lattice vibrations in tellurium. Phys. Rev. B 70(21), 212302 (2004)

    Article  ADS  Google Scholar 

  167. S.I. Kudryashov, M. Kandyla, C. Roeser, E. Mazur, Intraband and interband optical deformation potentials in femtosecond-laser excited α-Te. Phys. Rev. B 75, 085207 (2007)

    Article  ADS  Google Scholar 

  168. A. Devos, A. Le Louarn, Strong effect of interband transitions in the picosecond ultrasonics response of metallic thin films. Phys. Rev. B 68(4), 045405 (2003)

    Article  ADS  Google Scholar 

  169. A.A. Ionin, S.I. Kudryashov, S.V. Seleznev, D.V. Sinitsyn, V.N. Lednev, S.M. Pershin, Pre-ablation electron and lattice dynamics on the silicon surface excited by a femtosecond laser pulse. JETP 121(5), 737 (2015)

    Article  ADS  Google Scholar 

  170. M.E. Povarnitsyn, T.E. Itina, K.V. Khishchenko, P.R. Levashov, Suppression of ablation in femtosecond double-pulse experiments. Phys. Rev. Lett. 103(19), 195002 (2009)

    Article  ADS  Google Scholar 

  171. T. Zier, Ab-initio analysis of the structural response of solids after femtosecond-laser-pulse excitation: From understanding towards control, PhD Dissertation, Department of Theoretical Physics University of Kassel, Germany, April (2019)

    Google Scholar 

  172. P. Papon, J. Leblond, P.H.E. Meijer, The Physics of Phase Transitions: Concepts and Applications (Springer Verlag Berlin, Heidelberg, New-York, 2002)

    Book  MATH  Google Scholar 

  173. J.P. Colombier, P. Combis, A. Rosenfeld, I.V. Hertel, E. Audouard, R. Stoian, Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring I ntensity envelopes: Consequences for material removal from Al samples. Phys. Rev. B 74, 224106 (2006)

    Article  ADS  Google Scholar 

  174. C. Mauclair, M. Zamfirescu, J.P. Colombier, G. Cheng, K. Mishchik, E. Audouard, R. Stoian, Control of ultrafast laser-induced bulk nanogratings in fused silica via pulse time envelopes. Opt. Exp 20, 12997–13005 (2012)

    Article  Google Scholar 

  175. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Control of ionization processes in high band gap materials via tailored femtosecond pulses. Opt. Exp 15, 17855 (2007)

    Article  Google Scholar 

  176. J.P. Colombier, P. Combis, A. Rosenfeld, I.V. Hertel, E. Audouard, R. Stoian, Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples. Phys. Rev. B 74, 224106 (2006)

    Article  ADS  Google Scholar 

  177. J. Penczak, R. Kupfer, I. Bar, R.J. Gordon, The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy. Spectrochim. Acta B 97, 34 (2014)

    Article  ADS  Google Scholar 

  178. B. Jaeggi, S. Remund, Y. Zhang, T. Kramer, B. Neuenschwander, Optimizing the specific removal rate with the burst mode under varying conditions. J. Laser Micro/Nanoeng. 12(3) (2017)

    Google Scholar 

  179. S.G. Bezhanov, P.A. Danilov, A.A. Ionin, I.V. Kiseleva, S.I. Kudryashov, S.A. Uryupin, D.A. Zayarny, Femtosecond laser induced nanostructuring of aluminum films of variable thickness. Las. Phys. Lett. 15(1), 015901 (2018)

    Article  ADS  Google Scholar 

  180. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum model for simulation of laser interaction with metals: Application in the calculation of melting thresholds in Ni targets of varying thickness. Appl. Phys. A Mater. Sci. Process. 79, 977–981 (2004)

    Article  ADS  Google Scholar 

  181. S.I. Kudryashov, A.A. Ionin, Multi-scale dynamics of front-side femtosecond laser heating, melting and ablation of thin supported aluminum film. Int. J. Heat Mass Transf. 99, 383 (2016)

    Article  Google Scholar 

  182. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Thermal response of metals to ultrashort-pulse laser excitation. Phys. Rev. Lett. 61, 2886 (1988)

    Article  ADS  Google Scholar 

  183. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998)

    Article  ADS  Google Scholar 

  184. C. Wu, L.V. Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A Mater. Sci. Process. 114(1), 11 (2014)

    Article  ADS  Google Scholar 

  185. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106–110 (1995)

    Article  ADS  Google Scholar 

  186. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 77, 229–235 (2003)

    Article  ADS  Google Scholar 

  187. J. Jersch, F. Demming, J. Hildenhagen, K. Dickmann, Nano-material processing with laser radiation in the near field of a scanning probe tip. Opt. Laser Technol. 29, 433–437 (1997)

    Article  ADS  Google Scholar 

  188. A. Chimmalgi, T.Y. Choi, C.P. Grigoropoulos, K. Komvopoulos, Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 82, 1146–1148 (2003)

    Article  ADS  Google Scholar 

  189. J. Boneberg, H.-J. Münzer, M. Tresp, M. Ochmann, P. Leiderer, The mechanism of nanostructuring upon nanosecond laser irradiation of a STM tip. Appl. Phys. A Mater. Sci. Process. 67, 381–384 (1998)

    Article  ADS  Google Scholar 

  190. S.M. Huang, M.H. Hong, Y.F. Lu, B.S. Lukyanchuk, W.D. Song, T.C. Chong, Pulsed-laser assisted nanopatterning of metallic layers combined with atomic force microscopy. J. Appl. Phys. 91, 3268–3274 (2002)

    Article  ADS  Google Scholar 

  191. S.M. Huang, M.H. Hong, B. Lukiyanchuk, T.C. Chong, Nanostructures fabricated on metal surfaces assisted by laser with optical near-field effects. Appl. Phys. A Mater. Sci. Process. 77, 293–296 (2003)

    Article  ADS  Google Scholar 

  192. Y. Lu, S.C. Chen, Nanopatterning of a silicon surface by near-field enhanced laser irradiation. Nanotechnology 14, 505–508 (2003)

    Article  ADS  Google Scholar 

  193. F. Korte, J. Koch, B.N. Chichkov, Formation of microbumps and nanojets on gold targets by femtosecond laser pulses. Appl. Phys. A Mater. Sci. Process. 79, 879–881 (2004)

    Article  ADS  Google Scholar 

  194. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Nanotexturing of gold films by femtosecond laser-induced melt dynamics. Appl. Phys. A Mater. Sci. Process. 81, 325–328 (2005)

    Article  ADS  Google Scholar 

  195. Y. Nakata, T. Okada, M. Maeda, Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn. J. Appl. Phys. 42, L1452–L1454 (2003)

    Article  ADS  Google Scholar 

  196. D.S. Ivanov, B.C. Rethfeld, G.M. O’Connor, T.J. Glynn, A.N. Volkov, L.V. Zhigilei, The mechanism of Nanobump formation in Femtosecond pulse laser nanostructuring of thin metal films. Appl. Phys. A Mater. Sci. Process. 92, 791 (2008)

    Article  ADS  Google Scholar 

  197. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly, Atomic scale structure of sputtered metal multilayers. Acta Mater. 49, 4005–4015 (2001)

    Article  ADS  Google Scholar 

  198. D.S. Ivanov, B.C. Rethfeld, G.M. O’Connor, T.J. Glynn, Z. Lin, L.V. Zhigilei, Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film. J. Appl. Phys. 107, 013519 (2010)

    Article  ADS  Google Scholar 

  199. D.W. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, 2011)

    Book  Google Scholar 

  200. P. Simon, J. Ihlemann, Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses. Appl. Phys. A Mater. Sci. Process. 63, 50 (1996)

    Article  Google Scholar 

  201. J.-H. Klein-Wiele, P. Simon, Sub-100nm pattern generation by laser direct writing using a confinement layer. Opt. Exp 21, 9017 (2013)

    Article  Google Scholar 

  202. J. Ihlemann, Patterning of oxide thin films by UV laser ablation. J. Optoelectron. Adv. Mater. 7, 1191 (2005)

    Google Scholar 

  203. L. Gallais, E. Bergeret, B. Wang, M. Guerin, E. Bènevent, Ultrafast laser ablation of metal films on flexible substrates. Appl. Phys. A Mater. Sci. Process. 115, 177 (2014)

    Article  ADS  Google Scholar 

  204. R. Stoian, J.P. Colombier, C. Mauclair, G. Cheng, M.K. Bhuyan, P.K. Velpula, P. Srisungsitthisunti, Spatial and temporal laser pulse design for material processing on ultrafast scales. Appl. Phys. A Mater. Sci. Process. 114, 119 (2014)

    Article  ADS  Google Scholar 

  205. A. Blumenstein, J. Ihlemann, J.-H. Klein-Wiele, P. Simon, Periodic surface structures by laser interference ablation, in Ultrafast Laser Nanostructuring - The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse, (Springer, 2022)

    Google Scholar 

  206. N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, Y.V. Petrov, M.B. Agranat, S.I. Anisimov, K. Nishihara, V.E. Fortov, Nanospallation induced by an ultrashort laser pulse. J. Exp. Theor. Phys. 107, 1 (2008)

    Article  ADS  Google Scholar 

  207. A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold. Phys. Rev. B 78, 045437 (2008)

    Article  ADS  Google Scholar 

  208. M.V. Shugaev, I. Gnilitskyi, N.M. Bulgakova, L.V. Zhigilei, Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. Phys. Rev. B 96, 205429 (2017)

    Article  ADS  Google Scholar 

  209. A. Abou-Saleh, E.T. Karim, C. Maurice, S. Reynaud, F. Pigeon, F. Garrelie, L.V. Zhigilei, J.P. Colombier, Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl. Phys. A Mater. Sci. Process. 124, 308 (2018)

    Article  ADS  Google Scholar 

  210. C. Wu, M.S. Christensen, J.-M. Savolainen, P. Balling, L.V. Zhigilei, Generation of sub-surface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single crystal Ag target. Phys. Rev. B 91, 035413 (2015)

    Article  ADS  Google Scholar 

  211. C. Wu, L.V. Zhigilei, Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse. J. Phys. Chem. C 120, 4438–4447 (2016)

    Article  Google Scholar 

  212. M.V. Shugaev, C. Wu, O. Armbruster, A. Naghilou, N. Brouwer, D.S. Ivanov, T.J.-Y. Derrien, N.M. Bulgakova, W. Kautek, B. Rethfeld, L.V. Zhigilei, Fundamentals of ultrafast laser–material interaction. MRS Bullet. 41, 960 (2016)

    Article  ADS  Google Scholar 

  213. K. Miyazaki, G. Miyaji, Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water. Phys. Proc 39, 674 (2012)

    Article  ADS  Google Scholar 

  214. B. Borchers, J. Békési, P. Simon, J. Ihlemann, Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup. J. Appl. Phys. 107, 063106 (2010)

    Article  ADS  Google Scholar 

  215. J.H. Klein-Wiele, P. Simon, Sub-100nm pattern generation by laser direct writing using a confinement layer. Opt. Express 21(7), 9017–9023 (2013)

    Article  ADS  Google Scholar 

  216. Y.V. Petrov, V.A. Khokhlov, V.V. Zhakhovsky, N.A. Inogamov, Hydrodynamic phenomena induced by laser ablation of metal into liquid. Appl. Surf. Sci. 492, 285–297 (2019)

    Article  ADS  Google Scholar 

  217. E.T. Karim, M. Shugaev, C. Wu, Z. Lin, R.F. Hainsey, L.V. Zhigilei, Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer. J. Appl. Phys. 115, 183501 (2014)

    Article  ADS  Google Scholar 

  218. D.S. Ivanov, A. Blumenstein, J. Ihlemann, P. Simon, M.E. Garcia, B. Rethfeld, Molecular dynamics modeling of periodic nanostructuring of metals with a short UV laser pulse under spatial confinement by a water layer. Appl. Phys. A Mater. Sci. Process. 123, 744 (2017)

    Article  ADS  Google Scholar 

  219. H. Nada, An intermolecular potential model for the simulation of ice and water near the melting point: A six-site model of H2O. J. Chem. Phys. 118, 7401 (2003)

    Article  ADS  Google Scholar 

  220. Y. Dou, L.V. Zhigilei, Z. Postawa, N. Winograd, B.J. Garrison, Thickness effects of water overlayer on its explosive evaporation at heated metal surfaces. Nucl. Instr. Meth. B 180, 105–111 (2001)

    Article  ADS  Google Scholar 

  221. C.-Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci. 489, 3–17 (2017)

    Article  ADS  Google Scholar 

  222. Development of Interatomic EAM Potentials. Available online: https://www.researchgate.net/project/Development-of-interatomic-EAM-potentials . Accessed on 30 Nov 2017

  223. H. Nakano, S. Miyauti, N. Butani, T. Shibayanagi, M. Tsukamoto, N. Abe, Femtosecond laser peening of stainless steel. J. Laser Micro/Nanoeng 4, 35 (2009)

    Article  Google Scholar 

  224. C.A. Zuhlke, G.D. Tsibidis, T. Anderson, E. Stratakis, G. Gogos, D.R. Alexander, Investigation of femtosecond laser induced ripple formation on copper for varying incident angle. AIP Adv. 8, 015212 (2018)

    Article  ADS  Google Scholar 

  225. H. Zhang, J.P. Colombier, S. Witte, Laser-induced periodic surface structures: Arbitrary angles of incidence and polarization states. Phys. Rev. B 101, 245430 (2020)

    Article  ADS  Google Scholar 

  226. I. Gnilitskyi, T.J.-Y. Derrien, Y. Levy, N.M. Bulgakova, T. Mocek, L. Orazi, High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: Physical origin of regularity. Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  227. F. Nyenhuis, P.N. Terekhin, T. Menold, B. Rethfeld, A. Michalowski, J.A. L'huillier, Fundamentals of scanning surface structuring by ultrashort laser pulses: From electron diffusion to final morphology (2022). Preprint at https://arxiv.org/abs/2201.0824

  228. P.N. Terekhin, O. Benhayoun, S.T. Weber, D.S. Ivanov, M.E. Garcia, B. Rethfeld, Influence of surface plasmon polaritons on laser energy absorption and structuring of surfaces. Appl. Surf. Sci. 512, 144420 (2020)

    Article  Google Scholar 

  229. O. Benhayoun, P.N. Terekhin, D.S. Ivanov, B. Rethfeld, M.E. Garcia, Theory for heating of metals assisted by surface plasmon polaritons. Appl. Surf. Sci. 569, 150427 (2021)

    Article  Google Scholar 

  230. P.N. Terekhin, J. Oltmanns, A. Blumenstein, D.S. Ivanov, F. Kleinwort, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Key role of surface plasmon polaritons in generation of periodic surface structures following single-pulse laser irradiation of a gold step edge. Nano 11(2), 359–367 (2022)

    Google Scholar 

  231. J. Oltmanns, P.N. Terekhin, F. Kleinwort, A. Blumenstein, D.S. Ivanov, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Influence of the laser beam shape on laser-induced periodic surface structure formation assisted by surface plasmon polaritons. J. Laser Micro/Nanoeng. 16(3), 199–204 (2021)

    Google Scholar 

  232. T.J.-Y. Derrien, Y. Levy, N.M. Bulgakova, Insights into laser-matter interaction from inside: Wealth of processes, multiplicity of mechanisms and possible roadmaps for energy localization, in Ultrafast Laser Nanostructuring - The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse, (Springer, 2022)

    Google Scholar 

  233. A. Rudenko, J.P. Colombier, How light drives material periodic patterns down to the nanoscale, in Ultrafast Laser Nanostructuring - The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse, (Springer, 2022)

    Google Scholar 

  234. M. Mezera, C. Florian, G.R.B.E. Römer, J. Krüger, J. Bonse, Creation of material functions by nanostructuring, in Ultrafast Laser Nanostructuring - The Pursuit of Extreme Scales, ed. by R. Stoian, J. Bonse, (Springer, 2022)

    Google Scholar 

  235. E.L. Gurevich, S.V. Gurevich, Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl. Surf. Sci. 302, 118–123 (2014)

    Article  ADS  Google Scholar 

  236. S. Maragkaki, T.J.-Y. Derrien, Y. Levy, N.M. Bulgakova, A. Ostendorf, E.L. Gurevich, Wavelength dependence of picosecond laser-induced periodic surface structures on copper. Appl. Surf. Sci. 417, 88–92 (2017)

    Article  ADS  Google Scholar 

  237. E.L. Gurevich, Y. Levy, N.M. Bulgakova, Three-step description of single-pulse formation of laser-induced periodic surface structures on metals. J. Nanomater. 10, 1836 (2020)

    Article  Google Scholar 

  238. E.L. Gurevich, On the influence of surface plasmon-polariton waves on pattern formation upon laser ablation. Appl. Surf. Sci. 278, 52–56 (2013)

    Article  ADS  Google Scholar 

  239. E.L. Gurevich, Y. Levy, S.V. Gurevich, N.M. Bulgakova, Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold. Phys. Rev. B 95, 054305 (2017)

    Article  ADS  Google Scholar 

  240. N. Ackerl, K. Wegener, Observation of single ultrashort laser pulse generated periodic surface structures on linelike defects. J. Laser Appl. 32, 022049 (2020)

    Article  ADS  Google Scholar 

  241. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  242. J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  243. Y. Levy, N.M. Bulgakova, T. Mocek, Laser-induced periodic surface structures formation: Investigation of the effect of nonlinear absorption of laser energy in different materials. Proc. SPIE 10228, 102280T (2017)

    Article  Google Scholar 

  244. O. Varlamova, J. Reif, S. Varlamov, M. Bestehorn, The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results. Appl. Surf. Sci. 257, 5465–5469 (2011)

    Article  ADS  Google Scholar 

  245. A. Rudenko, C. Mauclair, F. Garrelie, R. Stoian, J.P. Colombier, Self-organization of surfaces on the nanoscale by topography-mediated selection of quasi-cylindrical and plasmonic waves. Nano 8(3), 459–465 (2019)

    Google Scholar 

  246. A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F. Garrelie, R. Stoian, J.P. Colombier, High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 194, 93–105 (2020)

    Article  ADS  Google Scholar 

  247. Y. Fang, M. Sun, Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015)

    Article  ADS  Google Scholar 

  248. G. Palermo, K.V. Sreekanth, N. Maccaferri, G.E. Lio, G. Nicoletta, F. De Angelis, M. Hinczewski, G. Strangi, Hyperbolic dispersion metasurfaces for molecular biosensing. Nano 10(1), 295–314 (2021)

    Google Scholar 

  249. S. Kou, G. Yuan, Q. Wang, L. Du, E. Balaur, D. Zhang, D. Tang, B. Abbey, X.-C. Yuan, J. Lin, On-chip photonic Fourier transform with surface plasmon polaritons. Light Sci. Appl. 5, e16034 (2016)

    Article  ADS  Google Scholar 

  250. F. López-Tejeira, S. Rodrigo, L. Martín-Moreno, F.J. García-Vidal, E. Devaux, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.U. González, J.C. Weeber, A. Dereux, Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 3, 324–328 (2007)

    Article  Google Scholar 

  251. T. Zang, H. Zang, Z. Xi, J. Du, H. Wang, Y. Lu, P. Wang, Asymmetric excitation of surface plasmon polaritons via paired slot antennas for angstrom displacement sensing. Phys. Rev. Lett. 124, 243901 (2020)

    Article  ADS  Google Scholar 

  252. C. Lemke, T. Leißner, A. Klick, J. Fiutowski, J.W. Radke, M. Thomaschewski, J. Kjelstrup-Hansen, H.-G. Rubahn, M. Bauer, The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Appl. Phys. B Lasers Opt. 116, 585–591 (2014)

    Article  ADS  Google Scholar 

  253. A. Klick, S. de la Cruz, C. Lemke, M. Großmann, H. Beyer, J. Fiutowski, H.-G. Rubahn, E.R. Méndez, M. Bauer, Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl. Phys. B Lasers Opt. 122, 79 (2016)

    Article  ADS  Google Scholar 

  254. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Book  Google Scholar 

  255. R.L. Olmon, B. Slovick, T.W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, M.B. Raschke, Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    Article  ADS  Google Scholar 

  256. M. Hartelt, P.N. Terekhin, T. Eul, A.-K. Mahro, B. Frisch, E. Prinz, B. Rethfeld, B. Stadtmüller, M. Aeschlimann, Energy and momentum distribution of surface Plasmon-induced hot carriers isolated via spatiotemporal separation. ACS Nano 15, 19559–19569 (2021)

    Article  Google Scholar 

  257. J. Lin, J.P.B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, F. Capasso, Polarization-controlled tunable directional coupling of Surface Plasmon Polaritons. Science 340, 331–334 (2013)

    Article  ADS  Google Scholar 

  258. S.-Y. Lee, K. Kim, G.-Y. Lee, B. Lee, Polarization-multiplexed plasmonic phase generation with distributed nanoslits. Opt. Express 23, 15598–15607 (2015)

    Article  ADS  Google Scholar 

  259. H. Wang, J. Jürgensen, P. Decker, Z. Hu, K. Yan, E.L. Gurevich, A. Ostendorf, Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment. Appl. Surf. Sci. 501, 144338 (2020)

    Article  Google Scholar 

  260. R.D. Murphy, B. Torralva, D.P. Adams, S.M. Yalisove, Laser-induced periodic surface structure formation resulting from single-pulse ultrafast irradiation of Au microstructures on a Si substrate. Appl. Phys. Lett. 102, 211101 (2013)

    Article  ADS  Google Scholar 

  261. R.D. Murphy, B. Torralva, D.P. Adams, S.M. Yalisove, Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features. Appl. Phys. Lett. 104, 231117 (2014)

    Article  ADS  Google Scholar 

  262. P. Lalanne, J.P. Hugonin, Interaction between optical nano-objects at metallo-dielectric interfaces. Nat. Phys. 2, 551–556 (2006)

    Article  Google Scholar 

  263. P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, A microscopic view of the electromagnetic properties of sub-λ metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009)

    Article  ADS  Google Scholar 

  264. A.Y. Nikitin, F.J. García-Vidal, L. Martín-Moreno, Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys. Rev. Lett. 105, 073902 (2010)

    Article  ADS  Google Scholar 

  265. C.H. Gan, J.R. Pugh, M.J. Cryan, J.G. Rarity, G.R. Nash, Role of quasicylindrical waves and surface plasmon polaritons on beam shaping with resonant nanogratings in the infrared. Phys. Rev. B 89, 201415(R) (2014)

    Article  ADS  Google Scholar 

  266. E.A. Danilov, S.A. Uryupin, Competition of quasi-cylindrical and surface waves excited at the femtosecond pulse effect on the metal. Opt. Lett. 46, 2521–2524 (2021)

    Article  ADS  Google Scholar 

  267. F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt. Express 19, 9035–9043 (2011)

    Article  ADS  Google Scholar 

  268. M. Schäfer, P.N. Terekhin, Y. Kang, G. Torosyan, X. del Arco Fargas, S. Hirtle, B. Rethfeld, J.A. L’huillier, Magnetic-field assisted laser ablation of silicon. J. Opt. Soc. Am. B 38, E1–E6 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Deutsche Forschungsgemeinschaft projects RE1141/14-2, IH 17/18-2, GA465/15-2, and IV122/4-1 and RFBR Project Number 20-02-00861. The MD-TTM calculations were performed at Lichtenberg Super Computer Facility TU-Darmstadt (Germany). Some simulations were executed on the high-performance cluster “Elwetritsch” through the projects TopNano and Mulan at the TU Kaiserslautern, which is a part of the “Alliance of High Performance Computing Rheinland-Pfalz.” P.N.T. and B.R. kindly acknowledge the support of Regionales Hochschulrechenzentrum Kaiserslautern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, D.S. et al. (2023). The Atomistic Perspective of Nanoscale Laser Ablation. In: Stoian, R., Bonse, J. (eds) Ultrafast Laser Nanostructuring. Springer Series in Optical Sciences, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-031-14752-4_2

Download citation

Publish with us

Policies and ethics