Skip to main content

Algebraic Biochemistry: A Framework for Analog Online Computation in Cells

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13447))

Included in the following conference series:

Abstract

The Turing completeness of continuous chemical reaction networks (CRNs) states that any computable real function can be computed by a continuous CRN on a finite set of molecular species, possibly restricted to elementary reactions, i.e. with at most two reactants and mass action law kinetics. In this paper, we introduce a notion of online analog computation for the CRNs that stabilize the concentration of their output species to the result of some function of the concentration values of their input species, whatever changes are operated on the inputs during the computation. We prove that the set of real functions stabilized by a CRN with mass action law kinetics is precisely the set of real algebraic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the computational results presented in this paper are available in an executable Biocham notebook at https://lifeware.inria.fr/wiki/Main/Software#CMSB22.

  2. 2.

    The terminology of “algebraic functions” used in the title of [1] refers in fact to its restriction to algebraic expressions.

  3. 3.

    An Ubuntu 20.04, with an Intel Core i6, 2.4 GHz x 4 cores and 15.5 GB of memory.

References

  1. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L.: Computing algebraic functions with biochemical reaction networks. Artif. Life 15(1), 5–19 (2009)

    Article  CAS  Google Scholar 

  2. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

    Article  CAS  Google Scholar 

  3. Cardelli, L., Tribastone, M., Tschaikowski, M.: From electric circuits to chemical networks. Nat. Comput. 19(1), 237–248 (2019). https://doi.org/10.1007/s11047-019-09761-7

    Article  Google Scholar 

  4. Carothers, D.C., Parker, G.E., Sochacki, J.S., Warne, P.G.: Some properties of solutions to polynomial systems of differential equations. Electron. J. Differ. Equ. 2005(40), 1–17 (2005)

    Google Scholar 

  5. Chelliah, V., Laibe, C., Novére, N.L.: Biomodels database: a repository of mathematical models of biological processes. In: Schneider, M. (ed.) Silico Systems Biology. Methods in Molecular Biology, vol. 1021, pp. 189–199. Humana Press, Totowa (2013). https://doi.org/10.1007/978-1-62703-450-0_10

    Chapter  Google Scholar 

  6. Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 7433, 25–42 (2013)

    PubMed Central  Google Scholar 

  7. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88869-7_27

  8. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided biochemical programming of synthetic microreactors as diagnostic devices. Mol. Syst. Biol. 14(4), e7845 (2018)

    Article  Google Scholar 

  9. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction networks: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338 (2006)

    Article  CAS  Google Scholar 

  10. Duportet, X., et al.: A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res. 42(21), 13440–13451 (2014)

    Article  CAS  Google Scholar 

  11. Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester (1989)

    Google Scholar 

  12. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_7

    Chapter  Google Scholar 

  13. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential equations. Theor. Comput. Sci. 599, 64–78 (2015)

    Article  Google Scholar 

  14. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. Theor. Compu. Sci. 403(1), 52–70 (2008)

    Article  Google Scholar 

  15. Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, chap. 1, pp. 1–78. Prentice-Hall (1977)

    Google Scholar 

  16. Hemery, M., Fages, F., Soliman, S.: On the complexity of quadratization for polynomial differential equations. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 120–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_7

    Chapter  Google Scholar 

  17. Hemery, M., Fages, F., Soliman, S.: Compiling elementary mathematical functions into finite chemical reaction networks via a polynomialization algorithm for ODEs. In: Cinquemani, E., Paulevé, L. (eds.) CMSB 2021. LNCS, vol. 12881, pp. 74–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85633-5_5

    Chapter  Google Scholar 

  18. Huang, C.-Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS 93(19), 10078–10083 (1996)

    Article  CAS  Google Scholar 

  19. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  CAS  Google Scholar 

  20. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-8_12

    Chapter  Google Scholar 

  21. Segel, L.A.: Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  22. Vasic, M., Soloveichik, D., Khurshid, S.: CRN++: molecular programming language. In: Doty, D., Dietz, H. (eds.) DNA 2018. LNCS, vol. 11145, pp. 1–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00030-1_1

    Chapter  Google Scholar 

Download references

Acknowledgments

We are grateful to Amaury Pouly and Sylvain Soliman for interesting discussions on this work, and to ANR-20-CE48-0002 and Inria AEx GRAM grants for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fages .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hemery, M., Fages, F. (2022). Algebraic Biochemistry: A Framework for Analog Online Computation in Cells. In: Petre, I., Păun, A. (eds) Computational Methods in Systems Biology. CMSB 2022. Lecture Notes in Computer Science(), vol 13447. Springer, Cham. https://doi.org/10.1007/978-3-031-15034-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15034-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15033-3

  • Online ISBN: 978-3-031-15034-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics