Skip to main content

The TEXTAROSSA Approach to Thermal Control of Future HPC Systems

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2022)

Abstract

Thermal control is a key aspect of large-scale HPC centers, where a large number of computing elements is employed. Temperature is directly related to both reliability, as excessing heating of components leads to a shorter lifespan and increased fault probability, and power efficiency, since a large fragment of power is used in the cooling system itself. In this paper, we introduce the TEXTAROSSA approach to thermal control, which couples innovative two-phase cooling with multi-level thermal control strategies able to address thermal issues at system and node level.

This work is supported in part by the EuroHPC JU and the Italian Ministry for Economic Development (MiSE) under GA 956831 “TEXTAROSSA”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.etp4hpc.eu/sra.html (last accessed June 2022).

  2. 2.

    https://prace-ri.eu (last accessed June 2022).

  3. 3.

    https://cordis.europa.eu/project/id/248749 (last accessed June 2022).

  4. 4.

    https://www.consorzio-cini.it/index.php/it/laboratori-nazionali/hpc-key-technologies-and-tools (last accessed March 2022).

  5. 5.

    https://textarossa.eu (last accessed March 2022).

References

  1. The Functional Mock-up Interface (FMI) standard. https://fmi-standard.org/

  2. Tools supporting the Functional Mock-up Interface (FMI) standard. https://fmi-standard.org/tools/

  3. Agosta, G., et al.: TEXTAROSSA: Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale. In: 2021 24th Euromicro Conference on Digital System Design (DSD), pp. 286–294. IEEE (2021)

    Google Scholar 

  4. Aldinucci, M., et al.: The Italian research on hpc key technologies across eurohpc. In: Proceedings of the 18th ACM International Conference on Computing Frontiers, pp. 178–184 (2021)

    Google Scholar 

  5. Bell, I.H., Wronski, J., Quoilin, S., Lemort, V.: Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53(6), 2498–2508 (2014)

    Article  Google Scholar 

  6. Boyd, R.: Subcooled Flow Boiling Critical Heat Flux (CHF) and Its Application to Fusion Energy Components-Part I. A Review of Fundamentals of CHF and related Data Base. Fusion Technol. 7, 7–31 (1985)

    Google Scholar 

  7. Casella, F., Richter, C.: ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica. In: Modelica, March 3rd-4th, 2008

    Google Scholar 

  8. Cremona, L., Fornaciari, W., Zoni, D.: Automatic identification and hardware implementation of a resource-constrained power model for embedded systems. Sustain. Comput. Informatics Syst. 29(Part), 100467 (2021). https://doi.org/10.1016/j.suscom.2020.100467

  9. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. John Wiley & Sons, London, UK (2004)

    Google Scholar 

  10. Fritzson, P., et al.: The OpenModelica integrated environment for modeling, simulation, and model-based development. MIC—Model. Identif. Control 41(4), 241–295 (2020). https://doi.org/10.4173/mic.2020.4.1

    Article  Google Scholar 

  11. Group, E.R.I.A.: Strategic research and innovation agenda 2019. Technical report (2019)

    Google Scholar 

  12. Hankin, A., et al.: HotGauge: a methodology for characterizing advanced hotspots in modern and next generation processors. In: 2021 IEEE International Symposium on Workload Characterization (IISWC), pp. 163–175 (2021)

    Google Scholar 

  13. Iranfar, A., et al.: Thermal characterization of next-generation workloads on heterogeneous MPSoCs. In: Proceedings of 2017 SAMOS, vol. 2018, pp. 286–291, January 2018

    Google Scholar 

  14. Leva, A., et al.: Event-based power/performance-aware thermal management for high-density microprocessors. IEEE Trans. Control Syst. Technol. 26(2), 535–550 (2018)

    Article  Google Scholar 

  15. Leva, A., et al.: Event-based power/performance-aware thermal management for high-density microprocessors. IEEE Trans. Control Syst. Technol. 26(2), 535–550 (2018). https://doi.org/10.1109/TCST.2017.2675841

    Article  Google Scholar 

  16. Malms, M., et al.: Etp4hpc’s strategic research agenda for high-performance computing in europe 4. Technical report (2020)

    Google Scholar 

  17. Papadopoulos, A., et al

    Google Scholar 

  18. Terraneo, F., et al.: 3d-ice 3.0: Efficient nonlinear mpsoc thermal simulation with pluggable heat sink models. IEEE Trans. Comput.-Aided Design Integrated Circuits Syst. 41(4), 1062–1075 (2022). https://doi.org/10.1109/TCAD.2021.3074613

  19. Terraneo, F., Leva, A., Fornaciari, W.: An open-hardware platform for MPSoC thermal modeling. In: Embedded Computer Systems: Architectures, Modeling, and Simulation, pp. 184–196 (2019)

    Google Scholar 

  20. Zanini, F., Atienza, D., Benini, L., De Micheli, G.: Thermal-aware system-level modeling and management for multi-processor systems-on-chip. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2481–2484 (2011)

    Google Scholar 

  21. Zanini, F., Atienza, D., De Micheli, G.: A control theory approach for thermal balancing of mpsoc. In: Proceedings of 2009 ASP-DAC, pp. 37–42. IEEE Press (2009)

    Google Scholar 

  22. Zoni, D., Cremona, L., Fornaciari, W.: Design of side-channel-resistant power monitors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(5), 1249–1263 (2022). https://doi.org/10.1109/TCAD.2021.3088781

  23. Zoni, D., Fornaciari, W.: Modeling DVFS and power-gating actuators for cycle-accurate noc-based simulators. ACM J. Emerg. Technol. Comput. Syst. 12(3), 27:1–27:24 (2015). https://doi.org/10.1145/2751561

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Fornaciari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fornaciari, W. et al. (2022). The TEXTAROSSA Approach to Thermal Control of Future HPC Systems. In: Orailoglu, A., Reichenbach, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2022. Lecture Notes in Computer Science, vol 13511. Springer, Cham. https://doi.org/10.1007/978-3-031-15074-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15074-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15073-9

  • Online ISBN: 978-3-031-15074-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics